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Abstract

The latest heuristic for handling the domain shift in un-
supervised domain adaptation tasks is to reduce the data
distribution discrepancy using adversarial learning. Recent
studies improve the conventional adversarial domain adap-
tation methods with discriminative information by integrat-
ing the classifier’s outputs into distribution divergence mea-
surement. However, they still suffer from the equilibrium
problem of adversarial learning in which even if the dis-
criminator is fully confused, sufficient similarity between
two distributions cannot be guaranteed. To overcome this
problem, we propose a novel approach named feature gra-
dient distribution alignment (FGDA)1. We demonstrate the
rationale of our method both theoretically and empirically.
In particular, we show that the distribution discrepancy can
be reduced by constraining feature gradients of two do-
mains to have similar distributions. Meanwhile, our method
enjoys a theoretical guarantee that a tighter error upper
bound for target samples can be obtained than that of con-
ventional adversarial domain adaptation methods. By inte-
grating the proposed method with existing adversarial do-
main adaptation models, we achieve state-of-the-art perfor-
mance on two real-world benchmark datasets.

1. Introduction
Deep Neural Networks (DNNs) have achieved impres-

sive performance for various applications such as image
classification [12, 16], object detection [11, 26] and seman-
tic segmentation [21, 24]. However, DNNs may not gener-
alize well on new data due to the data distribution shift prob-
lem which manifest in many different ways, such as sample
selection bias [5], class distribution shift [19], and covariate
shift [29]. Unsupervised Domain Adaptation (UDA) aims
to address domain shift with access to labeled source data

*Corresponding author: Kaizhu Huang (kaizhu.huang@xjtlu.edu.cn).
1The codes is available at https://github.com/gzqhappy/FGDA.

Figure 1. Illustration of Feature Gradient Distribution Align-
ment (FGDA). (a)-(c): When features of two domains distribute
very differently due to large domain shift, their gradients in non-
overlapping regions may disperse in distinct parts of the highly
complicated decision boundary, which leads to a large gradient
distribution discrepancy. With the gradient alignment, the over-
lapping region is enlarged to reduce the domain shift. (a)-(b):
Domain shift measured by the conventional adversarial domain
adaptation method tends to be zero when two mean features are
close enough. In this case, conventional methods fail to further
reduce the domain shift. (b)-(c): Even if the distance between two
mean features is small, the domain shift measured by our method
(in terms of feature gradient discrepancy) can be still observed due
to obvious different gradients in non-overlapping regions. FGDA
can certificate a further domain shift reduction.

and unlabeled target data [8]. The fundamental objective is
to infer the domain-invariant representations [32].

Among current deep architectures, the adversarial do-
main adaptation (ADA) approaches [25, 22, 30, 15] are
widely investigated and achieve state-of-the-art perfor-
mance. As one seminal work, Domain-Adversarial Neu-
ral Networks (DANN) integrates adversarial learning and
domain adaptation into a mini-max game [8]. A domain
discriminator is learned to distinguish the source distribu-
tion from the target one, while a deep classification model
learns transferable representations that are indistinguishable
for the domain discriminator. Recent successful methods
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revealed that a discriminative distribution alignment enables
a better domain adaptation [25, 22, 30, 15, 27, 38]. The key
idea of those studies is leveraging the discriminative infor-
mation delivered by the classifier’s outputs or predictions
for target discriminative representation learning.

Although the discriminative information can help pro-
mote the performance on domain adaptation, we argue that
the domain shift still presents one major challenge which
limits further performance improvement. Such drawback
comes from the equilibrium challenge of adversarial learn-
ing [2] in which even if the discriminator is fully confused,
there is no guarantee that two distributions are sufficiently
similar, as shown in Fig. 1 (a) and (b).

To tackle this problem, we propose a novel method
called feature gradient distribution alignment (FGDA) in
order to further reduce domain shift. Specifically, FGDA
learns to reduce distribution discrepancy of feature gradi-
ent between two domains in the manner of the adversarial
learning between the feature extractor and the discriminator.
When the equilibrium is reached, the value of the feature
distribution discrepancy can be minimal.

