
Curvature Generation in Curved Spaces for Few-Shot Learning

Zhi Gao1, Yuwei Wu1*, Yunde Jia1, Mehrtash Harandi2

1Beijing Laboratory of Intelligent Information Technology
School of Computer Science, Beijing Institute of Technology, Beijing, China

2Department of Electrical and Computer Systems Eng., Monash University, and Data61, Australia
{gaozhi 2017,wuyuwei,jiayunde}@bit.edu.cn, mehrtash.harandi@monash.edu

Abstract

Few-shot learning describes the challenging problem of
recognizing samples from unseen classes given very few la-
beled examples. In many cases, few-shot learning is cast
as learning an embedding space that assigns test samples
to their corresponding class prototypes. Previous meth-
ods assume that data of all few-shot learning tasks com-
ply with a fixed geometrical structure, mostly a Euclidean
structure. Questioning this assumption that is clearly diffi-
cult to hold in real-world scenarios and incurs distortions to
data, we propose to learn a task-aware curved embedding
space by making use of the hyperbolic geometry. As a re-
sult, task-specific embedding spaces where suitable curva-
tures are generated to match the characteristics of data are
constructed, leading to more generic embedding spaces. We
then leverage on intra-class and inter-class context infor-
mation in the embedding space to generate class prototypes
for discriminative classification. We conduct a comprehen-
sive set of experiments on inductive and transductive few-
shot learning, demonstrating the benefits of our proposed
method over existing embedding methods.

1. Introduction
Few-shot learning (FSL) [2, 12, 57] aims to recog-

nize samples from unseen classes, given very few labeled
examples per class. In many cases, embedding meth-
ods [5, 44, 45, 53, 55] are the method of choice in address-
ing the FSL problem. The underlying idea is to learn an em-
bedding space from seen classes, hoping that for new FSL
tasks with unseen classes, class prototypes in the embed-
ding space are informative enough to assist classification
(e.g., by assigning test samples to the closest prototypes).

Prior to our work, most embedding methods assume that
data of all FSL tasks have the Euclidean structure, and use
a Euclidean embedding space and corresponding Euclidean

*Corresponding author

Curvature

FSL Task

walker
hound

solar dishunicycle

tobacco shop

harvestman

Task 1

frying pan

bolete

carousel

stage

triceratops

Task 2

cliff dishrag

ashcan cocktail shaker

consomme

Task 3

Curvature is 0 Curvature is -1 Curvature is -0.01

Accuracy=

89.3%
Accuracy=
63.7%

Accuracy=
77.7%

Accuracy=
69.0%

Accuracy=

89.1%
Accuracy=
80.7%

Accuracy=
65.0%

Accuracy=
83.7%

Accuracy=

93.3%

Figure 1. An example to show that a fixed curvature is not suitable
for all FSL tasks. We evaluate the curvature as 0, −1, and −0.01
on three FSL tasks sampled from the Mini-ImageNet dataset [50].
In Task 1, we achieve good results when the curvature is 0 (i.e., a
Euclidean space), while the curvature 0 achieves inferior results in
Task 2 and Task 3, whose suitable curvatures are −1 and −0.01,
respectively. This shows that a fixed curvature is not suitable for
all FSL tasks.

operations (e.g., distance measure in vector spaces) for clas-
sification [3, 35, 38, 55]. However, such an assumption is
clearly difficult to hold in real-world scenarios. Although
some data (e.g., remote sensing images [15]) is intrinsi-
cally Euclidean, non-Euclidean structures are also widely
encountered in data (e.g., face images are located in natu-
ral manifolds [59]). Thus, assuming the same geometrical
structure among all FSL tasks may incur distortions to data
and result in inferior performance. In this paper, we pro-
pose a curvature generation embedding method that learns
a task-aware curved embedding space to match geometrical
structures of data by using hyperbolic geometry.

Hyperbolic geometry that defines curved spaces can
gracefully represent hierarchies in data and has been shown
to be superior to Euclidean geometry for some problems in
recent studies [33, 47, 30, 32, 36]. Curvature is a fundamen-
tal concept in hyperbolic geometry, representing the devia-
tion of curved spaces from a flat space. Via changing the

8691

curvature, one can hope to better capture various geometri-
cal structures of data [29]. A key observation in FSL is that
tasks can exhibit different geometrical structures. In other
words, while a space with a fixed and predetermined curva-
ture might successfully capture the geometrical structure of
data in an FSL task, it does not necessarily suit unseen and
future tasks (an example is shown in Figure 1).

This motivates us to learn to identify suitable curvatures
for FSL tasks. To this end, we need to address two chal-
lenges. (1) How to generate suitable curvatures using very
few samples. In an FSL task, the geometrical structure may
be complex and not uniform. When very few samples are
given, it is challenging to generate an appropriate curva-
ture that can suitably match the complex structure. (2) How
to carry out discriminative classification in the task-aware
curved embedding space. Sample features in FSL are usu-
ally extracted via a common feature extractor (e.g., using
a CNN). This makes the features agnostic to the generated
curvatures, and hence naively combining them (e.g., aver-
aging) to form class prototypes may hurt the discriminative
power of the embedding space.

To address the aforementioned challenges, we make use
of the higher-order statistics of samples to identify curva-
tures for each class in an FSL task. This will result in
describing a task with multiple geometries, where data in
each class is separately characterized. Clearly, this de-
sign is more flexible as compared to using a single ge-
ometry everywhere, and may better match complex struc-
tures of data. We then benefit from intra-class and inter-
class context information in the curved embedding space
to produce class prototypes for discriminative classifica-
tion. Our model is trained in a meta-learning framework
that learns knowledge from some seen classes and applies
it to new FSL tasks to generate both suitable curved spaces
and discriminative prototypes using very few samples. We
demonstrate the effectiveness of the proposed method on
both inductive and transductive settings of FSL, and com-
pare our method against state-of-the-art embedding meth-
ods. The code is available at https://github.com/
ZhiGaomcislab/CurvatureGeneration_FSL.

In summary, our contributions are two-fold: (1) We
propose a method to realize a task-aware curved embed-
ding space for FSL. In doing so, our method generates
task-specific curvatures, making the embedding space more
generic. To the best of our knowledge, this is the first
attempt to automatically generate curvatures for different
tasks, having the ability to adapt a model to different geo-
metrical structures of data. (2) To capture complex struc-
tures in data, we generate curvatures for each class and
make use of intra-class and inter-class context information
to generate class prototypes. This, as we will empirically
show, leads to discriminative classification when very few
samples are available.

