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Abstract

Image translation methods typically aim to manipulate
a set of labeled attributes (given as supervision at train-
ing time e.g. domain label) while leaving the unlabeled at-
tributes intact. Current methods achieve either: (i) disen-
tanglement, which exhibits low visual fidelity and can only
be satisfied where the attributes are perfectly uncorrelated.
(ii) visually-plausible translations, which are clearly not
disentangled. In this work, we propose OverLORD, a sin-
gle framework for disentangling labeled and unlabeled at-
tributes as well as synthesizing high-fidelity images, which
is composed of two stages; (i) Disentanglement: Learning
disentangled representations with latent optimization. Dif-
ferently from previous approaches, we do not rely on adver-
sarial training or any architectural biases. (ii) Synthesis:
Training feed-forward encoders for inferring the learned
attributes and tuning the generator in an adversarial man-
ner to increase the perceptual quality. When the labeled
and unlabeled attributes are correlated, we model an ad-
ditional representation that accounts for the correlated at-
tributes and improves disentanglement. We highlight that
our flexible framework covers multiple settings as disen-
tangling labeled attributes, pose and appearance, localized
concepts, and shape and texture. We present significantly
better disentanglement with higher translation quality and
greater output diversity than state-of-the-art methods.

1. Introduction
Learning disentangled representations for different fac-

tors of variation in a set of observations is a fundamen-
tal problem in machine learning. Such representations can
facilitate generalization to downstream generative and dis-
criminative tasks such as novel image synthesis [39] and
person re-identification [9], as well as improving inter-
pretability [14], reasoning [34] and fairness [6]. A popular
task which benefits from disentanglement is image trans-
lation, in which the goal is to translate a given input im-

age from a source domain (e.g. cats) to an analogous im-
age in a target domain (e.g. dogs). Although this task is
generally poorly specified, it is often satisfied under the as-
sumption that images in different domains share common
attributes (e.g. head pose) which can remain unchanged
during translation. In this paper, we divide the set of all
attributes that define a target image precisely into two sub-
sets; (i) labeled attributes: the attributes that are supervised
at training time e.g. whether the image belongs to the “cats”
or “dogs” domain; (ii) unlabeled attributes: all the remain-
ing attributes that we do not have supervision for e.g. breed
of the animal, head pose, background etc. While several
methods (e.g. LORD [10], StarGAN [4], Fader Networks
[20]) have been proposed for disentangling labeled and un-
labeled attributes, we explain and show why they can not
deal with cases where the labeled and unlabeled attributes
are correlated. For example, when translating cats to dogs,
the unlabeled breed (which specifies fur texture or facial
shape) is highly correlated with the domain label (cat or
dog), and can not be translated between species. This de-
pendency motivates the specification of more fine-grained
attributes that we wish the translated image to have. Several
methods as MUNIT [16], FUNIT [23] and StarGAN-v2 [5]
attempt to learn a domain-dependent style representation
which ideally should account for the correlated attributes.
Unfortunately, we show that despite their visually pleas-
ing results, the translated images still retain many domain-
specific attributes of the source image. As demonstrated
in Fig. 2, when translating dogs to wild animals, current
methods transfer facial shapes which are unique to dogs and
should not be transferred precisely to wild animals, while
our model transfers the semantic head pose more reliably.

In this work, we analyze the different settings for dis-
entanglement of labeled and unlabeled attributes. In the
case where they are perfectly uncorrelated, we improve over
LORD [10] and scale to higher perceptual quality by a novel
synthesis stage. In cases where the labeled and unlabeled
attributes are correlated, we rely on the existence of spatial
transformations which can retain the correlated attributes
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(a) Labeled Attribute (Age)
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Identity Gender+Hair Translation

(c) Labeled Attribute (Gender) With Localized Correlation (Hair)

Shape Texture Translation

(d) Shape and Texture

Figure 1: A summary of the different attribute forms covered by our disentanglement framework.

while exhibiting different or no uncorrelated attributes. We
suggest simple forms of transformations for learning pose-
independent or localized correlated attributes, by which
we achieve better disentanglement both quantitatively and
qualitatively than state-of-the-art methods (e.g. FUNIT [23]
and StarGAN-v2 [5]). Our approach suggests that adversar-
ial optimization, which is typically used for domain transla-
tion, is not necessary for disentanglement, and its main util-
ity lies in generating perceptually pleasing images. Fig. 1
summarizes the settings covered by our framework.

