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(a) Input: monocular video (b) Output: free-viewpoint rendering
Figure 1. Dynamic view synthesis from dynamic monocular video. Our method takes a monocular video as input (a). Each frame in the
video is taken at a unique time step and from a different view (e.g., the yellow and blue frames). Our goal is to synthesize photorealistic
novel views of a dynamic scene at arbitrary camera viewpoints and time steps (red frames). Such a system enables free-viewpoint video,
providing immersive and almost life-like viewing experiences for users.

Abstract

We present an algorithm for generating novel views at
arbitrary viewpoints and any input time step given a monoc-
ular video of a dynamic scene. Our work builds upon re-
cent advances in neural implicit representation and uses
continuous and differentiable functions for modeling the
time-varying structure and the appearance of the scene.
We jointly train a time-invariant static NeRF and a time-
varying dynamic NeRF, and learn how to blend the results
in an unsupervised manner. However, learning this implicit
function from a single video is highly ill-posed (with in-
finitely many solutions that match the input video). To re-
solve the ambiguity, we introduce regularization losses to
encourage a more physically plausible solution. We show
extensive quantitative and qualitative results of dynamic
view synthesis from casually captured videos.

1. Introduction

Video provides a window into another part of the real
world. In traditional videos, however, the viewer observes
the action from a fixed viewpoint and cannot navigate the
scene. Dynamic view synthesis comes to the rescue. These
techniques aim at creating photorealistic novel views of a
dynamic scene at arbitrary camera viewpoints and time,
which enables free-viewpoint video and stereo rendering,
and provides an immersive and almost life-like viewing ex-
perience. It facilitates applications such as replaying profes-
sional sports events in 3D [7], creating cinematic effects like
freeze-frame bullet-time (from the movie “The Matrix”),
virtual reality [11, 5], and virtual 3D teleportation [37].

Systems for dynamic view synthesis need to overcome
challenging problems related to video capture, reconstruc-
tion, compression, and rendering. Most of the existing
methods rely on laborious and expensive setups such as cus-
tom fixed multi-camera video capture rigs [8, 61, 11, 37, 5].
While recent work relaxes some constraints and can han-
dle unstructured video input (e.g., from hand-held cam-
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eras) [3, 4], many methods still require synchronous capture
from multiple cameras, which is impractical for most peo-
ple. Few methods produce dynamic view synthesis from
a single stereo or even RGB camera, but they are limited
to specific domains such as human performance capture
[12, 19]. Recent work on depth estimation from monocular
videos of dynamic scenes shows promising results [27, 58].
Yoon et al. [58] use estimated depth maps to warp and blend
multiple images to synthesize an unseen target viewpoint.
However, the method uses a local representation (i.e., per-
frame depth maps) and processes each novel view indepen-
dently. Consequently, the synthesized views are not consis-
tent and may exhibit abrupt changes.

This paper presents a new algorithm for dynamic view
synthesis from a dynamic video that overcomes this limita-
tion using a global representation. More specifically, we use
an implicit neural representation to model the time-varying
volume density and appearance of the events in the video.
We jointly train a time-invariant static neural radiance field
(NeRF) [32] and a time-varying dynamic NeRF, and learn
how to blend the results in an unsupervised manner. How-
ever, it is challenging for the dynamic NeRF to learn plausi-
ble 3D geometry because we have just one and only one 2D
image observation at each time step. There are infinitely
many solutions that can correctly render the given input
video, yet only one is physically correct for generating pho-
torealistic novel views. Our work focuses on resolving this
ambiguity by introducing regularization losses to encourage
plausible reconstruction. We validate our method’s perfor-
mance on the Dynamic multi-view dynamic scenes dataset
by Yoon et al. [58].

The key points of our contribution can be summarized as
follows:

• We present a method for modeling dynamic radiance
fields by jointly training a time-invariant model and a
time-varying model, and learn how to blend the results
in an unsupervised manner.

• We design regularization losses for resolving the am-
biguities when learning the dynamic radiance fields.

• Our model leads to favorable results compared to
the state-of-the-art algorithms on the Dynamic Scenes
Dataset.

