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Abstract

This paper targets at fast video moment retrieval (fast
VMR), aiming to localize the target moment efficiently and
accurately as queried by a given natural language sentence.
We argue that most existing VMR approaches can be divid-
ed into three modules namely video encoder, text encoder,
and cross-modal interaction module, where the last module
is the test-time computational bottleneck. To tackle this is-
sue, we replace the cross-modal interaction module with a
cross-modal common space, in which moment-query align-
ment is learned and efficient moment search can be per-
formed. For the sake of robustness in the learned space,
we propose a fine-grained semantic distillation framework
to transfer knowledge from additional semantic structures.
Specifically, we build a semantic role tree that decomposes
a query sentence into different phrases (subtrees). A hierar-
chical semantic-guided attention module is designed to per-
form message propagation across the whole tree and yield
discriminative features. Finally, the important and discrim-
inative semantics are transferred to the common space by a
matching-score distillation process. Extensive experimental
results on three popular VMR benchmarks demonstrate that
our proposed method enjoys the merits of high speed and
significant performance.

1. Introduction
Video Moment Retrieval (VMR) aims to localize a tem-

poral segment from an untrimmed video, as queried by a

natural language sentence [14, 1]. It plays a crucial role in

video understanding and has various downstream applica-

tions such as robotic navigation, autonomous driving, video

entertainment, and so forth. Despite great successes in re-

cent years [63, 57, 65, 40, 62, 64, 38], effective VMR re-

mains challenging due to many factors including complex

video scenes, fine-grained semantic query structures, and

huge cross-modal gap between visual and textual features.
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Figure 1. Test time and accuracy plot of state-of-the-art VMR

approaches on TACos and ActivityNet Captions (ANetCap). We

report the metrics R1@0.3 and R1@0.5 for the two datasets re-

spectively. Our proposed FVMR achieves the best accuracy-speed

balance among all the competitors. Best viewed in color.

To tackle the above challenges, the current state-of-the-

art VMR pipeline can be divided into three modules name-

ly video encoder, text encoder, and cross-modal interaction

module. The first two encoders utilize convolutional neural

networks (e.g. C3D [49] or I3D [4]) and recurrent neural

networks (e.g. BiLSTM [27] or GRU [12]) to extract visual

and textual features respectively. Then, to predict the target

moment, the cross-modal interaction module is designed to

jointly consider both modalities by using different architec-

tures such as cross attention [36, 35, 7, 64], graph neural

networks [63, 67, 42], and temporal adjacent networks [65].

Despite the above achievements, we emphasize, fast

video moment retrieval (fast VMR) is in fact often neces-

sary, since localizing the target moment is usually employed

only as a part of time-critical video retrieval systems. For

example, to localize moments in a video corpus [46, 30], it

usually requires us to perform efficient VMR on hundreds

to thousands of candidate videos for a given natural lan-

guage query. Also, fast video moment retrieval on embed-

ded devices may enable many additional applications, such

as intelligent robot service and smart home [68]. However,

as shown in Figure 1, high-speed and effective VMR al-

gorithms remain scarce. Taking the recently state-of-the-art
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approach 2D-TAN [65] as an example, it will cost about 100

milliseconds when performing VMR on one single video.

We argue that among the three modules in the VMR

pipeline, cross-modal interaction is the test-time computa-

tional bottleneck. The reasons are three-fold: (1) Before

model testing, it is convenient to pre-extract and store video

features in an offline manner. As a result, the video encoder

does not affect the test time. (2) The text encoder is highly

efficient (∼3 ms per sentence) and irreplaceable for all the

VMR methods. Therefore, targeting at a low cost of text

encoder is unadvisable. (3) Cross-modal interaction takes

up most of test time due to the complex feature fusion oper-

ation [54, 61, 34, 62, 63, 40, 42, 8] and subsequent feature

transformations [65, 50, 23]. The above observations moti-

vate us to design an efficient and effective cross-modal in-

teraction module. Ideally, this module can be simplified to

a cross-modal common space, where moment-query align-

ment is learned. In such a space, for the given query, it is

nearly cost-free to obtain the matching score of each mo-

ment proposal, i.e., we can simply calculate the similarities

between video moment features and the query sentence fea-

ture in the common space by using efficient vector opera-

tions like dot product. A few early work [1, 26] has ex-

plored common space learning for VMR. However, their

performance is far below the current state-of-the-arts. In

fact, without a well-designed cross-modal interaction, it is

difficult to ground a textual query onto the video effectively.

Therefore, the common space learning strategy has become

an underdog in VMR, which motivates us to solve the fol-

lowing problem: How to learn a common space that can
not only yield efficient moment/query features for fast VM-
R but also improve the discriminative ability by leveraging
fine-grained semantic structures?