Our contributions are as follows: (i) Introducing a non-
adversarial disentanglement method that carefully extends
to cases where the attributes are correlated. (ii) Scaling
disentanglement methods to high perceptual quality with
a final synthesis stage while learning disentangled repre-
sentations. (iii) State-of-the-art results in multiple image-
translation settings within a unified framework.

2. Related Work

Image Translation Translating the content of images
across different domains has attracted much attention. In
the unsupervised setting, CycleGAN [38] introduces a cy-
cle consistency loss to encourage the translated images to
preserve the domain-invariant attributes (e.g. pose) of the
source image. MUNIT [16] recognizes that a given content
image could be translated to many different styles (e.g. col-
ors and textures) in a target domain and extends UNIT [15]
to learn multi-modal mappings by learning style representa-
tions. DRIT [22] tackles the same setting using an adversar-
ial constraint at the representation level. MSGAN [26] adds

a regularization term to prevent mode collapse. StarGAN-
v2 [5] and DMIT [36] extend previous frameworks to trans-
lation across more than two domains. FUNIT [23] further
allows translation to novel domains. COCO-FUNIT [31]
aims to preserve the structure of the image by conditioning
the style of a reference image on the actual content image.

Class-Supervised Disentanglement In this parallel line
of work, the goal is to anchor the semantics of each class
into a single representation while modeling all the remain-
ing class-independent attributes by a residual representa-
tion. Several methods encourage disentanglement by adver-
sarial constraints [8, 32, 27] while other rely on cycle con-
sistency [12] or group accumulation [2]. LORD [10] takes
a non-adversarial approach and trains a generative model
while directly optimizing over the latent codes. Methods in
this area assume that the class label and the unlabeled at-
tributes are perfectly uncorrelated. We show that in cases
where this assumption does not hold, these methods fail to
disentangle the attributes and perform poorly. Moreover,
they work on synthetic and low-resolution datasets and can-
not compete in recent image translation benchmarks.

Disentanglement of Shape and Texture Several meth-
ods aim to disentangle the shape of an object from its tex-
ture. Lorenz et al. [25] exploit equivariance and invari-
ance constraints between synthetically transformed images
to learn shape and appearance representations. Park et
al. [29] learn the texture by co-occurrence patch statistics
across different parts of the image. In this setting, no super-
vision is used, limiting current methods to low-level manip-
ulations i.e. no significant semantic changes are performed.
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Figure 2: Entanglement in image translation models on AFHQ. Domain label (cat, dog or wild) and its correlated attributes
(e.g. breed) are guided by the appearance image, while the uncorrelated attributes (e.g. head pose) of the source image should
be preserved. Current approaches and their architectural biases tightly preserve the original structure and generate unreliable
facial shapes which are unique to the source domain. We disentangle the pose and capture the target breed faithfully.

3. Disentanglement in Image Translation

Assume a set of images x1, x2, ..., xn ∈ X in which
every image xi is specified precisely by a set of attributes.
Some of the attributes are labeled by yi, while the rest are
unlabeled and denoted as ui.

Case 1: If the labeled and unlabeled attributes are
approximately uncorrelated, we seek representations
uuncorr for the unlabeled attributes. An unknown function
G maps y and uuncorr to x:

xi = G(yi, u
uncorr
i ) (1)

Case 2: If the labeled and unlabeled attributes are corre-
lated, y and uuncorr do not uniquely specify x. For exam-
ple, in animal face images, y defines the species (e.g. cat or
dog) and uuncorr specifies uncorrelated attributes such as
head pose. The attributes which are correlated with species
(e.g. breed) are denoted as ucorr, and should be learned as
well. G now maps y, ucorr and uuncorr to x:

xi = G(yi, u
corr
i , uuncorri ) (2)

The goal of image translation is to replace the labeled
attributes yi along with their correlated attributes ucorri of
source image xi by those of target image xj . Let us briefly
review the main ideas proposed in previous work and dis-
cuss their drawbacks.