2. Related Work

View synthesis from images. View synthesis aims to gen-
erate new views of a scene from multiple posed images [47].
Light fields [25] or Lumigraph [18] synthesize realistic ap-
pearance but require capturing and storing many views. Us-
ing explicit geometric proxies allows high-quality synthesis
from relatively fewer input images [6]. However, estimat-
ing accurate scene geometry is challenging due to untex-

tured regions, highlights, reflections, and repetitive patterns.
Prior work addresses this via local warps [9], operating in
the gradient domain [23], soft 3D reconstruction [41], and
learning-based approaches [21, 15, 14, 20, 44]. Recently,
neural implicit representation methods have shown promis-
ing view synthesis results by modeling the continuous vol-
umetric scene density and color with a multilayer percep-
tron [32, 34, 57, 59].

Several methods tackle novel view synthesis from one
single input image. These methods differ in their underlying
scene representation, including depth [35, 53], multiplane
images [52], or layered depth images [46, 24]. Compared
with existing view synthesis methods that focus on static
objects or scenes, our work aims to achieve view synthesis
of dynamic scenes from one single video.

View synthesis for videos. Free viewpoint video offers im-
mersive viewing experiences and creates freeze-frame (bul-
let time) visual effects [28]. Compared to view synthe-
sis techniques for images, capturing, reconstructing, com-
pressing, and rendering dynamic contents in videos is sig-
nificantly more challenging. Many existing methods ei-
ther focus on specific domains (e.g., humans) [8, 12, 19]
or transitions between input views only [3]. Several sys-
tems have been proposed to support interactive viewpoint
control watching videos of generic scenes [61, 11, 37, 4, 5,
1]. However, these methods require either omnidirectional
stereo camera [1], specialized hardware setup (e.g., custom
camera rigs) [61, 11, 5, 37], or synchronous video captures
from multiple cameras [4]. Recently, Yoon et al. [58] show
that one can leverage depth-based warping and blending
techniques in image-based rendering for synthesizing novel
views of a dynamic scene from a single camera. Similar to
[58], our method also synthesizes novel views of a dynamic
scene. In contrast to using explicit depth estimation [58],
our implicit neural representation based approach facilitates
geometrically accurate rendering and smoother view inter-
polation.

Implicit neural representations. Continuous and dif-
ferentiable functions parameterized by fully-connected net-
works (also known as multilayer perceptron, or MLPs) have
been successfully applied as compact, implicit representa-
tions for modeling 3D shapes [10, 55, 38, 17, 16], object
appearances [36, 34], 3D scenes [48, 32, 40]. These meth-
ods train MLPs to regress input coordinates (e.g., points
in 3D space) to the desired quantities such as occupancy
value [30, 45, 40], signed distance [38, 2, 31], volume den-
sity [32], color [36, 48, 45, 32]. Leveraging differentiable
rendering [50, 22], several recent works have shown train-
ing these MLPs with multiview 2D images (without using
direct 3D supervision) [34, 56, 32].

Most of the existing methods deal with static scenes. Di-
rectly extending the MLPs to encode the additional time di-
mension does not work well due to 3D shape and motion
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(a) Static NeRF (Section 3.2) (b) Dynamic NeRF (Section 3.3)
Figure 2. Method overview. We propose to use two different models to represent the (a) static and (b) dynamic scene components.(a)
Static NeRF: For static components, we train a NeRF model following [32], but excluding all the pixels marked as dynamic. This allows
us to reconstruct the background’s structure and appearance without conflicting the moving objects. (b) Dynamic NeRF: Modeling a
dynamic scene from a single video is highly ill-posed. To resolve the ambiguity, we leverage the multi-view constraints as follow: Our
Dynamic NeRF takes both r(uk) and t as input to predict 3D scene flow from time t to t + 1 (sfw) and from time t to t − 1 (sbw). Using
the predicted scene flow, we can create a warped radiance field by resampling the radiance field modeled at the adjacent time instances and
apply temporal consistency. Thus, at each instance, we can have multiple views associated with different time t to train the model.

entanglement. The method in [29] extends NeRF for han-
dling crowdsourced photos that contain lighting variations
and transient objects. Our use of static/dynamic NeRF is
similar to [29], but we focus on modeling the dynamic ob-
jects (as opposed to static scene in [29]). The work that
most related to ours is [33], which learns a continuous mo-
tion field over space and time. Our work is similar in that
we also disentangle the shape/appearance and the motion
for dynamic scene elements. Unlike [33], our method mod-
els the shape and appearance of a dynamic scene from a
casually captured video without accessing ground truth 3D
information for training.

