
Detail Me More: Improving GAN’s photo-realism of complex scenes

Raghudeep Gadde
Amazon

Qianli Feng
Amazon

Aleix M Martinez
Amazon

Figure 1: 1MP synthetic images of living rooms. Images generated using the proposed approach with 5 fine-grained discrim-
inators for couches, chairs, coffee tables, end tables, and lamps. Zoom in to see the improved photo-realism of the details of
the objects in the scene as compared to previous generative models.

Abstract

Generative models can synthesize photo-realistic images
of a single object. For example, for human faces, algorithms
learn to model the local shape and shading of the face com-
ponents, i.e., changes in the brows, eyes, nose, mouth, jaw
line, etc. This is possible because all faces have two brows,
two eyes, a nose and a mouth, approximately in the same
location. The modeling of complex scenes is however much
more challenging because the scene components and their
location vary from image to image. For example, living
rooms contain a varying number of products belonging to
many possible categories and locations, e.g., a lamp may
or may not be present in an endless number of possible lo-
cations. In the present work, we propose to add a “broker”
module in Generative Adversarial Networks (GAN) to solve
this problem. The broker is tasked to mediate the use of mul-
tiple discriminators in the appropriate image locales. For
example, if a lamp is detected or wanted in a specific area of
the scene, the broker assigns a fine-grained lamp discrim-
inator to that image patch. This allows the generator to
learn the shape and shading models of the lamp. The result-
ing multi-fine-grained optimization problem is able to syn-
thesize complex scenes with almost the same level of photo-
realism as single object images. We demonstrate the gen-
erability of the proposed approach on several GAN algo-
rithms (BigGAN, ProGAN, StyleGAN, StyleGAN2), image
resolutions (2562 to 10242), and datasets. Our approach
yields significant improvements over state-of-the-art GAN
algorithms.

1. Introduction

In recent years, the improvement in the photo-realism
of the images synthesized by Generative Adversarial Net-
works (GANs) has been extraordinary. We now have algo-
rithms than can synthesize high-resolution images of human
faces, bodies, cats, dogs, cars and other object categories,
with results basically indistinguishable from real photos to
the untrained eye [20, 21, 22, 19, 36, 2, 3, 10, 38].

However, the high-fidelity of these synthetic images does
not translate to the generation of complex scenes with mul-
tiple and varying object categories [6, 40]. For example,
GAN-generated images of living rooms and city streets, al-
though good, are easily distinguishable from real photos
even by the untrained eye.

The classical (vanilla) single discriminator GAN is suf-
ficient to help the generator estimate the underlying distri-
bution of a single object class such as a face. In this case,
the underlying distribution models the shape and shading
changes of the face components located approximately at
the same spatial location. But, a single discriminator GAN
has a much harder time aiding the generator to identify the
underlying distribution that models the shape and shading
variations of all possible objects in all possible image loca-
tions.

The present paper derives a solution to this problem. Our
key contribution is to include a “broker” module in GANs
to mediate the use of multiple fine-grained discriminators to
areas of the image that need them. For example, when gen-
erating an image of a living room, the broker may decide
to use a couch discriminator, a coffee table discriminator,
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Figure 2: DMM-GAN overview. The broker assigns multiple fine-grained discriminators to generated images.

and a floor lamp discriminator, Figure 1. The broker will
also decide to which image pixels each discriminator ap-
plies. The couch discriminator may be assigned to several
pixels around the middle of the image, the coffee table dis-
criminator to pixels slightly below that, and the floor lamp
discriminator to pixels left of these two.

To make the above determination the broker mediates the
result of a full-image discriminator and those of the fine-
grained discriminators. Figure 2 provides an overview. For
example, the full-image discriminator may specialize in the
design of entire rooms, while the fine-grained discrimina-
tors focus on the photo-realism of the different elements of
the room, like couches, coffee tables, and lamps.

Note, however, that our approach is general, allowing
for other alternative configurations. For example, the full-
image discriminator may be a graph representing the in-
terrelationship between different objects in that type of
scene [18, 14, 39]. Similarly, the fine-grained discrimina-
tors may be guided by an embedding space representing
styles or object similarities, among others [30].