To this end, we propose a fine-grained semantic distil-

lation framework for fast video moment retrieval, which

learns an efficient and effective moment-query common s-

pace by transferring knowledge from additional semantic

structures. Specifically, our proposed approach consists of

four modules, namely video encoder, text encoder, fine-

grained semantic extractor, and common space. Here, in

addition to the text encoder (a Bi-LSTM in our proposed

approach), we introduce a fine-grained semantic extractor

to facilitate the learning of common space. This extrac-

tor decomposes a query sentence into fine-grained semantic

structures (phrases) by building a semantic role tree, where

each phrase is represented as a subtree. Then, a hierarchical

semantic-guided attention module is designed to propagate

semantic information across the whole tree and yield dis-

criminative features for each phrase. Note that the learned

fine-grained phrase features serve as complementary cues

to provide an enhanced supervisory signal when learning

the common space. During model training, the video and

text encoders are required to learn from the fine-grained se-

mantic extractor by matching score distillation. As a re-

sult, fine-grained semantic information is injected into the

common space for robust moment-query alignment. During

testing, we only exploit the text and video encoders to per-

form VMR, which does not adds computational overhead.

As shown in Figure 1, our proposed method achieves the

best accuracy-speed balance among state-of-the-arts.

The main contributions of this paper are three-fold:

• We introduce fast video moment retrieval (FVMR) that

aims for retrieving target moments efficiently and ac-

curately. To this end, a simple yet effective common

space learning paradigm is designed, not only speeding

up VMR, but also improving the performance.

• We design a novel fine-grained semantic distillation

framework for FVMR. Here, a hierarchical semantic-

guided attention module is designed to leverage the fine-

grained semantic structures by optimizing a matching-

score distillation loss.

• Extensive experimental results on three popular VM-

R benchmarks demonstrate that our proposed method

enjoys the merits of high speed and significant perfor-

mance. Compared with the recent state-of-the-arts, 2D-

TAN [65], our proposed model is 40× faster and obtains

5.5% absolute gains on the TACos dataset [44].

2. Related Work
Video moment retrieval is to localize the correct momen-

t in an untrimmed video that is semantically aligned with a

given natural language query [14, 1, 59, 15]. It plays a cru-

cial role in the video understanding field [13, 20, 19, 52, 17,

18, 21, 16]. Researchers have been proposing a variety of

VMR approaches in either one-stage or two-stage manner-

s. The one-stage methods [23, 61, 37, 40, 62, 45, 55, 24]

aim to build a proposal-free framework and directly regress

the temporal location of target moment by using the fused

video and textual features. The Extractive Clip Localiza-

tion (ExCL) method [23] directly uses recurrent networks

to predict the start and end time by leveraging the cross-

modal interaction between the text and video. Mun et al.
design a Local-Global video-text Interaction algorithm (L-

GI) [40], which uses a sequential query attention module

and exploits the implicit semantic information from local

to global. Although one-stage approaches are efficient with

favorable performance, most of them can only regress one

temporal segment, which is not appropriate enough for the

practical retrieval task. Different from the one-stage formu-

lation, the current dominant approaches belong to the two-

stage paradigm [54, 35, 9, 6, 3, 5, 60, 65, 50, 51, 2, 43, 34],

which firstly generates moment proposals from the input

video and then performs cross-modal fusion on each of the

proposals to obtain the matching scores. Recent progress

demonstrates that the two-stage strategy can not only gen-

erate diverse moment proposals but also achieve significant
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retrieval performance. Gao et al. propose the Cross-modal

Temporal Regression Localizer (CTRL) [14] by using slid-

ing windows to generate proposals. To improve the quality

of the proposals, 2D-TAN [65] leverages a two-dimensional

map to model the temporal relations between video mo-

ments with a temporal adjacent network. To improve the

cross-modal interaction, Yuan et al. propose the Semantic

Conditioned Dynamic Modulation (SCDM) [60] algorithm

which modulates the temporally convolved visual features

with the sentence semantics to correlate the sentence-related

video contents. Other strategies are also adopted to improve

the performance of video moment retrieval, such as graph

neural networks [34, 63], reinforcement learning [2, 53, 25],

weakly-supervised learning [39, 31], boundary-aware pre-

diction [51], sentence reconstruction [32], and tree LST-

M [66]. Until now, fast video moment retrieval with high

performance is yet to be explored. Although early common

space-learning algorithms [1, 26] and skip scanning-base

method [24] can save computational cost during retrieval,

they cannot get benefit from the explicitly fine-grained se-

mantic information and the performance is much less than

current state-of-the-arts. In this paper, we propose a simple

yet effective method for fast video moment retrieval, not on-

ly speeding up VMR but also improving the performance.