2. Related Work

2.1. Embedding Methods for FSL

Learning an embedding space is an effective way to ap-
proach FSL. One can classify existing embedding meth-
ods into two groups based on the nature of the embed-
ding, namely, task-agnostic embedding methods and task-
specific embedding methods. Early pioneering works such
as Prototypical Networks [44], Relation Networks [45],
and Matching Networks [50] are task-agnostic embedding
methods. They learn a common embedding space, and
new samples are classified using the metric in the embed-
ding space. Recent advances, however, suggest that a com-
mon and task-agnostic embedding space might not be dis-
criminative enough. Thus, task-specific embedding meth-
ods emerge, which seek to adapt the embedding space to
specific tasks by various means. This includes learning
a task-specific transformation [13, 35, 55, 56], employing
a task-specific loss function [21], generating task-specific
class prototypes [12, 28, 37, 39, 54], realizing task-specific
distances measures [3, 38], or learning task-specific sub-
spaces [43], to name a few. Our work belongs to the group
of task-specific embedding methods but goes beyond pre-
vious studies (e.g., [28, 43, 55]) as we discard the assump-
tion that data has the same geometrical structure in all FSL
tasks. In essence, we propose a curvature generation em-
bedding method that adapts the embedding space to geo-
metrical structures by generating task-specific curvatures.

2.2. Hyperbolic Geometry

Existing methods that exploit hyperbolic geometry can
be divided into two categories. The first category estab-
lishes deep hyperbolic neural networks. Representative
works include the hyperbolic multi-layer perceptrons [10],
hyperbolic convolutional neural networks [42], hyperbolic
graph convolutional neural networks [6, 29, 58, 7], and hy-
perbolic attention networks [14]. The second category fo-
cuses on learning hyperbolic embeddings. Hyperbolic em-
beddings have achieved superior performances in various
natural language processing problems [8, 14, 47]. Very re-
cently, several studies in computer vision show that hyper-
bolic embeddings can boost the performance of the model
(e.g., image classification [16, 30] and video search [32]).
It is argued in both fields that the improvements are due to
the fact that the hyperbolic geometry can well capture hi-
erarchies in data [18, 34]. In our work, we also make use
of the hyperbolic geometry to realize embedding spaces. In
contrast to previous art that considers the curvature of the
space fixed and tune it as a hyperparameter, we utilize a
meta-learning framework to learn to automatically generate
suitable curvatures. We will show that our method is able to
quickly adapt a hyperbolic space to geometrical structures
of data using few labeled samples.

8692

Figure 2. Left: illustration of a 2-D Poincaré ball. Dash lines rep-
resent geodesics, the shortest curves connecting two vectors in the
poincaré ball. Right: Poincaré balls with different curvatures. As
the curvature (−c) increases, the distance between two vectors a
and b decreases.

3. Preliminaries of Hyperbolic Geometry

Hyperbolic space. A d-dimensional hyperbolic space is a
smooth curved space with a negative curvature [19]. It has
five isometric models: the Hyperboloid model, the Klein
model, the Hemisphere model, the Poincaré ball model,
and the Poincaré half-space model [33]. In this paper, we
choose the Poincaré ball to model the embedding space, as
shown in Figure 2, and utilize the framework of Möbius gy-
rovector space [49] to provide operations for the Poincaré
ball. A Poincaré ball is defined as Ddc = {x ∈ Rd, c‖x‖ <
1}, where ‖ · ‖ is the Euclidean norm. The parameter c > 0
is essential in our work and determines the curvature of Ddc .
Note that, this definition of Ddc covers the Euclidean space
and hyperbolic spaces with different curvatures. If c → 0,
then Ddc becomes the d-dimensional Euclidean space Rd; if
c > 0, then Ddc is an open ball with the curvature being
−c. For a point x ∈ Ddc on the Poincaré ball, the tangent
space, denoted by TxDdc , is a Euclidean space, containing
all vectors tangent to Ddc at x.
Möbius addition. The addition of two vectors x,u ∈ Ddc
is defined by the Möbius addition,

x⊕cu =
(1 + 2c〈x,u〉+ c‖u‖2)x+ (1− c‖x‖2)u

1 + 2c〈x,u〉+ c2‖x‖2‖u‖2 , (1)

where 〈·〉 denotes the Euclidean inner product.
Möbius scalar multiplication. The scalar multiplication of
a vector x ∈ Ddc by a scalarw ∈ R is defined by the Möbius
scalar multiplication,

w⊗cx =
1√
c
tanh

(
w · arctanh(

√
c‖x‖)

) x

‖x‖ . (2)

Hyperbolic averaging. Given a set X = {x1, · · · ,xm},
xi ∈ Ddc and i ∈ [1,m], we use the Einstein midpoint [48]
to compute the mean of X . Specifically, we first project
vectors from the Poincaré ball Ddc to the Klein model Kdc ,
then we compute the mean on the Klein model, and finally

we project the mean back to the Poincaré ball, given by

x = Hyperavexi∈X(xi) =

ui =
2xi

1 + c‖xi‖2

u =

∑m
i=1 γiui∑m
i=1 γi

x =
u

1 +
√

1− c‖u‖2

, (3)

where ui ∈ Kdc , u is the mean on Kdc , x is the mean on Ddc ,
and γi = 1√

1−c‖ui‖2
is the Lorentz factor.

Distance measure. The distance between two vectors
x,u ∈ Ddc is

dc(x,u) =
2√
c
arctanh(

√
c‖ − x⊕cu‖). (4)

When c → 0, dc(x,u) becomes proportional to the Eu-
clidean distance, that is, limc→0dc(x,u) = 2‖x− u‖.
Exponential map. The exponential map expcx maps a vec-
tor v from the tangent space TxDdc to the Poincaré ball Ddc .
In this work, we use a neural network to attain features in
the tangent space T0Ddc at the origin 0 in a Poincaré ball and
then use expc0 to obtain embeddings in the Poincaré ball,

expc0(v) = tanh
(√

c‖v‖
) v√

c‖v‖
. (5)

4. Curvature Generation Embedding Method
4.1. Framework

An FSL task (i.e., an episode) is denoted as a k-shot n-
way classification problem that contains a support set and
a query set. A support set S = {Is,i, ys,i}kni=1 consists of
k labeled samples Is,i for each of n classes, ys,i is the la-
bel, and Cj contains samples of the j-th class. A query set
Q = {Iq,i}eni=1 consists of e test samples in each class, and
their ground truth are {yq,i}eni=1. FSL methods usually sam-
ple k-shot n-way FSL tasks from some seen classes with
sufficient labeled samples to train the model, and their per-
formance is evaluated on FSL tasks with unseen classes.

