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Abstract

Removing noise from scanned pages is a vital step before
their submission to optical character recognition (OCR)
system. Most available image denoising methods are su-
pervised where the pairs of noisy/clean pages are required.
However, this assumption is rarely met in real settings. Be-
sides, there is no single model that can remove various noise
types from documents. Here, we propose a unified end-to-
end unsupervised deep learning model, for the first time,
that can effectively remove multiple types of noise, includ-
ing salt & pepper noise, blurred and/or faded text, as well
as watermarks from documents at various levels of inten-
sity. We demonstrate that the proposed model significantly
improves the quality of scanned images and the OCR of the
pages on several test datasets.

1. Introduction
Millions of electronic documents, such as contracts and

invoices, are reviewed in the normal course of business in
the enterprise. A large percentage of them are scanned doc-
uments containing various types of noise, including salt &
pepper (S&P) noise, blurred or faded text, watermarks, etc.
Noise in documents highly degrades the performance of the
optical character recognition (OCR) and their subsequent
digitization and analysis. The first step toward automating
document analysis is to improve their quality using image
processing techniques, such as image denoising and restora-
tion. Most of the literature, places attention on removing
noise from pictures [25] (e.g., natural scenes) not text doc-
uments. However, these techniques may not be directly ap-
plicable due to very different nature of text documents.

In the image restoration problem, a degradation function
and noise may both affect the quality of images [8]. Exam-
ples are deblurring, defading, and inpainting. If in a special
case, there is no degradation function, the problem would be
a pure image denoising problem (e.g., S&P noise removal).

The current state-of-the-art (SOTA) solutions for im-

*equal contribution

age restoration problem are discriminative models based on
convolutional neural networks (CNNs), auto-encoders and
their variants such as REDNet (residual encoder decoder
network) [19, 7], DnCNN (denoising convolutional neural
networks) [29], and RDN (residual dense network) [30, 31].
These solutions can generally be formulated as follows:

argmin
θ

∑
j

∑
i

L
(
f(xji ; θ) = ŷji ,y

j
i

)
(1)

where xji refers to a noisy patch extracted from the noisy
image xi, yji and ŷji are the target and predicted clean
patches, respectively, f and θ refer to the CNN and its pa-
rameters. The main shortcoming of this approach, how-
ever, is the requirement for the availability of clean tar-
get images/documents, which is hard to address in real-
world documents. In the literature, the noisy/clean pairs
are usually prepared by adding some synthetic noise to
clean images/documents. However, the synthetic noise does
not completely model noise on real images/documents, and
therefore, the performance of the network trained on these
synthetic data is sub-optimal and highly degraded on real
noisy images/documents [12, 28].

To address the lack of noisy/clean pairs, noise-to-noise
(N2N) [15], noise-to-void (N2V) [13], and noise-to-self
(N2S) [3, 14] training strategies have been proposed. How-
ever, these solutions are based on the assumption that the
noise is additive zero-mean, and/or independent between
pixels [15, 13, 14]. This only covers a specific kind of
denoising problem and, therefore, not directly applicable
to general image restoration problems, including defading
and deblurring. Furthermore, in N2N approach, at least
two noisy instances of the same document page are needed,
which are not readily available in real settings.

There are several challenges in the design of an end-to-
end solution for document image clean-up: 1) Noisy/clean
pairs are not available, and therefore, the standard SOTA
solutions based on discriminative models can not be em-
ployed. 2) There are various artifacts at different inten-
sity levels (intra-class variation) in documents. 3) We pre-
fer to have a single model based on one architecture, and
one training strategy, i.e., a unified solution to address all
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noise/degradation problems (blind denoising/restoration) as
opposed to individual models trained separately for each
noise type. Training multiple models raises the problem of
routing a document containing a specific artifact to the right
model for image clean-up.