We show the general use of the proposed approach on
BigGAN, ProGAN, StyleGAN, and StyleGAN2. In each
case, these GAN algorithms are extended to include our
broker module with up to five fine-grained discriminators.
In all instances, the addition of the broker module yields sta-
tistically significant improvements over the FID score. On
BigGAN, the addition of our module yields an improvement
of up to 73.9%. On ProGAN it is 16.8%. On StyleGAN it
is 35.1%. And, on StyleGAN2 an improvement of 25.6%.

Crucially, we show that FID scores improve significantly
on the areas of the image with specific objects. For exam-
ple, in a living room synthetic image, the FID score for the
pixels in image patches containing a couch or a lamp see a
comparable improvement to the ones detailed in the preced-
ing paragraph. This allows us to generate complex scenes
with a diverse number of objects in varying poses, scales

and locations while maintaining their realism, Figure 1. As
seen in the sample images in this figure, the overall scenes
look very realistic and do not contain the typical large com-
positional errors seen in the results of previous algorithms.

We show these improvements over multiple image res-
olutions, 256×256 to 1024×1024, and on three datasets
datasets – LSUN [43], Cityscapes [9], and a newly col-
lected dataset of 1MP living room images. Our approach
allows for a successful training with qualitatively and quan-
titatively good photo-realistic results.

2. Methods

2.1. Single discriminator GANs

Classical GANs are given by a generator network G(.)
with associated loss function LG and a discriminator net-
work D(.) with associated loss LD. The original pro-
posed losses are LD = Ex∼px [logD(x)] + Ez∼pz [log(1 −
D(G(z)))] and LG = −Ez∼pz [log(D(G(z)))], pz the prior
distribution on latent space and px the distribution on im-
age space [13]. Since then, many alternative loss func-
tions [4, 25, 26, 27] and network topologies for G(.) and
D(.) have been defined [20, 21, 22, 5, 19, 36].

Other successful extensions of GANs include adding: a.
an attention module [32, 44] to specify which area of the
image need to be edited, e.g., to locally edit the expression
on a face image, b. an embedding space to control the nor-
malization layers [17, 22], e.g., by aligning the mean and
variance of the features with those of the style feature, and
c. Lipschitz continuity on D(.) [28, 34, 45], orthogonal reg-
ularization to G(.) [12, 5], and others [15, 33, 26, 41, 23, 7].

In the sections to follow, we derive an alternative method
that uses multiple fine-grained discriminators. We call our
approach DMM-GAN (Detail Me More GAN). This ap-
proach is general and can be combined with any of the
extensions described above. Although one could theoret-
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ically use multiple discriminators to improve the photo-
realism of object’s parts (e.g., the eyes or mouth of a hu-
man face), single-discriminator GANs already excel at this
task. Our goal is to use multiple discriminators to im-
prove the photo-realism of complex scenes where the results
of single-discriminator GANs are easily distinguishable as
synthetic images.

2.2. Multi-discriminator GANs

We start by extending the classical (vanilla) discrimina-
tor defined above to fine-grained discriminators.

Let Dk(.), k = 1, . . . , p, denote p discriminators.
Each Dk(.) is used to improve the photo-realism of a
(fine-grained) component of the image generated by G(.).
For example, if we are modeling living rooms, these
fine-grained discriminators focus on the photo-realism of
couches, chairs, coffee tables, end tables, lamps, etc., re-
spectively. Note that each of these fine-grained discrimina-
tors Dk(.) may be used in multiple image locations. For in-
stance, if a living room scene contains two chairs, the chair
discriminator will be applied to the pixels where we wish to
draw the two chairs.

Let the loss function of the kth fine-grained discrimina-
tor be Lk. And, let Xk = {Xkj}nk

j=1, with Xkj one of the
nk real photos of the object category Dk(.) specializes on.

Similarly, let Y = {Yi}mi=1 be the set of synthetic (gen-
erated) images, where Yi = G(zi), zi ∼ pz. Note that
Xkj are images of a single object, whereas Yi are images of
complex scenes with multiple objects.