Concurrent work on dynamic view synthesis. Very re-
cently, several methods concurrently to ours have been pro-
posed to extend NeRF for handling dynamic scenes [54, 26,
51, 39, 42]. These methods either disentangle the dynamic
scenes into a canonical template and deformation fields for
each frame [51, 42, 39] or directly estimate dynamic (4D
spatiotemporal) radiance fields [54, 26]. Our work adopts
the 4D radiance fields approach due to its capability of mod-
eling large scene dynamics. In particular, our approach
shares high-level similarity with [26] in that we also reg-
ularize the dynamic NeRF through scene flow estimation.
Our method differs in several important technical details,
including scene flow based 3D temporal consistency loss,
sparsity regularization, and the rigidity regularization of the
scene flow prediction. For completeness, we include exper-
imental comparison with one template-based method [51]
and one 4D radiance field approach [26].

3. Method

3.1. Overview

Our method takes as input (1) monocular video
{I0, I1, . . . , IN−1} with N frames, and (2) a binary mask
M of the foreground object for each frame. The mask can
be obtained automatically via segmentation or motion seg-
mentation algorithms or semi-automatically via interactive
methods such as rotoscoping. Our goal is to learn a global
representation that facilitates free-viewpoint rendering at ar-
bitrary views and input time steps.

Specifically, we build on neural radiance fields
(NeRFs) [32] as our base representation. NeRF models
the scene implicitly with a continuous and differentiable
function (i.e., an MLP) that regresses an input 3D posi-
tion x = (x, y, z) and the normalized viewing direction
d = (dx, dy, dz) to the corresponding volume density σ and
color c = (r, g, b). Such representations have demonstrated
high-quality view synthesis results when trained with mul-
tiple images of a scene. However, NeRF assumes that the
scene is static (with constant density and radiance). This
assumption does not hold for casually captured videos of
dynamic scenes.

One straightforward extension of the NeRF model would
be to include time as an additional dimension as input, e.g.,
using 4D position (x, y, z, t) input where t denotes the in-
dex of the frame. While this model theoretically can rep-
resent the time-varying structure and appearance of a dy-
namic scene, the model training is highly ill-posed, given
that we only have one single 2D image observation at each
time step. There exist infinitely many possible solutions that
match the input video exactly. Empirically, we find that di-
rectly training the “NeRF + time” model leads to low visual
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(a) NeRF (b) NeRF + time (c) Static NeRF (Ours)
Figure 3. Why static NeRF? NeRF [32] assumes that the scene is entirely static. (a) Directly training a NeRF model on a dynamic
scene inevitably results in blurry reconstruction (even for the static regions of the scene). (b) One straightforward extension is to include
time as an additional input dimension (NeRF + time). However, such a method suffers from ambiguity because the input video can be
explained either with time-varying geometry or appearance or both. The representation reconstructs the input frames well but produces
visual artifacts at novel views. (c) To tackle this issue, we model the static components of the scene using a static NeRF. We exclude all the
pixels marked as “dynamic” from training the model. This allows us to accurately reconstruct the background’s structure and appearance
without conflicting the moving objects.

quality.
The key contribution of our paper lies in resolving this

ambiguity for modeling the time-varying radiance fields. To
this end, we propose to use different models to represent
static or dynamic scene components using the user-provided
dynamic masks.

For static components of the scene, we apply the orig-
inal NeRF model [32], but exclude all “dynamic” pixels
from training the model. This allows us to reconstruct the
background’s structure and appearance without conflicting
reconstruction losses from moving objects. We refer to this
model as “Static NeRF” (Figure 3).

For dynamic components of the scene (e.g., moving ob-
jects), we train an MLP that takes a 3D position and time
(x, y, z, t) as input to model the volume density and color
of the dynamic objects at each time instance. To leverage
the multi-view geometry, we use the same MLP to predict
the additional three-dimensional scene flow from time t to
the previous and next time instance. Using the predicted
forward and backward scene flow, we create a warped ra-
diance field (similar to the backward warping 2D optical
flow) by resampling the radiance fields implicitly modeled
at time t+ 1 and t− 1. For each 3D position, we then have
up to three multi-view observations to train our model. We
refer to this model as “Dynamic NeRF” (Figure 4). Addi-
tionally, our Dynamic NeRF predicts a blending weight and
learns how to blend the results from both the static NeRF
and dynamic NeRF in an unsupervised manner. In the fol-
lowing, we discuss the detailed formulation of the proposed
static and dynamic NeRF models and the training losses for
optimizing the weights for the implicit functions.