We borrow the insight of adversarial perturbations from
[10, 1, 37] to simply describe the principle of the proposed
method. Input gradients of samples can be considered as
sensitive directions which perturb the input least in order
to change the model’s output most [1]. Intuitively, the fea-
ture gradient direction of one sample may tend to point to
the region of its nearest decision boundary. Furthermore,
feature gradients apart from each other are probably differ-
ent significantly since they point to the distinct part of the
highly complicated decision boundary (as typically seen in
DNNs); the feature gradients closer to each other may share
a similar direction. Therefore, aligning the feature gradi-
ents encourages learning the latent representations which
enforce the two domain distributions to stay closer. As such,
the feature distribution discrepancy can be reduced. For the
merit of our method, compared with conventional domain
adaptation methods, our method can further reduce the do-
main shift even if the mean features of two domains are
close to each other as shown in Fig. 1, which is also theo-
retically analyzed as later seen in Section 3.7. Importantly,
we further prove that aligning the feature gradients leads to
a tighter upper bound than conventional adversarial domain
adaptation methods with respect to the expected error on
target samples.

In a nutshell, our key contributions are listed as follows:

• We propose a novel method FGDA where adversarial
learning is adopted to align the feature gradients for re-
ducing distribution discrepancy. Compared with con-
ventional methods, our model can further reduce the
domain shift even if the means of the source and target
distributions are close to each other.

• We prove the efficacy of our method both theoreti-
cally and empirically. In particular, we show that our
method can obtain a tighter upper bound than conven-
tional domain adaptation methods.

• We conduct extensive experiments to show that the
proposed approach is not only able to reduce domain
discrepancy but also offers improvement consistently
over current feature-based adversarial domain adap-
tation methods. Particularly, our approach achieves
state-of-the-art performances on tasks of UDA.

2. Related Work
The adversarial domain adaptation (ADA) approaches

[7, 34, 35], which not only provides theoretical guarantee
but also achieves state-of-the-art performance, are widely
studied recently. Inspired by Generative Adversarial Net-
works (GANs) [9], these methods learn a domain-invariant
feature in a mini-max game, where a feature extractor
learns to fool a domain discriminator while the discrimina-
tor struggles to be not fooled [8]. On par with these feature-
level approaches, generative pixel-level adaptation models
perform distribution alignment in the raw pixel space, by
translating source data to a target domain using image-to-
image translation techniques [40, 20, 14, 28].

Despite their general efficacy for various tasks ranging
from classification [7, 35, 20] to segmentation [28, 33, 14],
they have to face the equilibrium problem of adversarial
learning [2]. As a result, when complex multi-modal struc-
tures of data distributions exists, vanilla ADA methods may
fail to capture such multi-modal structures for a discrim-
inative alignment of distributions without mode mismatch
[22].

To further reduce the domain shift, recent successful
ADA methods are devoted to achieving a discriminative dis-
tribution alignment. One of the widely studied methods
is named class-conditional ADA conditioning the domain
classifier on features and corresponding predictions simul-
taneously [25, 22, 30, 15]. These approaches aim to approx-
imate a joint distribution alignment between two domains to
enable discriminative target features. Another line of ADA
researches relies on two classifiers to measure the distri-
bution discrepancy of two domains. The disagreement of
two classifiers’ predictions is utilized for detecting the non-
discriminative features which do not clearly belong to some
categories. By playing a mini-max game with a feature ex-
tractor, two classifiers optimize the decision boundaries for
alleviating intra-class domain discrepancy [27, 38].

Although the above efforts promote a better distribution
alignment, the inevitable equilibrium challenge of adver-
sarial training still limits the performance of current ADA
methods. To alleviate this problem, we take a further step
on this line of research and propose a feature gradient dis-
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tribution alignment method which can certificate a further
distribution discrepancy reduction with a theoretical tighter
error upper bound. It is noted that a concurrent work [6]
coincides with our idea and investigates a similar approach.
We independently exploit gradient alignment but from a dif-
ferent perspective and with different theoretical analysis.

3. Methodology
3.1. Preliminaries

For the vanilla unsupervised domain adaptation (UDA)
task, we are given ns labeled examples {(xs

i , y
s
i )}

ns

i=1 from
source domain Ds where xs

i ∈ Xs, y
s
i ∈ Ys and nt unla-

beled examples
{
xt
j

}nt

j=1
from the target domain Dt where

xt
j ∈ Xt. The goal of UDA is to learn a classification model

to predict target domain labels
{
ytj
}nt

j=1
where ytj ∈ Yt. The

whole classification model, composed of a feature extractor
G(·) and task classifier C(·), is expected to ensure a low tar-
get risk E(xt,yt)∼Dt

[L (C (G (xt)) , yt)] for a classification
criterion L(·, ·).