Many existing VMR approaches only encode the seman-

tic information of the query in a global manner [57, 25,

22, 14, 65, 53, 6], which cannot take full advantage of the

intrinsic and fine-grained structure of the sentence. Al-

though some approaches [22, 28, 10, 40, 43, 33, 56] ex-

ploit the semantic structure of a sentence, most of them

only consider the semantics in a partial (e.g. activities or

objects) [22, 28, 10] or an implicit manner [40, 43]. The

CMIN method [67] leverages the syntactic structure of nat-

ural language queries by constructing a syntactic dependen-

cy graph. Chen et al. [11] propose to decompose a sentence

as a semantic graph and integrate video-text matching at d-

ifferent levels including the global level, action level, and

entity level. However, they [67, 11, 56] ignore to explicitly

model the phrase-level structures. Moreover, the work [11]

is designed for video-text retrieval, which is not suitable for

VMR. For improving cross-modal interaction, [33] takes a

modular network to model compositional natural language

descriptions of activity in videos. Nevertheless, the com-

plex interactions are not efficient. In this paper, targeting at

fast video moment retrieval, we propose a fine-grained se-

mantic distillation framework that explicitly leverages both

global- and phrase-level structures.

3. Fast Video Moment Retrieval
Given a natural language query, this work aims to local-

ize the target moment from an untrimmed video efficient-

ly and accurately. To this end, we propose a fine-grained

semantic distillation framework, which learns a moment-

query common space by transferring knowledge from ad-

ditional semantic structures. As shown in Figure 2, our

proposed approach consists of four modules, namely video

encoder, text encoder, fine-grained semantic extractor, and

moment-query common space. In the following, we first

present the video encoder and text encoder, then we intro-

duce the fine-grained semantic extractor, which leverages

complementary cues to provide an enhanced supervisory

signal to the VMR task. In the fine-grained semantic extrac-

tor, we build a semantic role tree that decomposes a query

sentence into different phrases (subtrees). A hierarchical

semantic-guided attention module is designed to propagate

semantic information across the whole tree and yield dis-

criminative features for each phrase. Finally, we design a

moment-query common space, where the video and text en-

coders are required to learn from the fine-grained semantic

extractor by matching score distillation. During testing, the

common space is adopted for fast video moment retrieval.

3.1. Video and Text Encoders

Video Encoder. For a given untrimmed video V , we firstly

generate a set of moment proposals P = {pi}Ni=1, where pi
represents a proposal and N means the number of propos-

als. Then, the video encoder is utilized to extract the visual

features of each moment proposal as follows:

M = {m1, ...,mi, ...,mN} = Encoder
({pi}Ni=1

)
(1)

where mi is the visual feature of proposal pi, mi ∈ RDv ,

and Dv is the dimension of the visual feature. In our frame-

work, the video encoder can be any types of neural networks

such as C3D [49] or I3D [4].

Text Encoder. For the query sentence S = {s1, ..., sL}
with L words, we simply employ a bidirectional LSTM

(Bi-LSTM) [27] to obtain a sequence of word features

{w1, ...,wL} as follows:

w1,w2, ...,wL = BiLSTM(S), (2)

where wl =
−→w l‖←−w l is the concatenation of the forward and

backward hidden states of the BiLSTM for the l-th word.

We jointly consider the addition of the beginning and the

end features as the sentence feature, s = w1 +wL, where

s ∈ RDs .

3.2. Fine-grained Semantic Extractor

Numerous existing VMR methods [57, 25, 22, 14, 65,

53, 6] only adopt the extracted global sentence feature to

perform temporal localization but ignore the intrinsic and

fine-grained structure of the sentence. Obviously, as shown

in Figure 2, a query sentence (e.g. “the man leaves the ring

and the wrestler approaches the other wrestler and beats him

to the ground”) corresponding to a specific video momen-

t has multiple semantic structures in global-level (the w-

hole sentence) and phrase-level (“the man leaves the ring”,

1525



Query:

q
p

mi

M

s

g(s)

h1
h2
h3

Query:

q
p

mi

M

s

g(s)

h1
h2
h3

M

Figure 2. Overview of the proposed framework. The proposed fast video moment retrieval (FVMR) approach consists of four components

including a video encoder, a text encoder, a fine-grained semantic extractor, and a moment-query common space. The two encoders extracts

visual and textual features for moment proposals and the input query, which are then projected into the common space for the calculation

of matching score p. The fine-grained semantic extractor decomposes a query sentence into a semantic role tree, where each phrase is

represented as a subtree. Then, a hierarchical semantic-guided attention module and a fine-grained semantic fusion module are designed to

yield the other matching score q. During model training, the video and text encoders are required to learn from the fine-grained semantic

extractor by matching score distillation. During testing, only p is employed for fast video moment retrieval.

“the wrestler approaches the other wrestler” and “beats him

to the ground”). The multiple semantic structures involve

complicated interactions, which are actually organized as a

semantic tree, indicating that a query sentence can be ef-

fectively grounded onto the video by properly aligning dif-

ferent semantic levels with the corresponding video parts.