This paper proposes an embedding method that employs
the Poincaré ball to model a task-aware curved embed-
ding space (see Figure 3 for a conceptual illustration). Our
method contains a feature extractor fθ(·), a class-curvature
generator (CCG) gφ(·), and a hyperbolic aggregation net-
work (HAN) hψ(·), with θ, φ, and ψ denoting their pa-
rameters. Given an FSL task, our method first extracts
features of samples, fθ(Is,i), fθ(Iq,i) ∈ Rd. Then, our
method generates a curvature for each class using the class-
curvature generator (i.e., cj = gφ(Dj)) and aggregates
samples into discriminative class prototypes for the adapted
embedding space via the hyperbolic aggregation network
as pj = hψ(Dj) ∈ Ddcj . Here, j ∈ [1, n], and cj and pj
show the curvature and prototype of the j-th class. Dj is

8693

Feature
extractor

Class-curvature
generator (CCG)

Hyperbolic
aggregation network (HAN)

Query instance

Support instances Curvatures for different classes Unbiased and discriminative
prototypes

Class prototypes

Support samples

Query samples

Softmax Predicted Label

Feature
extractor

Features

Distance between the query
instance and prototypes

Feature

Poincaré ball Poincaré ball

Poincaré ball

Figure 3. A conceptual diagram of our method. Given an FSL task, we generate a curvature and a discriminative prototype for each class.
We then map query samples to the embedding space and calculate distances between them and class prototypes for classification.

a set containing in-class and out-of-class samples for the
j-th class and will be defined shortly. Finally, we map
query samples fθ(Iq,i) to the embedding space via exp

cj
0

and compute distances between them and class prototypes
using the class curvatures for classification.

Suppose ŷq,i is the prediction of our method for a query
sample Iq,i, we train our model by minimizing the follow-
ing objective,

L(θ, φ, ψ) = −
∑
t

1

|Qt|
∑

Iq,i∈Qt

log p(ŷq,i = yq,i|Iq,i), (6)

whereQt is the query set of the t-th FSL task sampled from
seen classes, and p(ŷq,i = yq,i|Iq,i) is the probability that
Iq,i belongs to its ground truth class. In this paper, we for-
mulate p(ŷq,i = j|Iq,i) as

p(yq,i = j|Iq,i) =
exp

(
− dcj

(
exp

cj
0

(
fθ(Iq,i)

)
,pj

))
∑
j′ exp

(
− dcj′

(
exp

cj′
0

(
fθ(Iq,i)

)
,pj′

))

=

exp

(
− dgφ(Dj)

(
exp

gφ(Dj)

0

(
fθ(Iq,i)

)
, hψ(Dj)

))
∑
j′ exp

(
− dgφ(Dj′)

(
exp

gφ(Dj′)

0

(
fθ(Iq,i)

)
, hψ(Dj′)

)) .
(7)

Dj = [Xj ,Zj] contains an in-class set Xj and an out-of-
class set Zj . Note that, the proposed method can be applied
to both the inductive and transductive settings of FSL. In the
inductive setting, as the query set is not available, we choose
Xj = {fθ(Is,i)|Is,i ∈ Cj} and Zj = {fθ(Is,i)|Is,i ∈
S\Cj}, where |Xj | = k and |Zj | = k(n − 1). In the
transductive setting, both the support and query sets are
available, and thus we set Xj = {fθ(Is,i)|Is,i ∈ Cj},
Zj = {fθ(Iq,i)|Iq,i ∈ Q} ∪ {fθ(Is,i)|Is,i ∈ S\Cj}, and
|Zj | = k(n− 1)+ en. In following sections, we will detail
out the class-curvature generator gφ(·) and the hyperbolic
aggregation network hψ(·).

4.2. Class-curvature Generator (CCG)

In the class-curvature generator, the curvature cj for the
j-th class is generated based on the second-order statistics

of Dj = [Xj ,Zj], which has an ability to capture expres-
sive correlations between features of given samples [11, 26].
Specifically, we denote the second-order statistics of Dj as
bj ∈ R% (% is a hyperparameter of the class-curvature gen-
erator), and its l-th element blj can be computed via the fac-
torized bilinear model [24, 46]:

blj =
∑

xij∈Xj

∑
zi

′
j ∈Zj

1
>(U>l x

i
j ◦ V >l zi

′
j), (8)

where xij ∈ Rd, zi
′

j ∈ Rd, U l ∈ Rd×r, V l ∈ Rd×r, and
1 ∈ Rr is a vector whose elements are all ‘1’s. r is the
other hyperparameter of the class-curvature generator de-
noting the rank of U l and V l, and ◦ denotes the Hadamard
product. In this case, we can directly compute bj as

bj =
∑

xij∈Xj

∑
zi

′
j ∈Zj

O(U>xij ◦ V >zi
′
j), (9)

where U = [U1, · · · ,U%] ∈ Rd×r%, V =
[V 1, · · · ,V %] ∈ Rd×r%, and O ∈ R%×r% is a fixed binary
matrix with elements in row l, columns ((l− 1)× r+1) to
(lr) being “1” for l ∈ [1, %].

We empirically observed that arbitrary curvatures may
cause numerical instabilities in the training process. Be-
sides, some methods have shown that setting c in the range
of [0, 1] is suitable in many cases [16, 32]. Thus, we use
a multi-layer perceptron (MLP) network MLP1 and a sig-
moid function to generate cj :

cj = sigmoid
(
MLP1(bj)

)
, (10)

where the parameter of MLP1 is W f1, and the sigmoid
function is a regularization manner towards efficient train-
ing. All in all, parameters of the class-curvature generator
are φ = {U ,V ,W f1}.