Hence, next, we need to identify the pixels (or regions) of
the synthetic images where each of the fine-grained objects
of interest are. To do this, we define the function

f (Yi) =
{(

Ŷij , kij

)}qi

j=1
(1)

which identifies the areas Ŷij belonging to fine-grained cat-
egory kij . This means that (Ŷij , kij) includes a single ob-
ject who’s class is the same as that of Xkij , kij ∈ [1, p]. For
example, Yi might be the image of a living room and Ŷi1 the
pixels of a couch, Ŷi2 the pixels of a coffee table, and Ŷi3

the pixels of a lamp.
In the above, f(.) is typically a differentiable function

given by a deep neural network.
We can now define the set Ŷk as the image patches of

the synthetic images Y that correspond to the object class
k. Formally,

Ŷk =
{
Ŷij

}
∀(Ŷij ,kij=k)

(2)

and k = 1, . . . , p.
The task of Dk(.) is to discriminate between the real

photos in Xk and the synthetic images in Ŷk. To have the

same number of real and synthetic images we select a sub-
set X̂k from Xk of the same size as Ŷk, i.e., X̂k ∼ Xk, with
|X̂k| = |Ŷk|, |A| the cardinality of the set A.

We are finally in a position to do a forward pass on Dk(.)

using the sets X̂k and Ŷk, i.e., Dk.forward pass(X̂k, Ŷk).
We follow with the computation of the loss Lk. And, then,
we do a backward pass with the gradient of the loss, i.e.,
Dk.backward pass(∇Lk).

These fine-grained discriminators allow us to improve
the photo-realism of the different elements in a complex
scene. This yields much improved, photo-realistic synthetic
images of complex scenes. However, we still need to de-
fine a way to assign these discriminators to their appropri-
ate image locals. We do this by incorporating a new broker
module to GANs.

2.3. Broker module

Let D0(.) denote the discriminator that applies to the
whole image, i.e., the complex scene. This discriminator
is tasked to learn the distribution of objects and background
elements in the image using a training set of real photos
X0 = {X0j}n0

j=1. Its loss function is L0.
Learning the underlying distribution of complex scenes

is however a very difficult task. We use the function f(.)
defined above to help solve the problem. We call the com-
bination of these two network components, D0(.) and f(.),
the broker module.

This new GAN module works as follows. First G(.) gen-
erates m synthetic images. Formally, Y = {G(zi)}mi=1,
with zi ∼ pz. Then, f(.) is used to identify any possible
regions (or pixels) corresponding to one of the possible p
object classes.

It is key to note that lowering the threshold of the prob-
ability of detecting these object classes will allow the func-
tion f(.) to guide the generator to synthesize images with
those objects. This is because once f(.) assigns an image
region to class k, the fine-grained discriminator Dk(.) is as-
signed on it. This forces the generator to synthesize more
photo-realistic versions of the object.

Thus, if we want synthetic images that mostly resemble
the scenes in the training set X0, we can set a large threshold
for f(.) to assign fine-grained discriminators to each region
of the image. But if we want f(.) to have a larger influence,
we will lower that threshold value. This threshold mediates
the influence of D0(.) and f(.). Hence, the name broker.

2.4. DMM-GAN

We are finally in a position to define the training algo-
rithm. Our approach is general and can be applied to any
GAN architecture/topology, loss, etc. In this paper we will
show examples of adding the proposed broker module to
BigGAN, ProGAN, StyleGAN and StyleGAN2. As it is
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commonly done in GANs, we train ours using a mini-batch
of size m.

In our approach, at each iteration of training, we ran-
domly draw m latent vectors from the prior distribution in
latent space, i.e., zi ∼ pz, i = 1, . . . ,m. We then compute
Y = {G(zi)}mi=1.

Next, we do a forward pass using the whole-image dis-
criminator D0(.). That is, D0.forward pass(X̂0,Y), where
X̂0 is a randomly selected subset of m of the images in X0,
i.e., X̂0 ∼ X0 s.t. |X̂0| = |Y|.

We can now compute the loss function L0. This allows
us to do the backward pass on D0(.) to train the discrimina-
tor, i.e., D0.backward pass(∇L0).

Then, we want to identify where each fine-grained dis-
criminators needs to be applied. This is done by the bro-
ker module defined in the previous section. Specifically,
we apply f(Ŷi), where Ŷi = G(zi). This yields the set
{(Ŷij , kij)}

qi

j=1, which allows us to compute the p sets Ŷk,
as described above.

We train each fine-grained discriminator using a forward
pass, computing its loss, and doing a backward pass on
the gradient of the loss. That is, Dk.forward pass(X̂k, Ŷk),
compute Lk, then Dk.backward pass(∇Lk), where X̂k is a
randomly drawn subset of m images of Xk.