As a result, following [56], we build a semantic role tree to

take full advantage of these details by using a semantic role

labeling toolkit [47]. Semantic role labeling (SRL) comes

from relation extraction, which aims to obtain predicates

and arguments and determine how these arguments are se-

mantically related to the predicate. Such semantic relations

play an important role in comprehending the sentence.

For the query sentence, as shown in Figure 2, SRL pars-

es it to predicates and arguments with semantic roles, where

predicates are often verbs (e.g. actions) and arguments are

often nouns (e.g. objects and entities). Then we set these

verbs and nouns as nodes in our semantic role tree where

the whole sentence is considered as the root node. All the

verb nodes are connected with the root node, and noun n-

odes are set as leaf nodes. If a noun is related to a verb in the

semantic aspect, we connect the two nodes. Similar to [11],

we utilize a GRU [12] to obtain the initial node embed-

dings g(s), g(v) and g(n), representing global embedding,

predicate (verb) embeddings and argument (noun) embed-

dings respectively. Note that g(v) = {g(v)
1 , ...,g

(v)

N(v)} and

g(n) = {g(n)
1 , ...,g

(n)

N(n)}, N (v) and N (n) denote the num-

ber of verb and noun nodes, g(s),g
(v)
i ,g

(n)
i ∈ RDf . The

number of phrases is the same as the number of verbs.

Since a query sentence is composed of multiple phrases

with fine-grained semantic structures, we aim to explicitly

learn the discriminative phrase features for facilitating pre-

cise video moment retrieval. Note that the query is orga-

nized as a tree structure, where the top level provides guid-

ance information for the lower level. As a result, we design

a hierarchical semantic-guided attention module to leverage

the intrinsic structure in an end-to-end manner. Specifical-

ly, features from the top level are adopted to estimate the

importance scores of nodes in the lower level:

α
(j)
k = Wα

(
tanh(Wtopĝ

(i)‖Wlowg
(j)
k )

)
,

ĝ(i) =
N(i)∑
l=1

a
(i)
l g

(i)
l ,

(3)

where (i, j) ∈ {(s, v), (v, n)}, indicating two types of con-

secutive hierarchy in the three-level semantic tree. Wα ∈
R1×2Df , Wtop ∈ RDf×Df , and Wlow ∈ RDf×Df are

learnable embedding matrices in the hierarchical semantic-

guided attention module. tanh(·) is the hyperbolic tangent

activation function. a(i) = softmax(α(i)). With the learned

importance scores α
(j)
k , the feature of each phrase can be

adaptively calculated in an attention manner:

hi = bi,1g
(v)
i +

Ni+1∑
j=2

bi,jg
(n)
zi,j , i ∈ [1, ..., Nv],

bi = softmax([α
(v)
i ,α(n)

zi,1 , ...,α
(n)
zi,Ni

]),

(4)

where Ni is the number of noun nodes connected with the
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i-th verb node in the semantic role tree, and zi,j is the cor-

responding index of the noun node. Finally, we incorporate

all the phrase features with the global embedding:

u = g(s) � 1

N (v)

N(v)∑
i=1

hi, (5)

where � is the Hadamard product operator, u ∈ RDu is

the learned fine-grained semantic feature. By using Eq. (5),

both the global query information and the local phrase infor-

mation are leveraged, which is exploited for the following

common space learning.

3.3. Moment-Query Common Space Learning via
Fine-Grained Semantic Distillation

Moment-Query Common Space. Our goal is to learn

a moment-query common space, where video moment re-

trieval can be efficiently and effectively performed by vec-

tor similarity calculation. To this end, we adopt two feature

transformation modules, φm and φs, to project the momen-

t and query features into the common space. In order to

perform fine-grained semantic distillation, we also project

the fine-grained semantic feature into this space by using

another feature transformation φu. In our framework, for

simplicity, we utilize three multi-layer perceptrons (MLPs)

for implementing φm, φs, φu. All the features in this s-

pace are D-dimensional. As a result, two types of matching

scores can be calculated as follows:

pi = φm(mi)
�
φs(s), (6)

qi = φfuse (φm(mi)� φu(u)) , (7)

where φfuse is an MLP. It learns the matching score qi

by using the fused moment and fine-grained semantic fea-

tures. Note that we simply use the dot product to calculate

pi for fast moment retrieval, while we additionally adopt

φfuse to further consider the interaction between momen-

t and fine-grained semantic features. Since qi exploits the

fine-grained interaction, it is served as the teacher for the

following fine-grained semantic distillation.