3.2. Static NeRF

Formulation. Our static NeRF follows closely the formu-
lation in [32] and is represented by a fully-connected neural
network. Consider a ray from the camera center o through a

given pixel on the image plane as r(uk) = o+ukd, where d
is the normalized viewing direction, our static NeRF maps a
3D position r(uk) and viewing direction d to volume den-
sity σs and color cs:

(σs, cs) = MLPθ (r(uk)) , (1)

where MLPθ stands for two cascaded MLP, detailed in Fig-
ure 2. We can compute the color of the pixel (corresponding
the ray r(uk)) using numerical quadrature for approximat-
ing the volume rendering interval [13]:

Cs(r) =

K∑
k=1

T s(uk)α
s(σs(uk) δk) c

s(uk), (2)

T s(uk) = exp

(
−

k−1∑
k′=1

σs(uk) δk

)
, (3)

where α(x) = 1 − exp(−x) and δk = uk+1 − uk is the
distance between two quadrature points. The K quadrature
points {uk}Kk=1 are drawn uniformly between un and uf
[32]. T s(uk) indicates the accumulated transmittance from
un to uk.

Static rendering photometric loss. To train the weights θs
of the static NeRF model, we first construct the camera rays
using all the pixels for all the video frames (using the asso-
ciated intrinsic and extrinsic camera poses for each frame).
Here we denote rij as the rays passing through the pixel j
on image i with rij(u) = oi+(u)dij . We can then optimize
θs by minimizing the static rendering photometric loss for
all the color pixels C(rij) in frame i ∈ {0, . . . , N−1} in
the static regions (where M(rij) = 0):

Lstatic =
∑
ij

∥(Cs(rij)−Cgt(rij)) · (1−M(rij))∥
2

2

(4)
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(a) NeRF + time (b) Ours
Figure 4. Why dynamic NeRF? (Top) Since the training objec-
tive is to minimize the image reconstruction loss on the input video
frames, NeRF + time explains the input frames very well. (Bottom)
However, there are infinitely many solutions that can correctly ren-
der the given input video, yet only one of them is physically cor-
rect for generating photorealistic novel views. NeRF + time tries
to disentangle view from time using time as additional input. How-
ever, the problem becomes under-constrained and leads to artifacts
in both static and dynamic regions. Our dynamic NeRF produces
plausible view synthesis results for moving objects.

3.3. Dynamic NeRF

In this section, we introduce our core contribution
to modeling time-varying radiance fields using dynamic
NeRF. The challenge lies in that we only have one single
2D image observation at each time instance t. So the train-
ing lacks multi-view constraints. To resolve this training
difficulty, we predict the forward and backward scene flow
and use them to create a warped radiance field by resam-
pling the radiance fields implicitly modeled at time t + 1
and t − 1. For each 3D position at time t, we then have
up to three 2D image observations. This multi-view con-
straint effectively constrains the dynamic NeRF to produce
temporally consistent radiance fields.

Formulation. Our dynamic NeRF takes a 4D-tuple
(r(uk), t) as input and predict 3D scene flow vectors sfw,
sbw, volume density σd, color cd and blending weight b:(

sfw, sbw, σ
d
t , c

d
t , b
)
= MLPθd (r(uk), t) (5)

Using the predicted scene flow sfw and sbw, we obtain the
scene flow neighbors r(uk) + sfw and r(uk) + sbw. We also
use the predicted scene flow to warp the radiance fields from
the neighboring time instance to the current time. For every
3D position at time t, we obtain the occupancy σd and color
cd through querying the same MLP model at r(uk)+s:(

σd
t+1, c

d
t+1

)
= MLPθd(r(uk) + sfw, t+ 1) (6)(

σd
t−1, c

d
t−1

)
= MLPθd(r(uk) + sbw, t− 1) (7)

For computing the color of a dynamic pixel at time t′,

(a) Input (b) Induced flow (c) Estimated flow
Figure 5. Scene flow induced optical flow. We supervise the pre-
dicted scene flow by minimizing the endpoint error between the es-
timated optical flow [49] and our scene flow induced optical flow.
Since we jointly train our model with both photometric loss and
motion matching loss, our learned volume density helps render
a more accurate flow than the estimated flow (e.g., the complex
structures of the fence on the right).

we use the following approximation of volume rendering
integral:

Cd
t′(r) =

K∑
k=1

T d
t′(uk)α

d(σd
t′(uk) δk) c

d
t′(uk) (8)

Dynamic rendering photometric loss. Similar to the
static rendering loss, we train the dynamic NeRF model by
minimizing the reconstruction loss:

Ldyn =
∑

t′∈{t, t−1, t+1}

∑
ij

∥∥(Cd
t′(rij)−Cgt(rij))

∥∥2
2

(9)

3.4. Regularization Losses for Dynamic NeRF

While leveraging the multi-view constraint in the dy-
namic NeRF model reduces the amount of ambiguity, the
model training remains ill-posed without proper regulariza-
tion. To this end, we design several regularization losses to
constrain the Dynamic NeRF.

Motion matching loss. As we do not have direct 3D su-
pervision for the predicted scene flow from the motion MLP
model, we use 2D optical flow (estimated from input image
pairs using [49]) as indirect supervision. For each 3D point
at time t, we first use the estimated scene flow to obtain the
corresponding 3D point in the reference frame. We then
project this 3D point onto the reference camera so we can
compute the scene flow induced optical flow and enforce it
to match the estimated optical flow (Figure 5). Since we
jointly train our model with both photometric loss and mo-
tion matching loss, the learned volume density helps render
a more accurate flow than the estimated flow. Thus, we do
not suffer from inaccurate optical flow supervision.

Motion regularization. Unfortunately, matching the ren-
dered scene flow with 2D optical flow does not fully resolve
all ambiguity, as a 1D family of scene flow vectors pro-
duces the same 2D optical flow (Figure 6). We regularize
the scene flow to be slow and temporally smooth:
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(r(uk), t) (r(uk) + sfw, t+ 1)

t t+ 1

Optical
flow

Figure 6. Ambiguity of optical flow supervision. Matching the
scene flow induced optical flow with the estimated 2D optical flow
does not fully resolve the ambiguity. There exists a 1D family of
scene flow predictions that produce the same 2D optical flow.

Lslow =
∑
ij

∥sfw(rij)∥1 + ∥sbw(rij)∥1 (10)

Lsmooth =
∑
ij

∥sfw(rij) + sbw(rij)∥22 (11)

We further regularize the scene flow to be spatially
smooth by minimizing the difference between neighboring
3D points’ scene flow. To regularize the consistency of the
scene flow, we have the scene flow cycle consistency regu-
larization:

Lcyc =
∑

∥sfw(r, t) + sbw(r+ sfw(r, t), t+ 1)∥22
+ ∥sbw(r, t) + sfw(r+ sbw(r, t), t− 1)∥22 (12)

Sparsity regularization. We render the color using princi-
ples from classical volume rendering. One can see through
a particle if it is partially transparent. However, one can not
see through the scene flow because the scene flow is not an
intrinsic property (unlike color). Thus, we minimize the en-
tropy of the rendering weights T dαd along each ray so that
few samples dominate the rendering.

Depth order loss. For a moving object, we can either in-
terpret it as an object close to the camera moving slowly or
an object far away moving fast. To resolve the ambiguity,
we leverage the state-of-the-art single-image depth estima-
tion [43] to estimate the input depth. As the depth estimates
are up to shift and scale, we cannot directly use them to su-
pervise our model. Instead, we use the robust loss as in [43]
to constrain our dynamic NeRF, and further constrain our
dynamic NeRF with our static NeRF. We additionally mini-
mize the L2 difference between Ds and Dd for all the pixels

D
ep

th
C

ol
or

(a) Dynamic NeRF (b) Static NeRF (c) Full model
Figure 7. Full model rendering. We compose the (a) dynamic
and (b) static NeRF model into (c) our full model and render full
frames at novel viewpoints and time steps.

in the static regions (where M(rij) = 0):

Ldepth =
∑
ij

∥∥∥Dd(rij)−Dgt(rij)
∥∥∥2
2
+

∥∥(Dd(rij)−Ds(rij)) · (1−M(rij))
∥∥2
2
,

where D stands for the normalized depth.

3D temporal consistency loss. If an object remains un-
moved for a while, the network can not learn the correct
volume density and color of the occluded background at the
current time because those 3D positions are omitted during
volume rendering. When rendering a novel view, the model
may generate holes for the occluded region. To address this
issue, we propose the 3D temporal consistency loss before
rendering. Specifically, we enforce the volume density and
color of each 3D position to match its scene flow neigh-
bors’. The correct volume density and color will then be
propagated across time steps.