Learning the uncorrelated attributes uuncorr Adver-
sarial methods (e.g. StarGAN-v2, FUNIT, MUNIT) train
a domain confusion discriminator on the translated images
to retain only the uncorrelated attributes. Unfortunately, we
empirically show in Tab. 2 and Fig. 2 that these methods
do not learn disentangled representations and the translated
images do not retain only the uncorrelated attributes. How-
ever, some of the correlated attributes leak into the repre-
sentations and the translated images. We hypothesize that
this failure lies in the challenging adversarial optimization.

Learning the correlated attributes ucorr Current meth-
ods rely on locality-preserving architectures (e.g. AdaIN
[5, 23, 16]) that bias the uncorrelated attributes to repre-
sent the spatial structure of the image and the correlated
attributes to control its appearance. Unfortunately, archi-
tectural biases of this sort inevitably restrict the correlated
attributes from altering spatial features when needed. As
shown in Fig. 2, the uncorrelated pose is indeed spatial, but
some of the correlated attributes (as the facial shape of dif-
ferent breeds) are of spatial nature as well.

4. Proposed Framework: OverLORD
Motivated by the above analysis, we present OverLORD,

which is composed of: disentanglement and synthesis.

4.1. Learning a Disentanglement Model

In order to learn disentangled representations for the la-
beled and unlabeled attributes, we draw inspiration from
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Stage 1: Disentanglement With Latent Optimization

Stage 2: Synthesis With Adversarial Training

Figure 3: A sketch of our method. In the disentanglement stage, T outputs a transformed version of the image, retaining only
attributes that correlate with y. uuncorr is regularized and optimized to recover the minimal residual information required
for reconstructing the input image, resulting in the remaining uncorrelated attributes, as they are not represented by y or the
output of T . In the synthesis stage, we tune all modules in an amortized fashion using the learned embeddings as targets of
the new encoders, Ey and Eu. During this stage, an adversarial discriminator is trained to increase the visual fidelity.

LORD [10] and propose a non-adversarial method based
on latent optimization. Differently from LORD, we do not
strictly assume that the labeled and unlabeled attributes are
uncorrelated. We relax this assumption and assume the ex-
istence of correlated attributes, as described next.

Unlabeled correlated attributes We design a simple
yet effective method for learning some of the correlated
attributes independently from the uncorrelated ones. We
first form a function T that outputs an image xcorr = T (x),
which retains the correlated attributes but exhibits different
uncorrelated attributes. The exact realization of T depends
on the nature of the uncorrelated and correlated attributes.
In this paper, we propose two different forms of T :

(i) Random spatial transformation: If the uncorre-
lated attributes should capture the pose of an object, wet set
T as a sequence of random flips, rotations or crops, making
xcorr retain attributes that are pose-independent:

T (x) = (fcrop ◦ frotate ◦ fflip)(x) (3)

(ii) Masking: If the correlated attributes are localized, we
set T to mask-out the uncorrelated attributes, retaining only
correlated regions included in the segmentation mask m:

T (x;m) = x�m (4)

E.g. when translating males to females, T might mask
the hair region which is highly correlated with the gender
(i.e. masking out all the other regions). Masks can be ob-
tained using external supervision or unsupervised methods
[17, 33] and are used only for training. The correlated at-
tributes are modeled by: ucorr = Ec(x

corr) = Ec(T (x)).

Unlabeled uncorrelated attributes As T accounts for
the dependency of the labeled and unlabeled attributes,
we can assume that uuncorr is approximately uncorrelated
with y and ucorr. To obtain an independent representation,
we aim uuncorr to recover the minimal residual informa-
tion, not represented by y and uuncorr, that is required to
reconstruct the image. We therefore parameterize a noisy
channel consisting of a vector u′i and an additive Gaussian
noise z ∼ N (0, I), uuncorri = u′i + z, similarly to the
non-adversarial bottleneck proposed in [10]. We therefore
define the bottleneck loss as: Lb =

∑
i ‖u′i‖2.