Video Moment Retrieval Loss. Because different moment

proposals have different lengths, we compute the IoU score

oi for each proposal with the ground truth moment. Similar

to [65], two thresholds omin and omax are set to calculate

the soft label yi =
oi−omin

omax−oi
for the i-th proposal. Note that

if yi ≤ 0, we set yi = 0, and we set yi = 1 if ym ≥ 1. With

the soft labels, we train the video moment retrieval task by

two binary cross entropy losses Lce(p,y) and Lce(q,y).
Taking the former as an example:

Lce(p,y) = − 1

N

N∑
i=1

yi logpi+(1−yi) log(1−pi), (8)

Fine-Grained Semantic Distillation. As we discussed

in Section 1, the learned fine-grained information serves

as complementary cues to provide an enhanced superviso-

ry signal to the VMR model. As a result, we introduce a

fine-grained semantic distillation learning, which transfers

the fine-grained semantic knowledge in a form of softened

matching scores. The formulation is given by:

Ldis(p,q) = Lce(σ(
p

T
), σ(

q

T
)), (9)

where T is a temperature hyperparameter, σ is the soft-

max function. The softmax operation considers the dis-

tribution of proposal scores for knowledge distillation. S-

ince q serves as a teacher, it is fixed and the gradient is not

backpropagated through it when optimizing Ldis. By dis-

tillation, the video and text encoders are required to learn

from the fine-grained semantic extractor, which can be well

generalized to the test stage. In our framework, the video

encoder and visual feature transformation module φm is

shared for both text encoder and fine-grained semantic ex-

tractor. As a result, optimizing the distillation loss (Eq. (9))

and Lce(q,y) can inject useful fine-grained semantics into

the process of visual feature learning.

Based on the above design, the overall objective for a

training video-sentence pair is formulated as:

L = Lce(p,y) + Lce(q,y) + λLdis(p,q), (10)

where λ is a balance term.

Inference. During the test stage, we only adopt p for fast

video moment retrieval, since calculating q requires addi-

tional time for fine-grained semantic extraction and feature

transformation. In the learned common space, the visual

moment features φm(mi) can be pre-calculated and stored

in a gallery database, which has no impact on the test time.

As a result, the computational overhead of VMR only con-

sists of the calculation of query embeddings (text encoder

and φs(s)) and matching scores (Eq. (6)).

4. Experimental Results
4.1. Experimental Setup
TACos [44]. It consists of 127 videos, which contains dif-

ferent kitchen-related activities. The average length of the

videos and moments in this dataset are 296 and 6 second-

s, which makes the dataset very challenging. A standard

split [14] consists of 10,146, 4,589, and 4,083 moment-

sentence pairs for training, validation and testing.

ANetCap [29]. The ANetCap dataset is the largest dataset

for video moment retrieval, which contains around 20,000

untrimmed action videos. It has 37,417, 17,505, and 17,031

moment-sentence pairs for training, validation, and testing,

respectively. Following [65, 62], we use the first validation

set for validation and the second validation set for testing.

Charades-STA [14]. The Charades-STA dataset is anno-

tated for action recognition and localization. Charades-STA
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dataset contains 12,408 moment-sentence pairs in the train-

ing set and 3,720 pairs in the test set.

Evaluation Metrics. Following previous work [14, 65], we

adopt the metrics R@n,IoU=m to evaluate the performance,

which is defined as the percentage of at least one of the top-

n predicted moments which have Intersection over Union

(IoU) with ground-truth moment larger than m. Follow-

ing [65, 62, 35], we set n∈{1, 5} with m∈{0.1, 0.3, 0.5} for

TACos dataset, n∈{1, 5} with m∈{0.3, 0.5, 0.7} for ANet-

Cap, and n∈{1, 5} with m∈{0.5, 0.7} for Charades-STA.

Implementation Details. We follow [65] to generate mo-

ment proposals, which are organized as a 2D feature map.

For a fair comparison, we employ the same visual features

as previous work [65]. Specifically, for the TACoS and

ANetCap datasets, we adopt the C3D features [49], and for

the Charades-STA dataset, we use the VGG16 features [48],

C3D features [49], and I3D features [4] to evaluate the gen-

eralization on different types of features. We then apply two

convolutional layers on the visual 2D feature map, where

the corresponding convolutional kernel sizes are 5 and 3, re-

spectively. We add batch norm after each convolution layer

and use Tanh as the activation function. For the text en-

coder, we set the word embedding size as 300 and initialize

it with the pretrained Glove embeddings [41]. Then a two-

layer bi-directional LSTM with 512 hidden units serves for

query encoding. For the fine-grained semantic extractor, the

maximum numbers of verb nodes and noun nodes are set to

4 and 6 respectively. We maintain all word tokens after to-

kenization and truncate all text queries that have maximum

20 words. Each of the three MLPs φm, φs, and φu has one

hidden layer with an output dimension of 512. φfuse has

one convolutional and one gated convolutional layer [58]

with the kernel sizes of 3 and 9, respectively. The feature

dimensions Dv , Ds, Df , and D are all set to 512. λ in E-

q. (10) is set to 3. The scaling thresholds omax and omin

are set to 0.3 and 0.7. The temperature T is empirically set

to 1. We adopt a warm-up strategy, which does not opti-

mize the distillation loss in the first 8 epochs. Our model

is implemented with PyTorch 1.2.0, and we utilize Adam

with a learning rate of 2 × 10−4 and a batch size of 32 for

optimization. We train our model until the training loss is

smooth.