Rigidity regularization of the scene flow. Our model
prefers to explain a 3D position by the static NeRF if this
position has no motion. For static position, we want the
blending weight b to be closed to 1. For a non-rigid posi-
tion, the blending weight b should be 0. This learned blend-
ing weight can further constrain the rigidity of the predicted
scene flow by taking the product of the predicted scene flow
and (1− b). If a 3D position has no motion, the scene flow
is forced to be zero.

3.5. Combined model

With both the static and dynamic NeRF model, we can
easily compose them into a complete model using the pre-
dicted blending weight b and render full color frames at
novel views and time:

Cfull(r) =

K∑
k=1

T full
(
αd(σdδk)(1− b)cd + αs(σsδk)bc

s
)

We predict the blending weight b using the dynamic NeRF
to enforce the time-dependency. Using the blending weight,
we can also render a dynamic component only frame where
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Table 1. Novel view synthesis results. We report the average PSNR and LPIPS results with comparisons to existing methods on Dynamic
Scene dataset [58]. The best performance is in bold and the second best is underscored.

PSNR ↑ / LPIPS ↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF 20.58 / 0.305 23.05 / 0.316 22.61 / 0.225 21.08 / 0.441 19.07 / 0.214 24.08 / 0.098 20.86 / 0.164 21.62 / 0.252
NeRF + time 16.72 / 0.489 19.23 / 0.542 17.17 / 0.403 17.17 / 0.752 17.33 / 0.304 19.67 / 0.236 13.80 / 0.444 17.30 / 0.453
Yoon et al. [58] 20.16 / 0.148 21.75 / 0.135 23.93 / 0.109 20.35 / 0.179 18.76 / 0.178 19.89 / 0.138 15.09 / 0.183 19.99 / 0.153
Tretschk et al. [51] 19.38 / 0.295 23.29 / 0.234 19.02 / 0.453 19.26 / 0.427 16.98 / 0.353 22.23 / 0.212 14.24 / 0.336 19.20 / 0.330
Li et al. [26] 24.12 / 0.156 28.91 / 0.135 25.94 / 0.171 22.58 / 0.302 21.40 / 0.225 24.09 / 0.228 20.91 / 0.220 23.99 / 0.205
Ours 24.23 / 0.144 28.90 / 0.124 25.78 / 0.134 23.15 / 0.146 21.47 / 0.125 25.97 / 0.059 23.65 / 0.093 24.74 / 0.118

NeRF + time Yoon et al. [58] Tretschk et al. [51] Li et al. [26] Ours Ground truth
Figure 8. Novel view synthesis. Our model enables the free-viewpoint synthesis of a dynamic scene. Compared with Yoon et al. [58],
our results appear slightly blurry (because we reconstruct the entire frame as opposed to warp and blend input images), but align with the
ground truth image better and create smoother view-interpolation results. When compared to other NeRF-based methods, our results are
sharper and closer to the ground truth. Please refer to the supplementary material for video results.

the static region is transparent (Figure 7).

Full rendering photometric loss. We train the two NeRF
models jointly by applying a reconstruction loss on the com-
posite results:

Lfull =
∑
ij

∥∥Cfull(rij)−Cgt(rij)
∥∥2
2

(13)

4. Experimental Results

4.1. Experimental setup

Dataset. We evaluate our method on the Dynamic Scene
Dataset [58], which contains 9 video sequences. The se-
quences are captured with 12 cameras using a static cam-
era rig. All cameras simultaneously capture images at 12
different time steps {t0, t1, . . . , t11}. The input twelve-
frames monocular video {I0, I1, . . . , I11} is obtained by
sampling the image taken by the i-th camera at time ti.
Please note that a different camera is used for each frame
of the video to simulate camera motion. The frame Ii con-
tains a background that does not change in time, and a time-
varying dynamic object. Like NeRF [32], we use COLMAP

to estimate the camera poses and the near and far bounds of
the scene. We assume all the cameras share the same in-
trinsic parameter. We exclude the DynamicFace sequence
because COLMAP fails to estimate camera poses. We re-
size all the sequences to 480× 270 resolution.