4.3. Hyperbolic Aggregation Network (HAN)

We consider context information of the task-aware
curved embedding space to generate weights for samples

8694

Computing weights for

Computing weights for

Features in the in-class
set
Features in the out-of-
class set
Preliminary prototype
of the j-th class
Preliminary prototypes
of other classes

Figure 4. The illustration of the HAN. We first compute weights
aj for samples in the in-class set Xj , and aggregate them into a
preliminary prototype p′j . We then collect Hj and Hj from the
out-of-class set Zj , and compute weights wj and trade-off λj for
Hj and Xi to obtain a prototype pj .

in Dj = [Xj ,Zj] and aggregate them into discriminative
prototypes pj , where the context information is modeled as
intra-class and inter-class distances in the embedding space.
We first compute weights for samples in Xj . An intra-class
distance matrix Gj is calculated using the curvature cj of
the j-th class,

Gii
′

j = dcj
(
exp

cj
0 (xij), exp

cj
0 (xi

′
j)
)
, (11)

where xij ,x
i′

j ∈Xj , and Gii
′

j is the element at the i-th raw
and i′-th column of the matrix Gj ∈ Rk×k. We use an MLP
network MLP2 to compute the weights aj ∈ Rk for Xj ,

aj = MLP2(Gj), (12)

where the parameter of MLP2 is W f2. Based on aj , we
compute a preliminary prototype p′j ∈ Ddcj by

p′j = Hyperavexij∈Xj

(
aij⊗cj exp

cj
0 (xij)

)
, (13)

where aij is the i-th element of aj . Preliminary prototypes
of all classes are denoted as P = [p′1, · · · ,p′n]. Eq. (13)
has a complex formulation with the hyperbolic averaging
operation, the exponential map, and the Möbius scalar mul-
tiplication. Based on Lemma 1, we can rewrite Eq. (13) into
a simpler formulation:

p′j = Hyperavexij∈Xj

(
exp

cj
0 (aijx

i
j)
)
. (14)

Lemma 1. In a Poincaré ball Ddc , the exponential map and
the scalar multiplication in the tangent space T0Ddc at the
origin satisfy the commutative law, that is

w⊗cexpc0(x) = expc0(wx), (15)

where w ∈ R is a scalar and x ∈ T0Ddc .

Proof. The proof is in the supplementary materials.

Next, we compute weights for samples in Zj . This
is done by only considering the m closest samples to
p′j in Zj . To this end, we first map samples in Zj to

task-specific embeddings via a projection ϕ(·) parameter-
ized by W ϕ and the exponential map exp

cj
0 . We then

collect the m samples closest to p′j into a set Hj =

{expcj0
(
ϕ(zij)

)
|expcj0

(
ϕ(zij)

)
∈ Nm(p′j), z

i
j ∈ Zj},

where |Hj | = m, Nm(p′j) contains m closest embed-
dings to p′j , and the i-th embedding in Hj is hij ∈
Ddcj . The remaining samples constitute a set Hj =

{expcj0
(
ϕ(zij)

)
|expcj0

(
ϕ(zij)

)
/∈ Nm(p′j), z

i
j ∈ Zj},

where |Hj | = |Zj | − m, with the i-th embedding in Hj

being hij ∈ Ddcj . We use another MLP network MLP3

(parameterized by W f3) to compute weights for the col-
lected m samples in Zj . The input (denoted by disj) to
MLP3 is composed of inter-class distances according to:
(1) distances between p′j and embeddings in Hj , denoted
by dis1j ; (2) the mean of distances between p′j and embed-
dings in Hj , denoted by dis2j ; (3) the mean of distances be-
tween other preliminary prototypes P \p′j and embeddings
in Hj , denoted by dis3j ; (4) the mean of distances between
other preliminary prototypes P \p′j and embeddings in Hj ,
denoted by dis4j ,

dis1
j =[dcj (p

′
j ,h

1
j), · · · , dcj (p

′
j ,h

m
j)] ∈ Rm,

dis2
j =

1

|Zj | −m

|Zj |−m∑
i=1

dcj (p
′
j ,h

i
j) ∈ R,

dis3
j =[

1

n− 1

∑
l∈([1,n]\j)

dcl(p
′
l,h

1
j), · · · ,

1

n− 1

∑
l∈([1,n]\j)

dcl(p
′
l,h

m
j)] ∈ Rm,

dis4
j =

1

(n− 1)× (|Zj | −m)

∑
l∈([1,n]\j)

|Zj |−m∑
i=1

dcl(p
′
l,h

i
j) ∈ R,

disj =[dis1
j ,dis

2
j ,dis

3
j ,dis

4
j].

(16)
We feed disj to MLP3 to obtain

wj , λj = MLP3(disj), (17)

wj ∈ Rm is the weight for the collected m samples in Zj

and λj is the trade-off between Xj and Zj . The prototype
pj ∈ Ddcj will be computed using aj , wj , and λj as

T j =

{
exp

cj
0

(
λja

i
jx

i
j

)
|xij ∈Xj

}
∪
{
(1− λj)wi

j⊗cjh
i
j |hij ∈Hj

}
pj =Hyperavetij∈T j

(tij)

. (18)

In (18), wi
j is the i-th element of wj . Overall, the frame-

work of the hyperbolic aggregation network is shown in
Figure 4, and parameters are ψ = [W f2,W ϕ,W f3]. The
training process of our method is shown in Algorithm 1.

8695

Algorithm 1 Training process of the proposed method.
Input: Seen classes. Initial feature extractor fθ , class-curvature

generator gφ, and hyperbolic aggregation network hψ .
Output: Updated fθ , gφ, and hψ .

1: while t < MaxIteration do
2: Sample a k-shot n-way FSL task from seen classes with a

support set St and a query setQt.
3: Extract features fθ(Is,i) and fθ(Iq,i) for Is,i ∈ St, Iq,i ∈

Qt.
4: Construct data sets Dj = [Xj ,Zj] for each class.
5: Generate curvatures cj for each class by the class-curvature

generator gφ via Eq. (9) and Eq. (10).
6: Generate class prototypes pj by the hyperbolic aggregation

network hψ . 1. compute weights for samples in Xj via
Eq. (11), Eq. (12), Eq. (14). 2. compute weights for sam-
ples in Zj via Eq. (16), Eq. (17). 3. aggregate instances
with the weights via Eq. (18).