This paper addresses these challenges by introducing an
end-to-end unsupervised image blind denoising algorithm
that presents a single unified model to remove various noise
types, without the requirement of paired noisy/clean pages.
The main contributions are listed as follows:

1. We propose a novel unified architecture by integrating
deep mixture of experts with a cycle-consistent GAN
as the base network. We formulate a novel loss func-
tion for the proposed model.

2. To the best of our knowledge, the designed unified
model is the first that removes various artifacts, includ-
ing noise (such as S&P noise), and degradation (e.g.,
faded and blurred text, or watermark) at various inten-
sity levels (image blind denoising).

3. We trained the model on actual noisy documents (not
documents with synthetically added noise) without the
requirement of noisy/clean images, evaluated it across
several public and in-house document datasets, and
demonstrated its excellent performance on real docu-
ments containing various artifacts.

2. Related work
2.1. Discriminative methods

Deep learning techniques for image denoising were pi-
oneered by discriminative models and CNN/autoencoder
architectures. Dong et al. [6] proposed one of the ear-
liest CNN-based models for image denoising in the ap-
plication of compression artifact reduction with several
stacked convolutional layers. Ever since, various architec-
tures and modifications of CNNs have been proposed to im-
prove image denoising, including skip symmetric connec-
tions in a model named residual encoder-decoder (RED-
Net) [19, 7], denoising CNN (DnCNN) employing batch
normalization and residual learning [29], residual dense net-
works (RDNs) [30, 31], wavelet CNNs [16], feature atten-
tion [1], and dual residual networks (DRNs) [17]. For ex-
ample, using DRNs [17], the authors redesigned one net-
work for each specific denoising task, including additive
Gaussian noise removal, deblurring, dehazing, and raindrop
removal. The main issue with discriminative approaches is
that they need noisy/clean pairs.

2.2. Generative adversarial methods

Approaches based on generative adversarial networks
(GANs) [9, 2] are recently used to alleviate the requirement
for noisy/clean pairs in several different ways. E.g., Chen
et al. [5] proposed to estimate the noise distribution from

smooth parts of noisy patches using a GAN and to generate
noise samples. They composed pairs of noisy/clean images
by adding the estimated noise samples to clean patches,
which are successively used to train a CNN for denoising.
They claim that the estimated noise by the GAN is more
realistic than the synthetic noise usually added in discrim-
inative approaches. Cha et al. [4] went one step further
and estimated noisy patches (instead of noise samples) us-
ing a GAN. This alleviated the requirement to have clean
images. Having two different noisy instances of the same
patch/image, they used N2N training strategy [15] to train
a CNN for image denoising. Both previous approaches
are merely applicable to situations where the noise is zero-
mean, additive, and independent of the clean image, which
are strong requirements that make them applicable to only
a subset of, but not general image restoration problems.

2.3. Image denoising in documents

Discriminative approaches for document image clean-
up include a CNN-based approach for deblurring [21], a
U-net [20] based approach replacing the skip connections
between the encoder and decoder blocks with alternating
convolutional and recurrent layers for efficient feature ex-
traction [18], a two-stage CNN-based approach where the
first stage is to classify the type of deblurring and the
second stage to remove it [11], and conditional GANs
(cGANs) [26, 24], which is a supervised image-to-image
translation approach [10]. DE-GAN [24], particularly, is re-
cently proposed based on cGANs with a modified loss func-
tion with promising results on binarization, deblurring, and
watermark removal. However, all these methods, including
DE-GAN need noisy/clean pairs generated by adding the
corruption to the clean pages/patches and train one model
per artifact type. Sharma et al. [22] proposed document im-
age cleansing based on cycle-consistent GANs [33]. This
approach does not require noisy/clean pairs, however, they
trained the model using these pairs [22]. Also, they have
trained one model for each noise/artifact type, whereas we
have trained one single model for all types of artifacts.