Compared Methods. We compare with state-of-the-art ap-

proaches: LGI (CVPR 2020) [40], DRN (CVPR 2020) [62],

2D-TAN (AAAI 2020) [65], CBP (AAAI 2020) [51],

VSLNet (ACL 2020) [64], TMLGA (WACV 2020) [45],

SM-RL (CVPR 2019) [53], ACL (WACV 2019) [22],

RWM-RL (AAAI 2019) [25], QSPN (AAAI 2019) [57],

SAP (AAAI 2019) [9], MAN (CVPR 2019) [63], SCDM

(NeurIPS 2019) [60], CTRL (ICCV 2017) [14]. Here, L-

GI, DRN, TMLGA, VSLNet1, and ExCL are representative

1TMLGA and VSLNet adopts the more robust I3D features [4] for

TACos and ANetCap datasets while others use C3D features [49].

one-stage methods, while other approaches are two-stage

models. In the following, the best performance is highlight-

ed in bold and the second-best underline.

4.2. Comparison with State-of-the-art Methods
Overall Speed-Accuracy Analysis. The fast VMR task

aims to localize target moments efficiently and accurately.

During inference, the time cost of video moment retrieval is

determined by two types of process: Text Encoding (TE) for

query embedding generation and Cross-Modal Learning for

moment localization (CML). In our proposed FVMR frame-

work, cross-modal learning is simply implemented by vec-

tor similarity calculation in the learned common space. Ta-

ble 12 illustrates the speed-accuracy analysis against state-

of-the-art approaches, showing that our method achieves

significant performance with high efficiency. Moreover, we

have the following observations: (1) The time cost of TE is

similar for all the VMR approaches (∼3 ms). As a result,

TE is not the test-time computational bottleneck. (2) For

the time cost of CML, our proposed FVMR method is 35×
to 20, 000× faster than state-of-the-arts, demonstrating that

learning cross-modal common space is much more efficien-

t than cross-modal interaction. (3) Overall, the proposed

FVMR is a high-speed and high-quality method. Compared

with the current state-of-the-art model, 2D-TAN, our pro-

posed method is 40× faster and obtains an absolute gain

of 3.8% on the TACos dataset [44]. For the ANetCap and

Charades-STA datasets, we also obtain superior or compa-

rable performance in an extremely efficient fashion. (4) The

one-stage approaches VSLNet and LGI also achieve favor-

able performance with relatively low computational costs

(∼5 to 10 ms). However, they can only predict one tempo-

ral moment, which is limited in the practical retrieval sce-

narios. In addition, our proposed FVMR outperforms them

in both speed and accuracy metrics.

Results on TACos. Table 2 summarizes the performance

of different approaches on the test split of TACos. We can

observe that the performance degenerates for all the meth-

ods when IoU gets higher. The proposed FVMR signifi-

cantly outperforms all the other methods. Compared with

the state-of-the-art method, 2D-TAN, the proposed FVMR

outperforms it by an average absolute gain of 5.5%. Notice-

ably, the one-stage approaches such as VSLNet, DRN, and

TMLGA obtain inferior performance on this dataset. The

reason is that videos in TACos are often too long, which

impedes the directly temporal regression of these methods.

Results on ANetCap. Table 3 reports the VMR results

on the ANetCap dataset. Our proposed FVMR outperform-

s the state-of-the-arts such as DRN, SCDM, and 2D-TAN

on most metrics. On other metrics, we achieve comparable

performance. Specifically, compared with 2D-TAN, FVM-

R outperforms it on R@1, IoU={0.3, 0.5, 0.7} by gains of

2We evaluate all the compared methods in the same hardware environ-

ment with an NVIDIA RTX 3090.
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Table 1. Speed-accuracy analysis on three datasets. TE: time cost of query (Text) Embedding generation. CML: time cost of the Cross-

Modal Learning for VMR. ALL: The total time cost of TE and CML. We report the accuracy (ACC) of R@1, IoU=0.5 for comparison.