7: Classify samples inQt via Eq. (7).
8: Update fθ , gφ, and hψ via minimizing Eq. (6).
9: end while

10: Return fθ , gφ, and hψ .

5. Experiments
5.1. Experimental Settings

Datasets. We conducted experiments on four popu-
lar datasets: mini-ImageNet [50], tiered-ImageNet [40],
CUB [51], and CIFAR-FS [4]. We used the standard proto-
col to process and divide data for training, validation, and
testing. Details are in the supplementary materials.
Backbones. For fair and comprehensive comparisons with
existing methods, three backbones were used: a 4-layer
convolutional network (ConvNet) [22, 45, 50], a 12-layer
residual network (ResNet12) [35, 38, 39], and a bigger 12-
layer residual network (we denote it as BigResNet12) [20,
43, 55]. ResNet12 and BigResNet12 both have four residual
blocks, while the differences is that the numbers of convolu-
tional channels in the four blocks are (64, 128, 256, 512) for
ResNet12 and (64, 160, 320, 640) for BigResNet12. Details
are in the supplementary materials.
Training Details. Following [35, 55], we pre-trained
ResNet12 and BigResNet12 on the training set. Then,
we carried out meta-training to learn our method over 200
epochs, and each epoch has 100 episodes. The validation
set was only used to select the model after the meta-training
stage, and performance was reported as the mean accuracy
on the test set with the 95% confidence interval. Other de-
tails are in the supplementary materials.

5.2. Main Results

We compare our method with state-of-the-art FSL meth-
ods in the inductive and transductive settings on the mini-
ImageNet, tiered-ImageNet, CUB, and CIFAR-FS datasets,
where 1-shot/5-shot 5-way classification were implemented

Setting Method Backbone 1-shot 5-shot

Inductive

MatchingNet [50] ConvNet 43.56± 0.84 55.31± 0.73
ProtoNet [44] ConvNet 49.42± 0.78 68.20± 0.66

RelationNet [45] ConvNet 50.44± 0.82 65.32± 0.70
MMN [5] ConvNet 53.37± 0.48 66.97± 0.35
DSN [43] ConvNet 51.78± 0.96 68.99± 0.69

Afrasiyabi et al. [1] ConvNet 53.14± 1.06 71.45± 0.72
FEAT [55] ConvNet 55.15 71.61

Ours ConvNet 55.53± 0.20 72.12± 0.16
ProtoNet [44] ResNet12 56.52± 0.45 74.28± 0.20
TADAM [35] ResNet12 58.50± 0.30 76.70± 0.38
TapNet [56] ResNet12 61.65± 0.15 76.36± 0.10

DC [25] ResNet12 62.53± 0.19 78.95± 0.13
ECMSFMT [39] ResNet12 59.00 77.46

Ours ResNet12 63.56± 0.20 79.13± 0.14
MetaOptNet [20] BigResNet12 62.64± 0.61 78.63± 0.46
Net-Cosine [27] BigResNet12 61.72± 0.81 81.79± 0.55

DSN [43] BigResNet12 62.64± 0.66 78.83± 0.45
Ours BigResNet12 67.02± 0.20 82.32± 0.14

Transductive

TPN [31] ConvNet 55.51 69.86
TEAM [38] ConvNet 56.57 72.04
DSN [43] ConvNet 55.88± 0.90 70.50± 0.68
FEAT [55] ConvNet 57.04 72.89

Ours ConvNet 58.29± 0.22 73.93± 0.16
TEAM [38] ResNet12 60.07 75.90

Ours ResNet12 66.73± 0.22 80.57± 0.14
DSN [43] BigResNet12 64.60± 0.72 79.51± 0.50

Ours BigResNet12 71.79± 0.23 83.00± 0.17

Table 1. Accuracy (%) comparisons with the state-of-the-art few-
shot classification results on the mini-ImageNet dataset.

Setting Method 1-shot 5-shot

Inductive

MAML [9] 51.67± 1.81 70.30± 1.75
ProtoNet [44] 53.51± 0.89 72.69± 0.74

RelationNet [45] 54.48± 0.93 71.32± 0.78
MetaOptNet [20] 65.99± 0.72 81.56± 0.63

CTM [23] 68.41± 0.39 84.28± 1.73
SimpleShot [52] 69.09± 0.22 84.58± 0.16

TapNet [56] 63.08± 0.15 80.26± 0.12
DSN [43] 66.22± 0.75 82.79± 0.48
FEAT [55] 70.80± 0.23 84.79± 0.16

Ours 71.66± 0.23 85.50± 0.15

Transductive
TPN [31] 59.91± 0.94 73.30± 0.75
DSN [43] 67.39± 0.82 82.85± 0.56

Ours 77.19± 0.24 86.18± 0.15

Table 2. Accuracy (%) comparisons with the state-of-the-art few-
shot classification results on the tiered-ImageNet dataset.

and query sets had 15 samples per class. For fair com-
parisons, we used ConvNet, ResNet12, and BigResNet12
on the mini-ImageNet dataset. We used BigResNet12 on
tiered-ImageNet and CIFAR-FS, and ConvNet on the CUB
dataset. Results on the four datasets are shown in Table 1,
Table 2, Table 3, and Table 4, respectively.

On the mini-ImageNet dataset, our method achieves the
state-of-the-art performance no matter which backbone is
used, especially in the transductive setting. TADAM [35],
TEAM [38], DSN [43], Afrasiyabi et al. [1], Net-
Cosine [27], BD-CSPN [28], and FEAT [55] are state-of-
the-art embedding methods while using a fixed and uni-
tary Euclidean geometry. Compared with them, our method
has better performance, demonstrating that adapting curva-
tures to geometrical structures of data can lead to better
embeddings. On the tiered-ImageNet, CUB, and CIFAR-
FS datasets, our method again achieves the state-of-the-art
performance. For example, in the transductive setting of

8696

Setting Method 1-shot 5-shot

Inductive

MAML [9] 55.92± 0.95 72.09± 0.76
ProtoNet [44] 51.31± 0.91 70.77± 0.69

RelationNet [45] 62.45± 0.98 76.11± 0.69
MatchNet [50] 61.16± 0.89 72.86± 0.70

Afrasiyabi et al. [1] 63.30± 0.94 81.35± 0.67
TEAM [38] 69.39 82.78
FEAT [55] 68.87± 0.22 82.90± 0.15

Ours 74.66+ 0.21 88.37± 0.12

Transductive

EPNet [41] 65.94± 0.93 78.80± 0.64
TEAM [38] 75.71 86.04

BD-CSPN [28] 75.10 87.25
Ours 76.69± 0.21 89.30± 0.12

Table 3. Accuracy (%) comparisons with the state-of-the-art few-
shot classification results on the CUB dataset.