Reconstruction: An image xi should be fully speci-
fied by the representations yi, ucorri , uuncorri :

Lrec =
∑
i

`
(
G(yi, u

corr
i , uuncorri ), xi

)
(5)

Our complete objective can be summarized as follows:

min
u′
i,Ec,G

Ldisent = Lrec + λbLb (6)
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For reconstruction we use ` as the VGG-based percep-
tual loss. Note that we optimize over u′i directly, as they
are not parameterized by a feed-forward encoder. Inspired
by [10], we leverage latent optimization as it improves dis-
entanglement significantly over encoder-based methods. To
get an intuition, we should consider their initialization: each
u′i in latent optimization is initialized i.i.d, and therefore is
totally uncorrelated with the labeled attributes. However,
a feed-forward encoder starts with near perfect correlation
(the labeled attributes can be predicted even from the output
of a randomly initialized encoder). We further elaborate on
latent optimization and its inductive bias in Appendix A.4.

4.2. Generalization and Perceptual Quality

After the disentanglement stage, we possess representa-
tions of the uncorrelated attributes uuncorri for every image
in the training set. In order to generalize to unseen images
and novel labeled attributes (e.g. new face identities), we
train feed-forward encoders Ey : X −→ Y and Eu : X −→ U
to infer the labeled and uncorrelated attributes (Ec is al-
ready trained in the previous stage), respectively:

Lenc =
∑
i

‖Ey(xi)− yi‖2 + ‖Eu(xi)− uuncorri ‖2 (7)

The reconstruction term is changed accordingly:

Lgen =
∑
i

`
(
G
(
Ey(xi), Ec(xi), Eu(xi)

)
, xi

)
(8)

These two objectives ensure that the training set can be
reconstructed in an amortized fashion (Lgen), without vio-
lating the disentanglement criterion established in the pre-
vious stage (Lenc). Note that the targets for Lenc are the
ones learned by our own model in the previous stage.

Although these constraints are sufficient for disentan-
glement and generalization, the generated images exhibit
relatively low perceptual quality, as can be seen in Fig. 4.
While we argue that achieving disentanglement by adver-
sarial methods is notoriously difficult, as observed in our
experiments and in [10], we find that tuning the model with
an adversarial term after disentangled representations have
been already learned significantly improves the perceptual
fidelity. Therefore, we jointly train an unconditional dis-
criminator D and employ an adversarial loss to distinguish
between real and reconstructed images:

Ladv =
∑
i

logD(xi) + log
(
1−D(x̄i)

)
(9)

The entire objective of the synthesis stage is as follows:

min
Ey,Eu,G

max
D
Lgen + λencLenc + λadvLadv (10)

A sketch of our entire framework is shown in Fig. 3.

5. Experiments
Our framework is evaluated in the two cases considered

along this paper: when the labeled and unlabeled attributes
are uncorrelated, and when they are correlated.

5.1. Evaluation Protocol

We measure disentanglement by training two auxiliary
classifiers to predict the original labeled attributes from: (i)
the learned representations of the uncorrelated attributes.
(ii) the translated images in which the labeled attributes
have been changed. In both metrics, lower accuracy indi-
cates better disentanglement. In cases where annotations for
evalution exist (e.g. CelebA) we measure task-specific met-
rics as identity similarity (Id), expression (Exp) and head
pose (Pose) errors given a target image. Where no anno-
tations exist (e.g. AFHQ, CelebA-HQ) we measure how
the translated images fit the target domain (FID) and their
diversity (LPIPS). More implementation and evaluation de-
tails are provided in Appendix A.1.