Methods
TACos ANetCap Charades-STA

TE CML ALL ACC TE CML ALL ACC TE CML ALL ACC

TMLGA 1.14 11.37 12.51 21.65 1.24 8.97 10.21 33.04 1.15 4.37 5.52 52.02

VSLNet 3.58 5.02 8.59 24.27 3.87 4.86 8.74 43.22 3.90 4.27 8.18 54.19

LGI - - - - 1.53 7.03 8.56 41.51 1.23 4.76 5.99 59.46
DRN 4.67 22.13 26.81 23.17 4.86 18.46 23.32 45.45 4.52 12.39 16.91 53.09

CTRL 4.32 534.23 538.55 13.30 4.75 398.25 403.0 29.01 4.53 12.20 16.73 23.63

SCDM 3.65 780.0 783.65 21.17 3.27 359.76 363.03 36.75 2.97 23.77 26.07 54.44

CBP 3.17 2659.01 2662.18 24.79 2.44 522.65 525.09 35.76 2.87 266.08 268.95 36.80

2D-TAN 1.72 135.84 137.56 25.32 1.69 80.35 403.1 44.51 1.59 16.78 18.37 40.94

FVMR 3.51 0.14 3.65 29.12 3.14 0.09 3.23 45.00 2.86 0.01 2.87 55.01

Table 2. Comparison results on TACos.

Method
R@1 R@5

IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

TMLGA - 24.54 21.65 - - -

VSLNet - 29.61 24.27 - - -

DRN - - 23.17 - - 33.36

CTRL 24.32 18.32 13.30 48.73 36.69 25.42

QSPN 25.31 20.15 15.23 53.21 36.72 25.30

ACL 31.64 24.17 20.01 31.64 24.17 20.01

SCDM - 26.11 21.17 - 40.16 32.18

CBP - 27.31 24.79 - 43.64 37.40

2D-TAN 47.59 37.29 25.32 70.31 57.81 45.04

FVMR 53.12 41.48 29.12 78.12 64.53 50.00

(1.18%, 0.49%, 0.31%) and R@5, IoU={0.3, 0.5} by gains

of (0.58%, 0.29%).

Table 3. Comparison results on ANetCap.

Method
R@1 R@5

IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

TMLGA 51.28 33.04 19.26 - - -

VSLNet 63.16 43.22 26.16 - - -

LGI 58.52 41.51 23.07 - - -

DRN - 45.45 24.36 - 77.97 50.30

CTRL - 14.00 - - - -

QSPN - 27.70 13.60 - 71.85 45.96

RWM-RL - 36.90 - - - -

SCDM 54.80 36.75 19.86 77.29 64.99 41.53

CBP 54.30 35.76 17.80 77.63 65.89 46.20

2D-TAN 59.45 44.51 26.54 85.53 77.13 61.96
FVMR 60.63 45.00 26.85 86.11 77.42 61.04

Results on Charades-STA. Since existing approaches sev-

erally adopt different types of visual features, we utilize d-

ifferent features for a fair comparison. As shown in Table 4,

for VGG features, our method outperforms the state-of-the-

art methods on most metrics. When using C3D and I3D fea-

tures, our method outperforms other methods on the metrics

R@1, IoU=0.5 and R@5, IoU=0.5 and also obtains compa-

rable results on other metrics. Compared with the state-of-

the-art two-stage methods, e.g. 2D-TAN and SCDM, our

method achieves better performance on the important met-

ric R@{1, 5}, IoU=0.5. Although VSLNet, LGI, and DRN

Table 4. Comparison results on Charades-STA.

Method Features
R@1 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

SAP VGG 27.42 13.36 66.37 38.15

SM-RL VGG 24.36 11.17 61.25 32.08

MAN VGG 41.24 20.54 83.21 51.85
2D-TAN VGG 40.94 22.85 83.84 50.35

FVMR VGG 42.36 24.14 83.97 50.15

CTRL C3D 23.63 8.89 58.92 29.52

ACL C3D 30.48 12.20 64.84 35.13

RWM-RL C3D 36.70 - - -

QSPN C3D 35.60 15.80 79.40 45.40

CBP C3D 36.80 18.87 70.94 50.19
FVMR C3D 38.16 18.22 82.18 44.96

VSLNet I3D 54.19 35.22 - -

LGI I3D 59.46 35.48 - -

DRN I3D 53.09 31.75 89.06 60.05
SCDM I3D 54.44 33.43 74.43 58.08

FVMR I3D 55.01 33.74 89.17 57.24

obtain better results than ours on some metrics, they adop-

t a temporal location regression strategy while our method

only uses fixed proposals. We leave this strategy as future

work. In addition, VSLNet and LGI can only regress one

temporal location for VMR, which is not suitable enough in

practical scenarios.

4.3. Further Remarks
To better understand our algorithm, we conduct detailed

ablation studies on the TACos dataset.

Importance of our proposed Fine-grained Semantic Ex-
tractor. In our proposed FVMR framework, the semantic

role labeling module is adopted for fine-grained semantic

extraction. Note that the previous approach, HGR [11], also

adopted this module to perform cross-modal video retrieval.

However, HGR separately utilizes each node in the seman-

tic role graph for cross-modal matching and ignores to ex-

plicitly model the phrase-level structures, while our pro-

posed hierarchical semantic-guided attention module can
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Table 5. Ablation studies on TACos.