3. Methods
3.1. Problem statement

Here, we express the generic problem of document im-
age clean-up in two statements:
Problem statement 1 - In real settings, there are many
clean documents, which are unpaired to available noisy
pages. The main question is whether we can take advan-
tage of these clean documents in our solution. We can for-
mulate the problem as follows: having two unpaired sets of
documents, one set consisting of noisy documents (X) and
the other a collection of clean documents (Y), and knowing
that these two sets are unpaired, can we transform one set
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to have the style of the other? This problem can be formu-
lated as an unsupervised image-to-image translation. Re-
cently, there have been several proposals for solving this
problem and one of the most prominent ones is based on
cycle-consistent GANs (or cycle-GANs in short) [33]. In
fact, in this solution, what is more relevant to our problem
is to transform the style of noisy documents to clean docu-
ments such that we remove/restore noise/degradation from
these documents while preserving their text contents.
Problem statement 2 - The noisy documents X may con-
tain several different noise types. Our primary goal is to
design a single model that can tackle all these noise types.
In our solution, we propose to integrate deep mixture of ex-
perts into the cycle-GAN.

3.2. Cycle-consistent GANs

Suppose there are two sets of unpaired document images
{xi}Ni=1 and {yj}Mj=1 taken from two domains of noisy X
and clean Y images, respectively. A cycle-GAN [33] con-
sists of two generators: forward (H) and backward (F )
generators, and two adversarial discriminatorsDY andDX .
The generators transform the data from one domain to an-
other, i.e., H : X → Y and F : Y → X . The adversarial
discriminators aim to differentiate between the outputs of
generators and the real data, i.e., DY aims to discriminate
between H(x) and y, whereas DX tries to distinguish be-
tween F (y) and x. The objective function in cycle-GAN
is based on two losses: the GAN loss that transforms the
image style from one domain to another, and the cycle-
consistency loss that preserves the contents of the image.

3.3. Deep mixture of experts

In order to address the problem statement 2, i.e., design-
ing a single unified model that removes different types of
noise from documents, we propose using a mixture of ex-
perts model. A naı̈ve approach is to combine individual
trained cycle-GANs (for each noise type) with an ensem-
ble learning on top (Figure 1a). This model-level combina-
tion of experts results in a very complex model that needs
as many cycle-GANs as the number of noise types.

Here, we propose an alternative solution with much
less complexity based on deep mixture of experts (deep
MoEs) [27]. Deep MoE operates within a single model and
treats each channel (of a CNN, for example) as an expert.
It extends the standard single layer MoE model to multi-
ple layers within a single CNN. Wang et al. [27] derived
the equivalence between gated channels in a convolution
layer and the classic mixture of experts. A deep MoE con-
sists of three main components: 1) base convolutional net-
work, 2) shallow embedding network, and 3) multi-headed
sparse gating network (refer to Figure 1 in [27] for the ar-
chitecture of deep MoEs). The optimization function for the
deep MoEs is based on minimizing three losses: 1) the loss

for the base CNN (e.g., cross-entropy loss), 2) the cross-
entropy loss for the shallow embedding network, and 3) the
`1 loss for the gated networks.

3.4. The proposed architecture: integrated cycle-
GAN and deep MoE

In order to design a unified model for image clean-up to
remove various noise types from documents, we propose to
integrate the deep MoE with cycle-GAN as the base model.
Figure 1b depicts the sketch of the proposed architecture.

The components of base cycle-GAN in proposed ar-
chitecture include: two generators, i.e., forward H , and
backward F generators, as well as two discriminators DY
and DX . The other components, i.e., an embedder E, a
classifier C, and gating networks g∗H = G

{1,...,LH}
H and

g∗F = G
{1,...,LF }
F (LH and LF are the number of convolu-

tional layers in H and F generators, respectively) construct
the elements of the deep MoE in the architecture.