As stated above, our approach is general and works with
any loss function. Nonetheless, the loss does need to be ex-
tended to work with multiple discriminators. For example,
we can readily extend the original minimax loss as,

Lk = Ex∼pxk
[logDk(x)] +

Ez∼pz [log(1− [Dk(f(G(z)))]k)] (3)

where pxk
is the distribution of the kth fine-grained class,

and [f(Dk(G(z)))]k is an image patch of the fine-grained
class k. Note that when k = 0 this equation reduces to the
original loss. For k > 0, the loss corresponds to each of the
fine-grained local discriminators. A possible alternative is
to use a discriminator loss where at each iteration the contri-
bution of each discriminator is given by a probability [29].
This and other approaches [11, 1] are claimed to stabilize
training and avoid mode collapse. We did not experience
these problems with our approach and thus decided not to
use them. Our approach focuses on how to improve photo-
realism not on how to improve training, but our formulation
also has this advantage.

Finally, we need to do a forward and a backward pass on
the generator. As in [22], we find that resampling the la-
tent vectors improves training. Thus, we generate a new set
Ẑ = {ẑi}mi=1, where ẑi ∼ pz. We then do the forward pass,
compute the loss, and do the backward pass on its gradient.
That is, G.forward pass (Ẑ) and G.backward pass(∇LG),
where we use G.forward pass(Ẑ) and G(Ẑ) interchange-
ably.

The generator loss LG needs to be modified to include
the gradients of the global and fine-grained discriminators.
For instance, extending the minimax loss yields

LG = −Ez∼pz

[
λ0log(D(G(z)))+

p∑
k=1

λilog(Dk(f(G(z))))

]
(4)

where
∑p

i=0 λi = 1. The overall algorithm is summarized
in Algorithm 1.

Algorithm 1 Pseudo-code for training DMM-GAN.
1: Let G(.) be the GAN’s generator network.
2: Let LG be the loss of G(.).
3: Let Dk(.) be the GAN’s discriminator networks, k =

0, . . . , p, with D0(.) the full-image discriminator and
D1(.) to Dp(.) the fine-grained discriminators.

4: Let Lk be the loss associated to Dk(.).
5: Let Xk = {Xkj}nk

j=1 be the nk sample photos used to
train Dk(.).

6: Let m be the mini-batch size.
7: Let pz be the latent space prior distribution.

8: Let Ŷ =
{
Ŷi = G(zi)

}m

i=1
be a set of synthetic im-

ages, zi ∼ pz, i = 1, . . . ,m.
9: Let {(Ŷij , kij)}qij=1 = f(Ŷi) be the qi image regions on

Ŷi where we wish to improve photo-realism with Dkij .

10: Let Ŷk =
{
Ŷij

}
∀(Ŷij ,kij=k)

.

11: while training do
12: zi ∼ pz, i = 1, . . . ,m.
13: Ŷ = {G (zi)}mi=1.
14: X̂0 ∼ X0 s.t. |X̂0| = |Ŷ|.
15: D0.forward pass(X̂0, Ŷ) and compute L0.
16: D0.backward pass(∇L0).
17: Compute Ŷk, k = 1, . . . , p.
18: for k = 1 to p do
19: X̂k = {X̂ki}

m

i=1, X̂ki ∼ Xk, X̂ki ̸= X̂kj∀i ̸= j.

20: Dk.forward pass(X̂k, Ŷk) and compute Lk.
21: Dk.backward pass(∇Lk).
22: Resample ẑi ∼ pz, i = 1, . . . ,m.
23: Ẑ = {ẑi}mi=1

24: G.forward pass(Ẑ) and compute LG.
25: G.backward pass(∇LG).

2.5. Implementation details

In this section we provide practical implementation level
details of the proposed algorithm.

In several of our experiments we use GANs to esti-
mate the distribution of images of living rooms. A living
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room is a collection of objects belonging to classes such
as couch, coffee table, end table, lamp, etc. Thus, in this
case, our fine-grained classes will focus on these types of
objects. That is, D1(.) will be a fine-grained discrimina-
tor of couches, D2(.) a fine-grained discriminator of coffee
tables, and so on.