Model Variants
R@1 R@5

IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

HGR 51.25 38.55 26.50 76.96 62.78 47.35

FVMR(w/o. SD) 48.42 38.68 27.30 74.10 60.58 48.00

FVMR(p+ q) 53.25 42.12 30.30 77.38 64.97 51.60

FVMR(+FeatDist) 53.67 42.56 29.34 78.52 65.01 51.12

FVMR 53.12 41.48 29.12 78.12 64.53 50.00

leverage the phrase-level sub-trees for more comprehensive

semantic modeling. To verify the effectiveness, we adapt H-

GR for the VMR task, i.e. training the learned hierarchical

textual embeddings for cross-modal query-moment match-

ing by using Eq.(13) in [11]. HGR achieves R1@0.1,0.3,0.5

of 51.25%, 38.55%, 26.50% on TACos. Compared with H-

GR, our FVMR obtains 1.16%-2.93% absolute gains.

Importance of the Fine-grained Semantic Distillation.
To investigate the effect of the semantic distillation, we de-

sign a baseline FVMR(w/o. SD) that removes the sematic

distillation loss (Eq. (9)) during model training. From Ta-

ble 5 we can find that our full model FVMR outperforms

the FVMR(w/o. SD) by absolute gains of (4.70%, 2.80%,

1.82%) on R@1 metric and (4.02%, 3,95%, 2.0%) on R@5

metric. The results validate the importance of transferring

knowledge from fine-grained semantic structures. Anoth-

er observation is that FVMR(w/o. SD) obtains better per-

formance than 2D-TAN. This is because the semantic in-

formation can still facilitate the learning of robust momen-

t features by optimizing the video moment retrieval loss

Lce(q,y).

How about Fusing p and q? In our framework, two types

of matching scores can be obtained: (1) the matching score

q from the fine-grained semantic extractor, which serves as

the teacher in distillation. (2) the matching score p, which

is utilized for fast moment retrieval. To investigate the per-

formance of fusing p and q in VMR, we design a base-

line FVMR(p + q), which employs the average of p and

q as the final results. From Table 5 we can observe that

FVMR(p+q) achieves higher performance because it lever-

ages both types of information from common space learning

and cross-modal interaction. However, calculating q costs

about 35 ms in our experiments, which is not suitable for

fast VMR. As a result, it is advisable to directly utilize p
during inference, which also has favorable performance.

Effect of D. We investigate the effect of D, which is the di-

mension of the learned moment-query common space. In-

tuitively, a larger D will result in a more discriminative

and comprehensive common space. However, a too-large

D leads to a high computational burden and may result in

model overfitting. As shown in Figure 3(a), a moderate val-

ue of D obtains the best performance.

Number of Bi-LSTM Layers. Theoretically, a deeper net-

work will enhance the feature learning process, thus im-

proving the model robustness. However, as shown in Fig-

ure 3(b), we observe that adding more layers does not boost

the performance. The reason is that stacking many layers

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

R1@0.1 R1@0.3 R1@0.5

D=128 D=256 D=512 D=1024

(a) Common space dimension D

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

R1@0.1 R1@0.3 R1@0.5

(b) Number of Bi-LSTM layers

Figure 3. Parameter analysis of common space dimension D and

the number of Bi-LSTM layers.

can result in the overfitting problem. In addition, more lay-

ers lead to higher computational costs. As a result, we set

the number of layers to a moderate value of 2.

Regularization on the Textural Feature Space. There is a

simple alternative that replaces the matching score distilla-

tion with textual feature discrepancy minimization, i.e., per-

forming feature distillation between u and s. In our exper-

iments, we find that using the feature distillation achieves

similar performance. Inspired by this, we design a baseline

FVMR(+FeatDist), which jointly uses both types of distil-

lation in our framework. As shown in Table 5, the base-

line obtains a performance improvement (0.2%-1.1%). In-

tuitively, the two constraints can be viewed as distribution-

level distillation and single feature-level distillation, which

complement each other. We leave the exploration of ad-

vanced distillation strategies as our future work.

5. Conclusions
This paper introduces the fast video moment retrieval

task that aims to retrieve moments efficiently and accurate-

ly. To this end, a fine-grained semantic distillation frame-

work is designed, which learns a moment-query common

space by transferring knowledge from additional semantic

structures. During inference, efficient vector operations are

conducted in the common space for fast video moment re-

trieval. In the future, to improve the test speed and save the

storage space of video features, cross-modal hashing and

model compression strategies could be considered. In addi-

tion, for the sake of higher performance, we aim to leverage

a more effective fusion module φfuse to learn semantic fea-

ture interaction, such as co-attention and transformer. We

believe that fast VMR will significantly facilitate the devel-

opment of relevant applications in our daily life.
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