5.2. Uncorrelated Attributes

Attribute Manipulation In this setting there is a single
labeled attribute which is assumed to be approximately
uncorrelated with all the unlabeled attributes. We perform
an experiment on CelebA [24] and define the facial identity
label as the only labeled attribute. Tab. 1 and Fig. 5 show
results of disentangling face identity from the unlabeled
attributes including head pose, expression and illumination.
We compare to LORD and FUNIT as they can handle fine-
grained labels (i.e. 10K face identities) and generalize to
unseen identities. It can be seen that our method preserves
the head pose, expression and illumination well while
translating the identity more faithfully than the baselines.
Another task which has attracted much attention recently is
facial age editing [1, 28]. We define the age (categorized
to 8 ranges: 0-9, ..., 70-79) as the only labeled attribute
in FFHQ and compare to state-of-the-art aging methods:
lifespan [28] and SAM [1]. We demonstrate in Fig. 6 that
while the baselines rely on a pretrained face identity loss
[7] we are able to preserve the identity better. Finally, we
explore the task of translating Males to Females. We define
the gender in CelebA-HQ [18] as the labeled attribute
and compare to FaderNetworks [20] and mGANprior [11]
which operates in the latent space of StyleGAN. As shown
in Tab. 3 and Fig. 7, our model achieves near perfect score
in fooling a target classifier and generates visually pleasing
results. We later show that the assumption that the gender
is uncorrelated with the other attributes can be relaxed by
masking regions (e.g. hair) that are highly correlated with
the gender to improve translation control and reliability.

Shape-Texture In this task the goal is to disentangle
the shape of an object from its texture. We define the shape
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Table 1: Disentanglement performance on CelebA. Lower
classification accuracy of identity from the learned repre-
sentations of the uncorrelated attributes (y ←− uuncorr) and
higher error of landmarks regression from identity repre-
sentations (y −→ lnd) indicate better disentanglement. Id
= FaceNet cosine similarity, Exp = Expression by RMSE
on facial landmarks, Pose = average of yaw, pitch and roll
angle errors. *Indicates detail loss.

Representation Image

y ←− uuncorr y −→ lnd Id Exp Pose

FUNIT 0.16 2.6 0.24 3.8 4.7
LORD 10−4∗ 3.6 0.48 3.2 3.5
Ours 10−3 3.6 0.63 2.7 2.5

Optimal 10−3 - 1 0 0

as the labeled attribute (represented by an edge map) and
demonstrate texture transfer between different shoes on
Edges2Shoes [35] in Fig. 1 and Appendix A.3. Note that in
order to guide the labeled attribute by an image (and not by
a categorical label), we train Ey with the rest of the models
in the disentanglement stage instead of the synthesis stage.

5.3. Correlated Attributes

Pose-Appearance When the uncorrelated attributes
should encode the pose of an object, we set T to be a series
of random transformation of horizontal flips, rotations
and crops to let xcorr retain all the pose-independent
attributes. We perform an experiment on AFHQ and define
the domain label (cat, dog, wildlife) as the labeled attribute.
Tab. 2 and Fig. 2 show that our method outperforms all
baselines achieving near perfect disentanglement with
better visual quality (FID) and higher translation diver-
sity (LPIPS). Note that while StarGAN-v2 and FUNIT
support multiple domains, MUNIT, DRIT and MSGAN
are trained multiple times for every possible pair of
domains. Moreover, as standard LORD does not distinct
between correlated and uncorrelated attributes i.e. can not
utilize a reference image, we make an effort to extend it
to the correlated case by clustering the images into 512
sub-categories before training (denoted as LORD clusters).

Localized correlation When the correlated attributes
are localized, T masks their corresponding regions within
the image. We repeat the Male-to-Female experiment
with masks provided in CelebAMask-HQ [21]. In this
experiment, xcorr contains only the hair region. As
shown in Fig. 7, our method translates the gender with the
general target hair style while preserving the uncorrelated
attributes including identity, age and illumination better
than StarGAN-v2. More results are in Appendix. A.3.

Table 2: Disentanglement performance on AFHQ. Classifi-
cation accuracy of domain label from the learned represen-
tations of the uncorrelated attributes (y ←− uuncorr), classi-
fication accuracy of source domain label from the translated
image (yi ←− xij), translation fidelity (FID) and translation
diversity (LPIPS).

Rep. Image

y ←− uuncorr yi ←− xij FID LPIPS

MUNIT [16] 1.0 1.0 223.9 0.20
DRIT [22] 1.0 1.0 114.8 0.16
MSGAN [26] 1.0 1.0 69.8 0.38
LORD [10] 0.74 0.47 97.1 0
LORD clusters 0.53 0.43 37.1 0.36
StarGAN-v2 0.89 0.75 19.8 0.43
FUNIT [23] 0.94 0.85 18.8 0.44

Ours w/o xcorr 0.80 0.79 55.9 0
Ours w/o adv. 0.33 0.38 29.1 0.45
Ours 0.33 0.42 16.5 0.51

Optimal 0.33 0.33 12.9 -

Pose w/o xcorr Appearance w/o adv. Ours

Figure 4: Ablations: w/o xcorr: Ignoring the correlated
attributes leads to unreliable translations. w/o adv.: the
attributes are disentangled but images exhibit low quality.
Adversarial synthesis greatly improves perceptual quality.