Setting Method 1-shot 5-shot

Inductive

ProtoNets [44] 72.2± 0.7 83.5± 0.5
MetaOpt-RR [20] 72.6± 0.7 84.3± 0.5

MetaOpt-SVM [20] 72.0± 0.7 84.2± 0.5
DSN [43] 72.3± 0.8 85.1± 0.6

Ours 73.0± 0.7 85.8± 0.5

Transductive DSN [43] 75.6± 0.9 86.2± 0.6
Ours 76.8± 0.7 86.4± 0.5

Table 4. Accuracy (%) comparisons with the state-of-the-art few-
shot classification results on the CIFAR-FS dataset.

Setting Method 1-shot 5-shot

Inductive

ProtoNet 58.34± 0.20 78.49± 0.14
w/o CCG HAN, c = 1 59.05± 0.21 78.34± 0.22

w/o CCG HAN, c = 0.01 50.92± 0.22 75.66± 0.16
w/o HAN, single c 58.97± 0.20 80.19± 0.14

w/o HAN, class-level c 59.47± 0.20 80.41± 0.14
w/o CCG, c = 1 62.60± 0.20 79.25± 0.14

w/o CCG, c = 0.01 64.17± 0.21 76.49± 0.16
Ours 67.02± 0.20 82.32± 0.14

Transductive

w/o CCG HAN, c = 1 59.14± 0.22 79.82± 0.21
w/o CCG HAN, c = 0.01 51.06± 0.22 75.73± 0.16

w/o HAN, single c 59.16± 0.20 80.29± 0.14
w/o HAN, class-level c 59.94± 0.21 80.67± 0.14

w/o CCG, c = 1 62.80± 0.20 81.02± 0.14
w/o CCG, c = 0.01 62.50± 0.21 77.59± 0.16

model capacity 68.25± 0.21 81.08± 0.16
Ours 71.79± 0.23 83.00± 0.17

Table 5. Ablation experiments on the mini-ImageNet dataset.

tiered-ImageNet, we achieve 77.19% and 86.18% on the 1-
shot and 5-shot tasks, 9.80% and 3.33% higher than exist-
ing methods. In the inductive setting of CUB, our method
achieves 74.66% and 88.37%, 5.27% and 5.47% higher
than existing methods.

5.3. Ablation Study

We conducted ablation experiments on the mini-
ImageNet dataset to evaluate our class-curvature genera-
tor (CCG) and hyperbolic aggregation network (HAN). We
first removed the CCG and HAN, manually set c as 1, or
0.01, and computed the class prototypes by averaging sam-
ples, denoted by ‘w/o CCG HAN, c=1/0.01’. Then, we
added the CCG to the model. We evaluated generating a
single curvature for all classes, denoted by ‘w/o HAN, sin-
gle c’, and evaluated generating curvatures for each class,

Setting Method 1-shot

Inductive

m = 1 65.03± 0.20
m = 2 65.82± 0.20
m = 3 66.45± 0.20
m = 4 67.02± 0.20

Transductive

m = 15 65.88± 0.22
m = 30 67.98± 0.22
m = 45 69.62± 0.22
m = 60 71.79± 0.22
m = 75 71.11± 0.22

Table 6. Evaluation of m on the mini-ImageNet dataset.

denoted by ‘w/o HAN, class-level c’. Finally, we added
the HAN while removing the CCG, and c was set manu-
ally as 1, or 0.01, denoted by ‘w/o CCG, c=1/0.01’. Be-
sides, we removed 9 × 105 parameters from BigResNet12,
to keep the number of our whole parameters consistent with
the backbone, denoted by ‘model capacity’. Our target is
to show whether our improvement is from the model ca-
pacity. Results are shown in Table 5. Comparing ‘w/o
CCG HAN, c=1/0.01’ with ‘w/o HAN’ and comparing‘w/o
CCG, c=1/0.01’ with ‘Ours’, we can find that generat-
ing appropriate curvatures leads to better performance than
manually setting a fixed and unitary curvature for various
FSL tasks. Besides, multiple class-level curvatures has bet-
ter performance than a single curvature for all classes, better
matching complex data structures. Comparing ‘w/o CCG
HAN, c=1/0.01’ with ‘w/o CCG, c=1/0.01’, the HAN can
lead to discriminative class prototypes even 1 samples are
available. The performance of ‘model capacity’ still higher
than compared methods and other settings in Table 5, show-
ing that our improvement is not from the model capacity,
but the adaptive curvatures.

We evaluated the number m of the collected samples in
the HAN on the mini-ImageNet dataset, as shown in Ta-
ble 6. In the inductive setting, |Zj | = 4, and we mea-
sured m from 1 to 4. With the increase of m, we achieve
better performance, and the best performance 67.02% is
achieved when m = 4. The reason is since only support
samples are available in Zj , a large m provides more infor-
mation to generate prototypes. In the transductive setting,
|Zj | = 79, and we measured m in [15, 30, 45, 60, 75]. The
performance first increases, and then the performance tends
to stabilize around 71%. In beginning, a large m provides
more information, while in the stable stage, the information
is sufficient to obtain good prototypes.