This means that we need to detect these objects in real
photos and synthetic images. We can achieve this with an
object detection algorithm as f(.). In this paper, we use
YoLo V3 [35] due to its computational efficiency and high
accuracy. We pre-train this object detector model using a set
of 7,600 images of living rooms with manually annotated
bounding boxes around each ‘couch’, ‘coffee table’, ‘chair’,
‘end table’ and ‘table lamp’. We use 6,100 images to train
and 1,500 for validation purpose.

For experiments modeling the distribution of street
scenes using the Cityscapes dataset [9], we use a detector
tuned on COCO [24] and use it to detect people, cars, buses
and trucks.

We set the detection probability threshold of each class
at .4 on all datasets. Recall that this is the threshold used
by the broker to mediate between the global and the fine-
grained discriminators.

In our experiments, we estimate the median dimensions
of the bounding boxes on the training set and use the size
that is closest to the power of 2. Experiments with the min-
imum and maximum sizes of the fine-grained object classes
yielded poorer results.

For example, to synthesize 1MP images of living rooms,
we used squared crops of size 512, 256, 256, 128 and 128
for the classes representing couch, coffee table, chair, end
table, and lamp, respectively. This means that the bounding
box given by YoLo was reshaped to these sizes according
to each fine-grained object class. To synthesize images at
lower resolutions, we scaled these sizes by the appropriate
scale factor.

We implement DMM-GAN in PyTorch [31] and ex-
tend commonly used codebases of BigGAN1, ProGAN and
StyleGAN2, and StyleGAN23. When using one of these
networks in our approach we add DMM- in front to in-
dicate that the algorithm now includes the broker module
and the fine-grained discriminators described in this paper,
i.e., DMM-BigGAN, DMM-ProGAN, DMM-StyleGAN,
and DMM-StyleGAN2.

In all of our experiments we used default learning rates,
optimizers, and resolution specific model capacities. To fur-
ther stabilize the training of DMM-BigGAN on relatively
small GPUs, we added the regularizer of [42]. We also pro-
vide comparative results with the extension of BigGAN de-

1https://github.com/ajbrock/BigGAN-PyTorch
2https://github.com/genforce/genforce
3https://github.com/NVlabs/stylegan2-ada-pytorch

scribed in [36] called Unet-BigGAN4, and with the Style-
GAN extension of [19] called MSG-StyleGAN5.

Following [20, 21, 22, 19] we report the total number of
real images seen by the GAN to indicate training time. We
tune until 25M real images are seen. Similar to prior work,
we choose the model with the lowest attained FID score dur-
ing training. Experiments are performed on an AWS server
with 8 V100−32GB GPUs.

3. Results
3.1. Datasets

We provide experimental results on three datasets:
LSUN [43], Cityscapes [9], and a new dataset of high-
resolution, high-quality images of indoor rooms called
DeepRooms.

For the LSUN experiments, we use the living room im-
ages. The shortest side of these images is 256 pixels. To be
consistent with prior work, we always crop the center win-
dow of 256×256 pixels. This dataset has been extensively
used in generative models and allows for many comparisons
to the state-of-the-art. Here, we use 1.3M living room im-
ages to train the GAN models defined in Section 2.5.

Additionally, we collected a dataset of 100K 1MP living
room images from multiple sites. These are high-quality
images of staged products. The high resolution and pro-
fessional look of these images makes it a more challeng-
ing problem for generative models to attain imagery that is
comparable to the real photos.

Finally, Cityscapes is a dataset of stereo video se-
quences of street scenes recorded from a car in 50 differ-
ent cities. While the previous two datasets correspond to
indoor scenes, Cityscapes provides a way to test the perfor-
mance of the proposed algorithm with outdoor scenes. We
use the provided 25K images of 1,024×1,024-pixels taken
from centered crops.

For each dataset/experiment, all algorithms are trained
using the same dataset.

3.2. Quantitative evaluation

A common way to evaluate the photo-realism of syn-
thetic images is by computing the Frechet Inception dis-
tance (FID) [16]. In our experiments below, we report sev-
eral FID scores obtained on the three datasets.

First, for each of the GAN algorithms described in Sec-
tion 2.5, we compute the FID score on a set of 50K images.
We refer to this score as FID-50K [5, 20, 21, 19].