5.4. Ablation Study

Ignoring correlation with the labeled attribute We
train our model on AFHQ without xcorr, assuming all the
unlabeled attributes are uncorrelated with the labeled at-
tribute. However, as breed is highly correlated with species,
the animal faces are translated in an unreliable and entan-
gled manner, as shown in Fig. 4 and in Appendix. A.5.
Tab. 2 includes results from the ablation analysis which sug-
gest that this strategy does not reach disentanglement nei-
ther at the representation nor at the image level.

Adversarial loss for perceptual quality We train our
method without the adversarial loss in the synthesis stage.
Tab. 2 suggests that disentanglement is achieved by our non-
adversarial framework, while the additional adversarial loss
contributes to increasing the output fidelity (FID). Quali-
tative evidence for the claims in the ablation analysis are
presented in Fig. 4 and in Appendix A.5.
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Identity Attributes 1 FUNIT [23] LORD [10] Ours Attributes 2 FUNIT [23] LORD [10] Ours

Figure 5: Disentanglement of 10K facial identities from unlabeled attributes (e.g. head pose, expression, illumination).
FUNIT preserves pose but fails to model expression and exact identity. LORD captures the identity but generates low-fidelity
images. We preserve head pose and facial expression while transferring the identity and generating appealing images.
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Figure 6: Disentanglement of age and unlabeled attributes. Lifespan introduces artifacts and does not change hair color,
while StyleGAN-based SAM struggles to preserve identity. Note that we do not use any supervised identity loss.

Limitations There should be noted two limitations of the
proposed framework; (i) We design T for learning pose-
independent or localized correlated attributes, which cov-

ers common image translation settings. Nonetheless, other
settings may require different forms of T . (ii) As our
framework relies on latent optimization and avoids locality-
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Figure 7: Male-to-Female translation in two settings: (i) When the attributes are assumed to be uncorrelated, our method
makes greater changes than Fader while preserving the identity better than mGANprior. (ii) As translating hairstyle between
genders is poorly specified, we model it as the correlated attribute and utilize a reference image specifying its target. Our
method preserves the uncorrelated attributes including identity, age and illumination better than StarGAN-v2, while transfer-
ring hairstyle more faithfully. Failure case: as the lipstick is not modeled as a correlated attribute, it transfers over unreliably.

biased architectures for improving disentanglement, it is not
well optimized for cases in which the object is not the major
part of the image e.g. where the background contains other
objects or large variation. We hypothesize that this can be
better solved with unsupervised segmentation techniques.

6. Conclusion
We presented OverLORD, a framework for representa-

tion disentanglement in the case where supervision is pro-
vided for some attributes while not for others. Our model
extends latent-optimization-based methods to cases where
the attributes are correlated, and scales-up for high-fidelity
image synthesis. We further showed how adversarial opti-
mization can be decoupled from representation disentangle-
ment and be applied only to increase the perceptual quality
of the generated images. With our unified framework, we

Table 3: Male-to-Female results on CelebA-HQ. Accuracy
of fooling a gender classifier and translation fidelity (FID).

Target Classification FID

F2M M2F F2M M2F

Fader [20] 0.82 0.80 119.7 81.7
mGANprior [11] 0.59 0.76 78.2 45.3
Ours [uncorr] 0.98 0.97 54.0 42.9

StarGAN-v2 [5] 0.98 0.99 27.9 20.1
Ours [corr] 0.98 0.99 28.1 16.4

Optimal (Real) 0.99 0.99 15.6 14.0

achieve state-of-the-art performance compared to both gen-
eral and task-specific methods on various image translation
tasks with different forms of labeled attributes.