3.4.1 The pipeline architecture formulation

Our goal is to learn the generator function, which generates
the cleaned/restored image ŷ ∈ Y based on the input noisy
image x ∈ X . Every noisy image is labeled by one type of
noise, which is defined by cx ∈ C. In our experiments, the
types of noise/imperfections are S&P noise, blurred, faded
text, or watermarked document. During the pipeline train-
ing, we sample a tuple composed of a noisy image and its
label (x, cx) ∈ X × C and a clean unpaired image y ∈ Y1.

The first step in the pipeline is to acquire the embed-
ding vector ex ∈ Rd by applying the noisy image x ∈ X
to the embedder, i.e. ex = E(x). Next, we calculate the

gating network outputs giH = GiH(ex) ∈ RN
i
H

+ for i ∈
{1, . . . , LH} and giF = GiF (ex) ∈ RN

i
F

+ for i ∈
{1, . . . , LF }, where N i

H refers to the number of output
channels in the i-th convolutional layer in generatorH . The
embedder network also predicts the label ĉx of the input im-
age x based on the embedding vector, i.e., ĉx = C(ex).

The next steps of the pipeline applies the gating
networks g∗H and g∗F to the cycle-GAN generators H
and F , respectively. This generates the cleaned image
ŷ = H(x, g1H , . . . , g

LH

H ) and the noisy image x̂ =

F (y, g1F , . . . , g
LF

F ). In both generators, we replace a stan-
dard convolutional layer by an MoE convolutional layer,
i.e., we calculate ht+1

o =
∑Nt

H
i=1(g

t
H)iK

t
i∗hti, where ht is an

output tensor of the t-th convolution layer and hti refers to a
tensor on its i-th channel; ∗ is a convolutional operator and
Kt
i denotes a kernel for the t-th layer and the i-th channel.
The discriminators work in the same way as in the origi-

nal cycle-GAN, i.e. DX (x) ∈ [0, 1] and DY(y) ∈ [0, 1].

1Our solution does not require target clean images during training. We
use some metadata (noise type) to train the embedder.
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(a) (b)

Figure 1: (a) A naı̈ve approach for mixture of experts on cycle-GANs. (b) The architecture of proposed unified model. hi and
f i refer to output tensors of i-th convolutional layers of H and F , respectively. Flat rectangles are fully connected layers,
while other components, i.e., DX , DY , E, are CNNs.

3.4.2 The loss function formulation

First, we define two additional functions to formulate cycle-
GAN generators with deep MoE layers:

HMoE(x,x) = H(x, G1
H(E(x)), . . . , GLH

H (E(x))), (2)

and

FMoE(y,x) = F (y, G1
F (E(x)), . . . , GLF

F (E(x))). (3)

Note that only the noisy image x is provided to the embed-
der and gating networks. The same argument appears twice
in Eq. (2) in order to keep the same function structure as in
Eq. (3). Next, we formulate a novel loss function LGAN for
HMoE, DY , X , Y as follows:

LGAN(H
MoE, DY ,X ,Y) = Ey∼Y [logDY(y)]

+ Ex∼X [1− logDY(H
MoE(x,x))], (4)

Similarly, we can define the LGAN for FMoE as follows:

LGAN(F
MoE, DX ,Y,X ) = Ex∼X [logDX (x)]

+ Ey∼Y,x∼X [1− logDX (F
MoE(y,x))]. (5)

On the other hand, the cycle-consistency loss Lcyc for
HMoE and FMoE is defined as provided below:

Lcyc(H
MoE, FMoE,X ,Y) =

Ex∼X [‖ FMoE(HMoE(x,x),x)− x ‖1]
+Ey∼Y,x∼X [‖ HMoE(FMoE(y,x),x)− y ‖1].