Second, we report the FID-infinity score [8]. Some re-
searchers prefer this metric because it is less likely to be
biased by the number of samples used to compute the FID
score.

4https://github.com/boschresearch/unetgan
5https://github.com/akanimax/msg-stylegan-tf

13954



Scene Couch Coffee table Chair End table Lamp

FI
D

-5
0K

BigGAN 114.2±1.56 − − − − −
Unet-BigGAN 47.3±0.33 54.1±0.44 68.3±0.81 71.0±0.62 − −
DMM-BigGAN 29.8±0.26 18.1±0.06 20.8±0.09 21.4±0.11 35.3±0.31 22.6±0.14
ProGAN 12.5±0.11 12.3±0.19 12.6±0.15 18.2±0.16 22.5±0.48 20.3±0.21
DMM-ProGAN 10.4±0.04 11.1±0.11 11.1±0.09 16.9±0.11 21.5±0.31 17.8±0.16
StyleGAN 5.7±0.02 9.5±0.07 8.0±0.08 10.3±0.07 26.1±0.31 12.9±0.11
MSG-StyleGAN 4.6±0.01 7.6±0.04 7.1±0.06 9.1±0.06 24.9±0.41 11.6±0.19
DMM-StyleGAN 3.7±0.02 5.3±0.05 5.5±0.03 7.7±0.09 19.0±0.26 9.2±0.24
StyleGAN2 4.3±0.03 6.5±0.04 6.4±0.03 8.2±0.08 21.7±0.27 10.5±0.29
DMM-StyleGAN2 3.2±0.02 4.9±0.02 5.3±0.04 6.9±0.03 17.1±0.11 8.1±0.05

FI
D

-I
nf

BigGAN 105.1±1.08 − − − − −
UnetGAN 43.1±0.20 49.9±0.21 62.5±0.37 68.1±0.33 − −
DMM-BigGAN 24.9±0.19 16.2±0.06 17.9±0.08 18.6±0.1 32.1±0.17 19.6±0.13
ProGAN 9.8±0.05 9.9±0.07 9.8±0.08 15.1±0.05 19.2±0.13 17.0±0.12
DMM-ProGAN 7.1±0.03 7.3±0.05 7.4±0.06 13.3±0.04 17.1±0.11 14.9±0.10
StyleGAN 2.3±0.02 4.4±0.04 8.1±0.08 9.2±0.06 20.1±0.19 12.6±0.09
MSG-StyleGAN 2.1±0.01 4.1±0.03 7.6±0.06 8.0±0.05 18.9±0.15 11.1±0.09
DMM-StyleGAN 1.7±0.01 3.6±0.03 6.5±0.04 7.1±0.03 16.9±0.08 9.7±0.08
StyleGAN2 2.1±0.01 4.0±0.02 6.9±0.02 7.5±0.01 17.6±0.07 9.7±0.03
DMM-StyleGAN2 1.5±0.01 3.4±0.02 6.1±0.03 6.9±0.02 16.2±0.13 8.4±0.02

Table 1: Results on the LSUN living room synthetic images of 256×256 pixels. FID↓: lower values are better.

Scene Couch Coffee table Chair End table Lamp

FI
D

-5
0K

ProGAN 12.0±0.11 20.8±0.31 54.5±0.47 62.9±0.42 131.1±1.51 134.5±1.63
StyleGAN 9.2±0.07 16.8±0.18 42.6±0.31 43.5±0.21 59.8±0.19 50.3±0.71
MSG-StyleGAN 12.8±0.08 21.1±0.15 51.2±0.39 57.3±0.29 93.4±0.64 104.3±1.01
StyleGAN2 6.3±0.04 8.8±0.09 26.1±0.11 26.9±0.23 36.7±0.31 25.2±0.24
DMM-StyleGAN2 5.1±0.04 5.2±0.04 17.8±0.08 19.1±012 31.2±0.16 19.8±0.11

FI
D

-I
nf

ProGAN 9.2±0.08 18.6±0.11 56.5±0.19 59.1±0.41 138.2±0.77 137.6±0.59
StyleGAN 6.4±0.05 13.1±0.11 39.8±0.13 40.2±0.23 56.7±0.44 48.4±0.30
MSG-StyleGAN 9.7±0.10 18.3±0.09 53.1±0.26 55.1±0.31 96.9±0.67 102.2±0.88
StyleGAN2 3.7±0.02 6.4±0.05 21.2±0.07 22.8±0.11 33.5±0.19 22.1±0.09
DMM-StyleGAN2 3.1±0.03 4.1±0.02 12.9±0.07 15.4±0.07 28.7±0.12 16.2±0.14

Table 2: Results on the DeepRooms living room synthetic images of 1,024×1,024 pixels. FID↓: lower values are better.