6790



References
[1] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Only a

matter of style: Age transformation using a style-based re-
gression model. arXiv preprint arXiv:2102.02754, 2021. 5,
7, 11, 13, 14

[2] Diane Bouchacourt, Ryota Tomioka, and Sebastian
Nowozin. Multi-level variational autoencoder: Learning
disentangled representations from grouped observations. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018. 2

[3] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and
Andrew Zisserman. Vggface2: A dataset for recognising
faces across pose and age. In 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG
2018), pages 67–74. IEEE, 2018. 11

[4] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8789–8797,
2018. 1

[5] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2020. 1, 2, 3, 8, 11, 19

[6] Elliot Creager, David Madras, Jörn-Henrik Jacobsen,
Marissa A Weis, Kevin Swersky, Toniann Pitassi, and
Richard Zemel. Flexibly fair representation learning by
disentanglement. In International Conference on Machine
Learning, 2019. 1

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4690–4699, 2019. 5

[8] Emily L Denton et al. Unsupervised learning of disentangled
representations from video. In Advances in neural informa-
tion processing systems, pages 4414–4423, 2017. 2

[9] Chanho Eom and Bumsub Ham. Learning disentangled
representation for robust person re-identification. In Ad-
vances in Neural Information Processing Systems, pages
5297–5308, 2019. 1

[10] Aviv Gabbay and Yedid Hoshen. Demystifying inter-class
disentanglement. In ICLR, 2020. 1, 2, 4, 5, 6, 7, 11, 12, 25

[11] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing
using multi-code gan prior. In CVPR, 2020. 5, 8, 19

[12] Ananya Harsh Jha, Saket Anand, Maneesh Singh, and VSR
Veeravasarapu. Disentangling factors of variation with cycle-
consistent variational auto-encoders. In ECCV, 2018. 2

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626–6637, 2017. 11

[14] Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised
learning of disentangled and interpretable representations

from sequential data. In Advances in neural information pro-
cessing systems, pages 1878–1889, 2017. 1

[15] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 2

[16] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 172–189, 2018. 1, 2, 3, 6

[17] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant in-
formation clustering for unsupervised image classification
and segmentation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9865–9874,
2019. 4

[18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In International Conference on Learning Rep-
resentations, 2018. 5, 11

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2019. 11

[20] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, An-
toine Bordes, Ludovic Denoyer, and Marc’Aurelio Ranzato.
Fader networks: Manipulating images by sliding attributes.
In Advances in neural information processing systems, pages
5967–5976, 2017. 1, 5, 8, 19

[21] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 6, 12

[22] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Ma-
neesh Kumar Singh, and Ming-Hsuan Yang. Diverse image-
to-image translation via disentangled representations. In Eu-
ropean Conference on Computer Vision, 2018. 2, 6

[23] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-
vised image-to-image translation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
10551–10560, 2019. 1, 2, 3, 6, 7

[24] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. Deep learning face attributes in the wild.
http://mmlab.ie.cuhk.edu.hk/projects/celeba.html. In ICCV,
2015. 5, 11

[25] Dominik Lorenz, Leonard Bereska, Timo Milbich, and Bjorn
Ommer. Unsupervised part-based disentangling of object
shape and appearance. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
10955–10964, 2019. 2

[26] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and
Ming-Hsuan Yang. Mode seeking generative adversarial net-
works for diverse image synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1429–1437, 2019. 2, 6

[27] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya
Ramesh, Pablo Sprechmann, and Yann LeCun. Disentan-

6791



gling factors of variation in deep representation using adver-
sarial training. In NIPS, 2016. 2

[28] Roy Or-El, Soumyadip Sengupta, Ohad Fried, Eli Shecht-
man, and Ira Kemelmacher-Shlizerman. Lifespan age trans-
formation synthesis. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2020. 5, 7, 11, 13, 14

[29] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli
Shechtman, Alexei A Efros, and Richard Zhang. Swapping
autoencoder for deep image manipulation. arXiv preprint
arXiv:2007.00653, 2020. 2

[30] Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-
grained head pose estimation without keypoints. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, June 2018. 11

[31] Kuniaki Saito, Kate Saenko, and Ming-Yu Liu. Coco-funit:
Few-shot unsupervised image translation with a content con-
ditioned style encoder. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2020. 2
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