(6)

The final objective function for cycle-GAN network
is formulated based on a combination of losses given in
Eqs. (4), (5), and (6):

Lcycle-GAN(H
MoE, FMoE, DX , DY ,X ,Y) =

LGAN(H
MoE, DY ,X ,Y) + LGAN(F

MoE, DX ,Y,X )
+λcycLcyc(H

MoE, FMoE,X ,Y).
(7)

In addition, we formulate the loss function required for
training deep MoE Layers as follows:

LMoE(E,G
∗
H , G

∗
F , C,X , C) =

Ex,cx∼X ,C [CrossEntropy(C(E(x, cx)))]

+λGH
Ex∼X [

LH∑
l=1

‖ GlH(E(x)) ‖1]

+λGF
Ex∼X [

LF∑
l=1

‖ GlF (E(x)) ‖1].

(8)

The total and final objective function for training the in-
tegrated cycle-GAN and deep MoE Layers is derived by
combining the losses given in Eqs. (7) and (8):

Lcycle-GAN(H
MoE, FMoE, DX , DY ,X ,Y)
+ λMoELMoE(E,G

∗
H , G

∗
F , C,X , C). (9)

4. Implementation details
4.1. Model architecture

The cycle-GAN network is adopted from the imple-
mentation explained in [33]. ResNets of nine blocks are
used in the generators. The discriminator networks are
70 × 70 Patch-GANs [10], which classify 70 × 70 over-
lapping patches as real or fake. The embedder network is
a 7-layer CNN with kernel size of 3 × 3, batch normal-
ization and ReLU activation functions. The classifier C,
which is the last layer of the embedder is a fully connected
layer with softmax and cross-entropy loss function for clas-
sification of the input patches based on their noise type (4
classes). Finally, the gating networks are fully connected
networks with ReLU activation functions, whose inputs are
from the penultimate layer of the embedder, i.e., just before
the classifier C. There are 18 gating networks for the two
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generators, 9 for each generator corresponding to the num-
ber of blocks per generator. It is worthwhile to highlight
here that these networks are essential during training of the
model. For the inference, i.e., for document image clean-up,
a minimal model is required, including the forward genera-
torHMoE, the embedderE, and the gating networks g∗H cor-
responding to the forward generator HMoE. This greatly re-
duces the network complexity during the inference in terms
of network latency and memory footprint.

4.2. Hyper-parameters and model training

Our experiments showed that the same as the original
cycle-GAN [33], using a least-square loss instead of the
negative log likelihood or Wasserstein loss for LGAN re-
sults in a more stable training and a better performance
in document image clean-up application, and hence we
adopted this loss during training the model. Also, same
as the original cycle-GAN, as suggested by Shrivastava et
al. [23], the discriminators were updated based on a his-
tory of 50 previously generated images instead of just the
last generated image by the generators. We empirically set
λcyc = 10, λMoE = 1, and λGF

= λGH
= 0.1. Adam op-

timizer with the batch size of 32 was used with a learning
rate of 2 × 10−4. We used 4 Nvidia Tesla V100 GPUs for
training the model, which took about 1.5 days to complete.
The model was implemented using PyTorch framework.

5. Experimental setup and results
5.1. Training dataset

There are three main document types: unstructured (such
as lease contracts, and scientific papers), semi structured
(e.g., invoices), and structured (like tax forms). In order
to prepare a training set, document pages of various types
and noise contents were selected from our in-house docu-
ments. The most common noise types on lease contracts
are S&P noise, blurred, or faded text, whereas tax forms
and invoices are mostly in digital format containing water-
marks. The number of pages in each category is shown in
Table 1 along with other details about the dataset. Over-
lapping patches of 256 × 256 pixels with the stride of 128
pixels were extracted from these pages to train the network.

The set of noisy and clean pages for the lease contracts
are completely unpaired. As for the tax forms and invoices,
extracting patches of size 256 × 256 pixels from the orig-
inal watermarked pages results in only 10% patches with
watermark (since only a small part of the page is water-
marked). Therefore, we synthetically added watermarks to
the grids of 4 × 2 of clean tax forms and invoices with the
variations in fonts, text, size, orientation (0, ±45), colors
(gray, light gray, red, purple, and blue), and transparency
(scale of 0.1 to 0.6), randomly selected from a uniform dis-
tribution (a sample page is shown in Figure 4j). Although

this approach generates pairs of watermarked/clean pages,
we have not used this information in training the proposed
model as the patches were randomly selected from the sets
of watermarked and clean pages for training the model irre-
spective of how they were paired.