Scene Person Car Bus Truck

FI
D

-5
0K

ProGAN 28.4±0.18 94.1±0.48 57.3±0.19 96.8±0.61 61.4±0.41
StyleGAN 17.4±0.12 68.8±0.31 39.5±0.13 79.8±0.38 53.2±0.33
MSG-StyleGAN 9.6±0.07 51.1±0.21 28.8±0.14 56.5±0.26 39.1±0.27
StyleGAN2 6.7±0.04 37.1±0.26 17.3±0.11 38.4±0.23 22.4±0.29
DMM-StyleGAN2 5.3±0.03 31.3±0.09 11.2±0.05 34.4±0.18 19.3±0.11

FI
D

-I
nf

ProGAN 26.1±0.18 98.2±0.34 54.1±0.23 93.2±0.19 58.9±0.61
StyleGAN 13.2±0.08 66.1±0.41 33.4±0.22 76.1±0.43 51.3±0.23
MSG-StyleGAN 6.1±0.04 48.6±0.38 23.1±0.16 49.1±0.21 34.8±0.32
StyleGAN2 4.8±0.02 23.1±0.13 8.9±0.09 31.1±0.18 17.2±0.23
DMM-StyleGAN2 3.5±0.02 20.2±0.08 5.8±0.03 27.3±0.12 16.1±0.05

Table 3: Results on the Cityscapes synthetic images of 1,024×1,024 pixels. FID↓: lower values are better.
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Scene
FI

D
-5

0K
StyleGAN2 6.6±0.02
DMM-StyleGAN2 w/ 1 fgd 6.0±0.02
DMM-StyleGAN2 w/ 2 fgd 5.7±0.03
DMM-StyleGAN2 w/ 5 fgd 5.2±0.02

FI
D

-I
nf

StyleGAN2 3.2±0.01
DMM-StyleGAN2 w/ 1 fgd 2.7±0.02
DMM-StyleGAN2 w/ 2 fgd 2.4±0.02
DMM-StyleGAN2 w/ 5 fgd 2.2±0.01

Table 4: Ablation study on DMM-StyleGAN2 at
512×512 resolution. fgd = # fine-grained discriminators.

Third, and new to this paper, we report the FID scores
defined in the previous two paragraphs on the crops of
the objects detected by the YoLo algorithm. For exam-
ple, when generating images of living rooms, we use YoLo
to detect couches, chairs, coffee tables, end tables, and
lamps. We use the pixels inside the bounding box given by
YoLo to compute the FID-50K and FID-infinity scores of
the cropped couches, chairs, coffee tables, end tables, and
lamps. We then report the mean and standard deviation of
these FID scores for each of the five object categories.

This yields 6 FID-50k and 6 FID-infinity scores, two
per object category and two for the global scene, Table 1.
While the scene’s two FID scores give a global measure of
the quality of the whole image, the FID scores of the ob-
jects evaluate the photo-realism of the rendered objects in
the scene. Note that the FID scores of some object cate-
gories are not available for some GANs. This is the case
when the YoLo algorithms fails to detect any object of that
category in the rendered synthetic images.

3.3. Results on LSUN

Quantitative results on the synthetic living room images
are shown in Table 1. This table shows the results of multi-
ple GAN algorithms and the results of these GANs with the
addition of the broker module and fine-grained discrimina-
tors introduced in this paper. We see that, in every instance,
the addition of the herein derived broker module yields a
statistically significant improvement of the FID score. Re-
call that lower FID scores are preferred.

Qualitative results of the generation of synthetic living
room images are given in Figure 3(a-b). The figure provides
comparative results between StyleGAN2 in (a) and DMM-
StyleGAN2 in (b).