5.4. Effectiveness of Generated Curvatures

In this section, we evaluated the manner of generated
curvatures. We replaced second-order statistics of features
in CCG with concatenation and mean of features, and we
evaluated generating curvatures using a hand-designed cur-
vature estimation method [16]. After the CCG generates
c for each class, we made some disturbance on the gener-
ated c and evaluated its performance. If the performance de-

8697

0.25c 0.5c
0.75c 0.9c c 1.1c

1.25c 1.5c
1.75c

Adjusted Curvature

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Ac
cu

ra
cy

81.06

80.60

81.18

81.72

83.00

81.49
81.30

81.01 81.04

Performance of Second-order Statistics

(a)

0.25c 0.5c
0.75c 0.9c c 1.1c

1.25c 1.5c
1.75c

Adjusted Curvature

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Ac
cu

ra
cy

81.59
81.73

81.90 82.00 82.04 81.98 81.88 81.85
81.72

Performance of Concatenation

(b)

0.25c 0.5c
0.75c 0.9c c 1.1c

1.25c 1.5c
1.75c

Adjusted Curvature

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Ac
cu

ra
cy

80.44 80.55
80.67 80.71 80.73 80.70 80.66 80.61 80.53

Performance of Mean

(c)

0.25c 0.5c
0.75c 0.9c c 1.1c

1.25c 1.5c
1.75c

Adjusted Curvature

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Ac
cu

ra
cy

81.50 81.49 81.47 81.47 81.48 81.48 81.46 81.49 81.49

Performance of Hand-designed Method

(d)

Figure 5. Evaluation of multiplying the generated c by 0.25, 0.5,
0.75, 0.9, 1.1, 1.25, 1.5, and 1.75. In Figure 5(a), 5(b), 5(c), the
CCG generates c based on second-order statistics, concatenation,
and mean of samples, respectively. In Figure 5(d), c is generated
by a hand-designed curvature estimation method [16].

creases, it means that the original curvatures is appropriate.
If the performance does not change much or even increases,
it means that the original curvature is not good. Specifically,
we disturbed the generated c via multiplying it by 0.25, 0.5,
0.75, 0.9, 1.1, 1.25, 1.5, and 1.75, and measured averaging
accuracies over 10000 FSL tasks. We conducted 5-shot 5-
way experiments on the mini-ImageNet dataset, and results
are shown in Figure 5. We can find that, using second-order
statistics can generate appropriate curvatures. When using
the concatenation or mean of features, although the original
c achieves the best performance, the performance difference
between the disturbed c and the original c is small, showing
the original c is not good enough. Finally, disturbed c of
using the curvature estimation method achieves almost the
same performance with its original c. The curvature esti-
mation method usually requires a lot samples to avoid de-
viation in estimation [16], while an FSL task only provides
very few samples. Thus, it cannot generate appropriate c.
In contrast, CCG exploits meta-learning to learn knowledge
from seen classes, which helps to generate appropriate cur-
vatures for unseen classes given few samples.

5.5. Class Prototypes

We visualized the generated class prototypes on the 1-
shot 5-way tasks of the mini-ImageNet dataset, and we used
the MDS method [17] to reduce embeddings to 2-D vec-
tors, as shown in Figure 6. We observe that sometimes the
support sample may be an outlier (e.g., the support sample

house
miniature
snorkel
carrier
harvestman

toucan
reel
bars
hotdog
tobacco shop

Figure 6. Visualization of data distributions and class prototypes
on four FSL tasks of the min-ImangeNet dataset. Triangles rep-
resent support samples, dots denote query samples, and stars rep-
resent generated class prototypes. Sometimes the support sample
may be an outlier (e.g., the support sample of the miniature class
in the left figure, and the bar class in the right figure). Directly us-
ing the triangles as prototypes will result in a bad performance. In
contrast, our method can generate more discriminative prototypes.

of the miniature class in the left figure, and the bar class
in the right figure). In this case, directly using the sup-
port samples as prototypes will result in bad performance.
In contrast, our method can generate discriminative class
prototypes based on the intra-class and inter-class context
information of the adaptive curvatures, pushing the outlier
support sample into its cluster. Thus, our method can im-
prove the performance by a large margin. Note that, the
tasks depicted in Figure 6 are hand-picked to show that our
method can generate discriminative prototypes in extremely
challenging scenarios, where support samples include out-
liers. Thus, the bad performance of directly using support
samples in the figure is not common across all tasks.

6. Conclusion
In this paper, we have found that assuming data of all

FSL tasks has the same geometrical structure may distort
structures in some tasks and thus result in a poor general-
ization capability. To solve this issue, we have proposed a
curvature generation embedding method that adapts a task-
aware curved embedding space to data structures by gener-
ating curvatures for each class. Although few samples are
given in FSL, using second-order statistics can capture ex-
pressive representations of them, which helps to generate
suitable curvatures. Compared with an embedding space
using a single curvature everywhere, curvatures for differ-
ent classes can better match complex data. By consider-
ing the intra-class and inter-class context information of
the adapted geometry, our method can generate discrimi-
native class prototypes in the embedding space for few-shot
classification. Extensive experimental results confirm that
our embedding space can adapt well to new FSL tasks and
achieves state-of-the-art performance.

Acknowledgements. This work was supported in part by
the Natural Science Foundation of China (NSFC) under
Grants No. 62072041 and No. 61773062.

8698

References
[1] Arman Afrasiyabi, Jean-Franccois Lalonde, and Christian

Gagné. Associative alignment for few-shot image classifica-
tion. In European Conference on Computer Vision (ECCV),
pages 18–35, 2020.

[2] Sungyong Baik, Seokil Hong, and Kyoung Mu Lee. Learn-
ing to forget for meta-learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2379–2387, 2020.

[3] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood,
and Leonid Sigal. Improved few-shot visual classification.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14493–14502, 2020.

[4] Luca Bertinetto, Joao F Henriques, Philip Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations (ICLR), 2019.

[5] Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and Tao
Mei. Memory matching networks for one-shot image recog-
nition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4080–4088, 2018.

[6] Ines Chami, Zhitao Ying, Christopher Ré, and Jure
Leskovec. Hyperbolic graph convolutional neural networks.
In Neural Information Processing Systems (NeurIPS), pages
4868–4879, 2019.

[7] Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A
hyperbolic-to-hyperbolic graph convolutional network. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 154–163, June 2021.

[8] Bhuwan Dhingra, Christopher Shallue, Mohammad
Norouzi, Andrew Dai, and George Dahl. Embedding text in
hyperbolic spaces. In Workshop on Graph-Based Methods
for Natural Language Processing, pages 59–69, 2018.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning (ICML),
pages 1126–1135, 2017.

[10] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann.
Hyperbolic neural networks. In Neural Information Process-
ing Systems (NeurIPS), pages 5345–5355, 2018.

[11] Zhi Gao, Yuwei Wu, Xiaoxun Zhang, Jindou Dai, Yunde Jia,
and Mehrtash Harandi. Revisiting bilinear pooling: A coding
perspective. In AAAI Conference on Artificial Intelligence
(AAAI), pages 3954–3961, 2020.