5.2. Test datasets

In order to assess the performance of trained unified
model, three datasets are used.
Dataset I: 100 clean and high quality pages from scientific
papers. This provides more tightly controlled conditions for
quantitative assessment as the OCR on the original high-
quality pages can be considered as the ground truth. Water-
marks were synthetically added to each page.
Dataset II: 100 pages selected from Tobacco800
dataset [32]. These pages were originally noisy and
were cleaned using our unified image clean-up approach.
Dataset III: A dataset of 300 in-house noisy documents
containing various noise types, including S&P noise,
blurred/faded text, and watermarks.

5.3. Evaluation metrics

Since the ultimate purpose of image cleansing is improv-
ing the performance of the OCR, we used the improvement
in OCR as the metric for the quantitative assessment of the
model. We used ABBYY FineReader12 as the OCR en-
gine, and OCRed both the original noisy document pages
as well as cleaned ones (outputs of the model). Since the
ground truth for the characters are not available, we ex-
tracted words from characters on each page and used a rela-
tive metric: the words found on the cleaned page were con-
sidered as the reference and compared with the words on
the noisy page. The percentage of mismatches between the
two was then computed as a metric to measure the amount
of improvement. In case that the original clean pages are
available (e.g., in Dataset I), we compared them as a ref-
erence with the noisy (watermarked in Dataset I) pages as
well as cleaned pages. We then provided the relative metric
as a measure of deterioration. Although this is not a perfect
metric, it provides a reasonable quantitative assessment in
the absence of ground truth for characters. We reported the
averaged percentage improvement/deterioration, maximum
improvement/deterioration, and the percentage of pages im-
proved/deteriorated more than 5% and 10%.

In addition, since for Dataset I, the original clean and
high quality images are available, we have provided the
peak signal-to-noise ratio (PSNR) metric as well.

5.4. Ablation study

In order to demonstrate the effectiveness of gating net-
works, we have provided the visualization of their outputs.
In Figure 2a, the Pearson correlation coefficients are cal-
culated between vector outputs of forward gating network
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Table 1: The details of the dataset used for training the proposed model.

Document Types Lease Contracts Tax Forms Invoices
Noise Types S&P Blurred Faded Watermarked Watermarked
No. of noisy/clean pages 663/1125 1513/1125 377/1125 5416/5416 1339/1339
Page Size / Patch Size Resized to the Closest Multiple of Patch Size / 256× 256
Total No. of Noisy Patches 290,119 578,316 137,181 2,212,729 542,121Total No. of Clean Patches 440,159
Data Augmentation Overlapping with the Stride of 128 Pixels

(a) (b)

Figure 2: The effectiveness of gating networks on various
noise types used in this paper. See text for explanations.

g∗H for an input image containing S&P noise (sp1), and an-
other image containing any other noise type (S&P, blurred,
faded, or watermarked). The correlations between two sam-
ples containing S&P are close to one for all layers, whereas
these correlations are much lower between S&P and other
noise types. Figure 2b displays 10 consecutive values of
a section of gating network g∗H for the third convolutional
layer of forward generator2. These values are displayed for
two samples of every considered noise type. Both these two
figures demonstrate that the gating network has similar re-
sponses for the same input noise types and different patterns
for different noise types. Note that in Figure 2b some values
are 0, which is the result of `1 loss on the gating networks.

5.5. Qualitative results

Here, we present sample outputs of the trained model on
unseen test patches and pages for various noise and docu-
ment types3. Figure 3 depicts samples of cleaned patches
(along with the corresponding inputs of noisy patches) for
four different artifacts, including S&P noise, blurred, faded
text, and watermark. As can be observed from these results,
the proposed trained model can efficiently clean patches
containing various artifacts at various intensity levels.