3.4. Results on DeepRooms

Table 2 shows quantitative results on the generation of
1MP synthetic living rooms. As in the above, the table
provides comparative results with and without the proposed
broker module and fine-grained discriminators on existing

Couch Lamp

Real photos .63 .56
ProGAN .41 .22
StyleGAN .48 .33
MSG-StyleGAN .46 .31
StyleGAN2 .53 .40
DMM-StyleGAN2 .55 .45

Table 5: Training an object detector. mAP results when
training with photos vsṡynthetic images as given by the
listed algorithms and object categories.

GAN algorithms. Again, the addition of the broker module
results in a statistically significant improvement of the FID
score, i.e., significantly lower FID values.

Qualitative results of the generation of 1MP synthetic
living room images were given in Figure 1. Comparative re-
sults are now given in Figure 3(c-d). In (c) we show results
with StyleGAN2 and in (d) results obtained with DMM-
StyleGAN2. Additional comparative results are in the Sup-
plementary File.

3.5. Results on Cityscapes

Quantitative results on the generation of 1MP synthetic
street scenes are in Table 3. Comparative results against
other GAN algorithms are also provided. These results
also show a statistically significance improved FID scores
as compared to state-of-the-art algorithms.

Comparative qualitative results on the generation of 1MP
synthetic street scene images are in Figure 3(e-f). Addi-
tional comparative results are in the Supplementary File.

3.6. The role of multiple discriminators

The best results in every experiment was attained with
DMM-StyleGAN2 using 5 fine-grained discriminators. To
better quantify the contribution of the broker module as a
function of the number of discriminators, we ran an abla-
tion study. In this study, we trained DMM-StyleGAN2 on
DeepRooms using q fine-grained discriminators. We var-
ied q from 1 to 5. We ran multiple experiments for each
value of q, each time with a different set of discriminators.
The mean and stanadrd deviation of the FID scores are in
Table 4. As seen in these results, adding fine-grained dis-
criminators improve photo-realism as measured by FID.

3.7. Relevance to downstream tasks

As a final quantitative evaluation, we investigated the us-
age of synthetic images in downstream tasks such as ob-
ject detection as proposed in [37]. Specifically, we sampled
50,000 images from four GAN models considered in this
work and trained an object detection algorithm on those im-
ages. The bounding boxes used to train the object detec-
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Figure 3: Comparative results. Results on (a-b) LSUN, (c-d) DeepRooms, and (e-f) Cityscapes. StyleGAN2 in (a,c,e) and
DMM-StyleGAN2 (b,d,f). Zoom in to see improvements in the photo-realism of (b,d,f).

tor are obtained with the YoLo algorithm mentioned earlier.
We compare these results to those obtained when training
the object detector with real photos. Each trained model is
tested on a set of 1,500 real photos with manually annotated
bounding boxes. This task can thus be seen as a proxy for
evaluating the quality of synthetic images as compared to
actual photos. Table 5 shows the mean Absolute Precision
(mAP) of the detection results on two object categories –
couches and lamps. We see that as the quality of synthetic
images improve so does mAP.

4. Conclusions

Generating synthetic images of complex scenes with
GANs is still a difficult problem. While the generated im-

ages may look reasonable at first glance, these images con-
tain gross errors that clearly identify them as synthetic. A
major reason for these errors is given by the difficulty of
modeling scenes of varying objects that can be or not be
present in a large number of possible locations and poses.
We solve this problem by adding a broker module that
identifies where in the image to use different fine-grained
discriminators. These fine-grained discriminators are then
used to improve the photo-realism of these local regions of
the image. We have provided extensive comparative results
against the state-of-the-art and shown that the proposed ap-
proach yields superior results. We have shown this using
a number of quantitative measure as well as a qualitative
evaluation.

13957



References
[1] Isabela Albuquerque, Joao Monteiro, Thang Doan, Brean-

dan Considine, Tiago Falk, and Ioannis Mitliagkas. Multi-
objective training of generative adversarial networks with
multiple discriminators. In International Conference on Ma-
chine Learning, pages 202–211, 2019. 4

[2] Yazeed Alharbi and Peter Wonka. Disentangled image gen-
eration through structured noise injection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5134–5142, 2020. 1

[3] Dongsheng An, Yang Guo, Min Zhang, Xin Qi, Na Lei, and
Xianfang Gu. Ae-ot-gan: Training gans from data specific
latent distribution. In European Conference on Computer
Vision, pages 548–564. Springer, 2020. 1

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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