[12] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4367–4375, 2018.

[13] Jiechao Guan, Zhiwu Lu, Tao Xiang, and Ji-Rong Wen. Few-
shot learning as domain adaptation: Algorithm and analysis.
arXiv preprint:2002.02050, 2020.

[14] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali
Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter
Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al.
Hyperbolic attention networks. In International Conference
on Learning Representations (ICLR), 2018.

[15] W. He. Application of euclidean norm in multi-temporal
remote sensing image change detection. In International
Congress on Image and Signal Processing, pages 2111–
2115, 2010.

[16] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Usti-
nova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic
image embeddings. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6418–6428,
2020.

[17] J. Kruskal. Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika, pages
1–27, 1964.

[18] M. Law, Renjie Liao, J. Snell, and R. Zemel. Lorentzian
distance learning for hyperbolic representations. In Inter-
national Conference on Machine Learning (ICML), pages
3672–3681, 2019.

[19] John M. Lee. Riemannian manifolds: An introduction to
curvature. 1997.

[20] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10657–10665, 2019.

[21] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li,
and Liwei Wang. Boosting few-shot learning with adaptive
margin loss. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12576–12584, 2020.

[22] Aoxue Li, Tiange Luo, Tao Xiang, Weiran Huang, and Liwei
Wang. Few-shot learning with global class representations.
In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9715–9724, 2019.

[23] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,
and Xiaogang Wang. Finding task-relevant features for few-
shot learning by category traversal. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1–10, 2019.

[24] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou.
Factorized bilinear models for image recognition. In
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2079–2087, 2017.

[25] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei
Bursuc. Dense classification and implanting for few-shot
learning. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9258–9267, 2019.

[26] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji.
Bilinear cnn models for fine-grained visual recognition. In
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1449–1457, 2015.

[27] Bin Liu, Y. Cao, Yutong Lin, Q. Li, Zheng Zhang, Ming-
sheng Long, and H. Hu. Negative margin matters: Under-
standing margin in few-shot classification. In European Con-
ference on Computer Vision (ECCV), pages 438–455, 2020.

[28] Jinlu Liu, Liang Song, and Yongqiang Qin. Prototype rec-
tification for few-shot learning. In European Conference on
Computer Vision (ECCV), pages 741–756, 2020.

[29] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic
graph neural networks. In Neural Information Processing
Systems (NeurIPS), pages 8230–8241, 2019.

8699

[30] Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah
Ngo, Tat-Seng Chua, and Yu-Gang Jiang. Hyperbolic visual
embedding learning for zero-shot recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9273–9281, 2020.

[31] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propa-
gate labels: Transductive propagation network for few-shot
learning. In International Conference on Learning Repre-
sentations (ICLR), 2019.

[32] Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM
Snoek. Searching for actions on the hyperbole. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1141–1150, 2020.

[33] Brice Loustau. Hyperbolic geometry. arXiv: Differential
Geometry, 2020.

[34] Maximillian Nickel and Douwe Kiela. Poincaré embeddings
for learning hierarchical representations. In Neural Informa-
tion Processing Systems (NeurIPS), pages 6338–6347. 2017.

[35] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Neural Information Processing Systems
(NeurIPS), pages 721–731, 2018.

[36] Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin
Shi, and Guoying Zhao. Hyperbolic deep neural networks:
A survey. ArXiv, abs/2101.04562, 2021.

[37] Hang Qi, M. Brown, and D. Lowe. Low-shot learning with
imprinted weights. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5822–5830,
2018.

[38] Limeng Qiao, Yemin Shi, Jia Li, Yaowei Wang, Tiejun
Huang, and Yonghong Tian. Transductive episodic-wise
adaptive metric for few-shot learning. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 3603–
3612, 2019.

[39] Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Few-shot learning with embedded class models and shot-free
meta training. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 331–339, 2019.

[40] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations (ICLR), 2018.

[41] Pau Rodrı́guez, Issam Laradji, Alexandre Drouin, and
Alexandre Lacoste. Embedding propagation: Smoother
manifold for few-shot classification. In European Confer-
ence on Computer Vision (ECCV), pages 121–138, 2020.

[42] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hy-
perbolic neural networks++. In International Conference on
Learning Representations (ICLR), 2021.

[43] Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4136–4145, 2020.

[44] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Neural Information
Processing Systems (NeurIPS), pages 4077–4087, 2017.

[45] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1199–1208, 2018.

[46] J. Tenenbaum and W. Freeman. Separating style and content
with bilinear models. Neural Computation, 12:1247–1283,
2000.

[47] Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen
Ganea. Poincare glove: Hyperbolic word embeddings. In In-
ternational Conference on Learning Representations (ICLR),
2018.

[48] A. Ungar. Analytic hyperbolic geometry: Mathematical
foundations and applications. 2005.

[49] A. Ungar. A gyrovector space approach to hyperbolic geom-
etry. 2009.

[50] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In Neural Information Processing Systems (NeurIPS), pages
3630–3638, 2016.

[51] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

[52] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Lau-
rens van der Maaten. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019.

[53] Yu-Xiong Wang, Ross B. Girshick, M. Hebert, and Bharath
Hariharan. Low-shot learning from imaginary data. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7278–7286, 2018.

[54] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pe-
dro OO Pinheiro. Adaptive cross-modal few-shot learning.
In Neural Information Processing Systems (NeurIPS), pages
4848–4858, 2019.

[55] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8808–8817, 2020.

[56] Sung Whan Yoon, Jun Seo, and J. Moon. Tapnet: Neural net-
work augmented with task-adaptive projection for few-shot
learning. In International Conference on Machine Learning
(ICML), pages 7115–7123, 2019.

[57] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differen-
tiable earth mover’s distance and structured classifiers. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12203–12213, 2020.

[58] Yiding Zhang, Xiao Wang, Xunqiang Jiang, Chuan Shi, and
Yanfang Ye. Hyperbolic graph attention network. arXiv
preprint arXiv:1912.03046, 2019.

[59] Jun-Yan Zhu, Philipp Krähenbühl, E. Shechtman, and
Alexei A. Efros. Generative visual manipulation on the nat-
ural image manifold. In European Conference on Computer
Vision (ECCV), pages 597–613, 2016.

8700