Figure 4 displays samples of cleaned pages along with
the corresponding inputs of noisy pages. The rightmost im-
ages are cleaned pages generated by the proposed approach.
The images in the middle are the cleaned pages generated

2The responses for all layers are provided in the Supplementary.
3More results are provided in the Supplementary.

by models trained on individual noise types (one cycle-
GAN per noise type), except for the watermarked page
where the middle image is cleaned using REDNet [19, 7].
The proposed model is able to remove all noise types with-
out distorting the contents of the page as effectively as in-
dividual models solely trained for one noise type. Also, for
the watermarked page, the proposed approach was able to
remove watermark as good as REDNet, which is a super-
vised approach and solely trained for watermark removal.

5.6. Quantitative results

For dataset I, the OCR on the original high-quality pages
are considered as the ground truth, and the OCR on wa-
termarked pages as well as cleaned pages were compared
with this ground truth. The results are provided in Ta-
ble 2. On average, the proposed unified image clean-up im-
proves the performance of ABBYY OCR by approximately
a factor of three. The low percentage of relative change in
the OCR quality when comparing the original and cleaned
pages demonstrates the effectiveness of the proposed algo-
rithm in removing watermarks, and reducing the OCR er-
rors due to watermarks on the page. We compare our pro-
posed approach with REDNet [19, 7] and DE-GAN [24] as
two representative discriminative methods. We trained the
REDNet and DE-GAN separately using watermarked tax
forms as specified in Table 1, and tested them on Dataset I to
compare with our results. What we should consider in this
comparison is that both REDNet and DE-GAN have solely
been trained on watermarked tax forms/clean pairs in a su-
pervised manner, whereas the proposed approach has been
trained on all noise types (including S&P, blurred/faded
text, and watermark) and all document types in an unsuper-
vised fashion. However, the performance of the proposed
method is just slightly inferior to the REDNet and better
than DE-GAN. The proposed approach outperforms DE-
GAN mainly because DE-GAN, by design, removes color
from inputs. Since watermarks on pages can be in color,
DE-GAN has more difficulty to remove them. In addition,
to demonstrate the effectiveness of the MoE in our proposed
approach to train one single model to remove multiple noise
types, we compare the proposed approach with a standard
cycle-GAN [33, 22] without deep MoE, and also with our
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(a) (b)

(c) (d)

Figure 3: The noisy inputs and cleaned outputs of the trained model at patch level for patches with (a) S&P noise, (b)
watermark, (c) blurred, and (d) faded text (best seen in digital format and zoomed in).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: The noisy inputs (left images), cleaned outputs using individual model (middle images) or REDNet (for water-
marked page), as well as the proposed unified model (right images) at page level for pages with (a) S&P noise, (d) blurred
text, (g) faded text, and (j) watermark (best seen in digital format and zoomed in).

proposed approach without classifier C (both trained the
same way as the proposed approach). The results in Table 2
shows that the proposed approach outperforms these two
networks as well. This demonstrates that removing the clas-
sifier C from the final stage of the embedder makes train-
ing the embedder less efficient, and deteriorates the overall
performance of the model. The classifier C only supports
training the embedder network E, and this embedding have
two important functions: (a) allows the forward generator
HMoE to adapt to various noise types (represented by the

embedding vectors) and efficiently clean them, (b) informs
the backward generator FMoE the type of noise to be added
to its input clean image. In the standard cycle-GAN, infor-
mation about noise is stored in a denoised image. In case of
multiple noise types, this confuses the backward generator
and the function of embedder is to avoid this confusion.