4.2. Evaluation

Quantitative evaluation. To quantitatively evaluate the
synthesized novel views, we fix the view to the first camera
and change time. We show the PSNR and LPIPS [60] be-
tween the synthesized views and the corresponding ground
truth views in Table 1. We obtain the results of Li et
al. [26] and Tretschk et al. [51] using the official implemen-
tation with default parameters. Note that the method from
Tretschk et al. [51] needs per-sequence hyper-parameter
tuning. The visual quality might be improved with careful
hyper-parameter tuning. Our method compares favorably
against the state-of-the-art algorithms.
Qualitative evaluation. We show the sample view synthe-
sis results in Figure 8. With the learned neural implicit rep-
resentation of the scene, our method can synthesize novel
views that are never seen during training. Please refer to
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Ours Li et al. [26]

Figure 9. Comparison with [26]. We show that our proposed reg-
ularizations are the keys to better visual results.

Table 2. Ablation study on different losses. We report PSNR,
SSIM and LPIPS on the Playground sequence.

PSNR ↑ SSIM ↑ LPIPS ↓
Ours w/o Lfull 12.90 0.1549 0.991
Ours w/o static NeRF 18.81 0.4969 0.293
Ours w/o blending 22.23 0.7610 0.153
Ours w/o Lsparsity 22.32 0.7884 0.137
Ours w/o Lreg 22.53 0.7972 0.124
Ours w/o Lmotion 22.61 0.8027 0.137
Ours w/o rigidity 22.73 0.8142 0.118
Ours w/o Ldepth 22.99 0.8170 0.117
Ours w/o mask 23.43 0.8205 0.102
Ours 23.65 0.8452 0.093

the supplementary video results for the novel view synthe-
sis, and the extensive qualitative comparison to the methods
listed in Table 1.

Figure 9 shows the comparison with Li et al. [26] on
large motion sequences taken in the wild. Unlike [26] which
predicts the blending weight using a static NeRF, we learn
a time-varying blending weight. This weight helps better
distinguish the static region and yields a clean background.
Our rigidity regularization encourages the scene flow to be
zero for the rigid region. As a result, the multi-view con-
straints enforce the background to be static. Without this
regularization, the background becomes time-variant and
leads to floating artifacts in [26].

4.3. Ablation Study

Table 2 analyzes the contribution of each loss quantita-
tively.

Depth order loss. For a complicated scene, we need ad-
ditional supervision to learn the correct geometry. In Fig-
ure 10 we study the effect of the depth order loss. Since the
training objective is to minimize the image reconstruction
loss on the input views, the network may learn a solution
that correctly renders the given input video. However, it
may be a physically incorrect solution and produces arti-
facts at novel views. With the help of the depth order loss
Ldepth, our dynamic NeRF model learns the correct relative
depth and renders plausible content.

Without depth
order loss

With depth
order loss

Without motion
regularization

With motion
regularization

Figure 10. Depth order loss and motion regularization. Training
with depth order loss ensures the correct relative depth of the dy-
namic object. Regularizing our scene flow prediction in dynamic
NeRF can help handle videos with large object motion.

Non-rigid deformation Incorrect flow
Figure 11. Failure cases. (Left) Our method does not handle non-
rigid deformation very well. (Right) Our dynamic NeRF heavily
relies on the optical flow estimation and produces artifacts with
inaccurate flow estimates.

Motion regularization. Supervising scene flow prediction
with the 2D optical flow is under-constrained. We show in
Figure 10 that without a proper motion regularization, the
synthesized results are blurry. The scene flow may point to
the wrong location. By regularizing the scene flow to be
slow, temporally and spatially smooth, and consistent, we
obtain plausible results.
Rigidity regularization of the scene flow. The rigidity
regularization helps with a more accurate scene flow predic-
tion for the static region. The dynamic NeRF is thus trained
with a more accurate multi-view constraint. We show in
Figure 9 that the rigidity regularization is the key to a clean
background.

4.4. Failure Cases

Dynamic view synthesis remains a challenging problem.
We show and explain several failure cases in Figure 11.

5. Conclusions
We have presented a new algorithm for dynamic view

synthesis from a single monocular video. Our core techni-
cal contribution lies in scene flow based regularization for
enforcing temporal consistency and alleviates the ambiguity
when modeling a dynamic scene with only one observation
at any given time. We show that our proposed scene flow
based 3D temporal consistency loss and the rigidity regu-
larization of the scene flow prediction are the keys to better
visual results. We validate our design choices and compare
favorably against the state of the arts.
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