Neither original clean pages nor the ground truth OCR
are available for Datasets II and III. However, the relative
OCR performance of ABBYY on the original noisy pages
and the corresponding cleaned pages is used to evaluate the
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Table 2: The results of quantitative assessment of the proposed model using the relative metric and PSNR on Dataset I.
The best results, which in this case are lower numbers for OCR-based metrics and higher numbers for PSNR, as cleaned
documents are compared with the original clean ones, are highlighted.

Measures Original vs
Watermarked

(%)

Original vs Cleaned (%)
RED-

Net [7]
DE-

GAN [24]
cycle-

GAN [22]
Proposed w/o

Classifier Proposed

Averaged Deterioration (%) 7.71 1.84 3.74 7.85 2.54 2.55
Max. Deterioration (%) 53.09 6.99 19.70 33.33 14.73 9.93
Perc. of
Pages

+5% Deterioration 70 3 14 67 12 10
+10% Deterioration 27 0 5 34 3 0

PSNR 35.65 37.64 37.43 36.52 37.99 38.33

Table 3: The results of quantitative assessment of the proposed model using the relative metric on Datasets II and III. The best
results, which in this case are higher numbers, as cleaned documents are compared with original noisy ones, are highlighted.

Measures Dataset II Dataset III
Cleaned vs Original (%) Cleaned vs Original (%)

cycle-
GAN [22]

cycle-GAN
(Sequential) Proposed cycle-

GAN [22]
cycle-GAN
(Sequential) Proposed

Averaged Improvement (%) 5.94 6.03 7.2 6.30 7.10 9.52
Max. Improvement (%) 39.02 52.54 63.06 48.17 57.98 66.94
Perc. of
Pages

+5% Improvement 37 42 52 52 58 67
+10% Improvement 22 24 28 37 42 49

performance of the proposed model. The results are shown
in Table 3. Using the proposed approach on average, the
OCR is improved by 7.2% and 9.52% on Datasets II and III,
respectively. Also, more than 50% of pages on both datasets
receive more than 5% improvement in the OCR as a result
of cleaning the pages using the proposed unified model. As
for comparison with other approaches, there is no single
model in the literature that can remove all these noise types.
Also, discriminative models like REDNet or DE-GAN can-
not be used for comparison as they need noisy/clean pairs
for training, which are not available here. Nonetheless, We
compare the proposed approach with two alternative meth-
ods using standard cycle-GAN: 1) same as previous exper-
iment on Dataset I, training one single cycle-GAN (with-
out deep MoE) using a training set consisting of all patches
with various noise types. 2) Standard cycle-GAN with Se-
quential training: since it is difficult to train the standard
cycle-GAN using all noise types in the training set, we first
trained the model on more difficult to learn noise types (e.g.,
S&P) for several epochs. Then we stopped training and
resumed again using patches from noise types that can be
removed easier like faded/ blurred text. Although this se-
quential training strategy improved the performance com-
pared to “standard” training, the performance is still far be-
low the performance of individual trained models, as well as
the proposed unified model. In addition, “sequential” train-
ing is heuristic and needs some trial-and-error in order to

find the optimal number of steps, as well as the number of
epochs in each step. As can be observed in Table 3, the pro-
posed model significantly outperforms the alternative meth-
ods in improving the OCR quality of cleaned pages.

As a final remark, the inference latency of the proposed
algorithm was benchmarked on one GPU (Nvidia Tesla
V100). On average, it takes 4.49 seconds to clean a page.

6. Conclusion

In this paper, we proposed an end-to-end unsupervised
multi-document image blind denoising that presents a uni-
fied model to remove various artifacts from all document
types, without any need for target paired cleaned pages. We
formulated the loss function for the proposed model and
demonstrated that it can successfully remove artifacts and
improve OCR on various document types. The proposed
model is of low complexity and inference latency. In future
work, we will replace the embedder and the classifier com-
ponents by an autoencoder-based approach in order to train
the embedding vector in an unsupervised manner.

Disclaimer

The views reflected in this article are the views of the
author and do not necessarily reflect the views of the global
EY organization or its member firms.
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