The feature extractor G(·) encodes xs and xt into a
common feature space by fs = G (xs), f t = G (xt),
where G(·) can be an arbitrary type of neural networks, and
fs,f t ∈ RD represent the D-dimensional feature vector
for source and target domain. For a K-way classification
task, fs and f t are fed into task classifier for prediction
zs = C (fs), zt = C

(
f t

)
, where zs, zt ∈ Rk are the

score vectors. With the true labeled data in source domain,
the classification model is trained by minimizing the stan-
dard cross-entropy loss:

Lsrc = −Exs∈Xs,ys∈Ys

∑K
k=1 qk log δk (z

s) , (1)

where the δk(z
s) =

exp(zs
k)∑

l exp(zs
l )

represents the kth element

in the softmax output of a vector zs, and q is the one-of-
K encoding of ys where qk is ’1’ for the correct class and
’0’ for the rest. The goal is to predict labels of the target
samples denoted as ŷt = argmaxk(δ(z

t
k)).

3.2. Framework Overview

We propose a framework named feature gradient dis-
tribution alignment (FGDA) for reducing domain shift, as
shown in Fig. 2. Our core component is the part of adver-
sarial learning for aligning feature gradient distributions of
two domains where the feature extractor and gradient dis-
criminator compete with each other. To further promote our
proposed method, we propose the Jacobian regularization
term ∥J(fs)∥2F and self-supervised pseudo-labeling mech-
anism to improve the model generalization and pseudo-
labels quality respectively. Moreover, we will indicate how
to deploy our method on conventional ADA methods, e.g.
DANN [8] CDAN [22] and MDD [38], for further reducing
distribution discrepancy.

Figure 2. Structure of Feature Gradient Distribution Alignment.
The whole structure is composed of several mechanisms: adver-
sarial learning (classifier, gradient discriminator, and feature ex-
tractor), self-supervised pseudo-labeling, and Jacobian regulariza-
tion ∥J(fs)∥2F where the last two mechanisms are used to pro-
mote adversarial learning.

3.3. Feature Gradient Distribution Alignment

To obtain the feature gradients of two domains, we need
to compute the loss for target samples. During the train-
ing stage, we use classification model’s predictions ŷt as
online pseudo-labels to calculate the loss for target sample
Ltgt (C (G (xt)) , ŷt). Note that the losses in the target do-
main are only used for gradient calculation rather than train-
ing the whole classification model.

With the back-propagation mechanism, the feature gra-
dients vectors in source and target domain can be computed
as:

g(xs, G) :=

[
∂Lsrc

∂G(xs)1
· · · ∂Lsrc

∂G(xs)d
· · · ∂Lsrc

∂G(xs)D

]
, (2)

g(xt, G) :=

[
∂Ltgt

∂G(xt)1
· · ·

∂Ltgt

∂G(xt)d
· · ·

∂Ltgt

∂G(xt)D

]
, (3)

where G(xs)d and G(xt)d represent the dth elements of
the feature vectors (fs

d and f t
d are used for convenience).

g(xs, G) and g(xt, G) represent corresponding gradient
vectors (gs and gt are used for convenience).

To achieve the goal of gradient distribution alignment,
adversarial learning is adopted where the feature extrac-
tor and the discriminator (served as divergence estimator)
compete with each other. Specifically, the discriminator
is to predict the domain labels for the feature gradients of
the source and target domain while the feature extractor
learns to confuse the discriminator. When the equilibrium
is reached, the minimal value of the feature distribution dis-
crepancy is achieved.

The main objective of feature gradient alignment in our
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proposed method can be formulated as:

min
G

max
Dg

Ladv = Ext∈Xt

[
logDg

(
g(xt, G)

)]
(4)

+ Exs∈Xs [log (1−Dg (g(x
s, G)))]

where Dg(·) is the discriminator which outputs the proba-
bility that a gradient vector comes from the target domain.

The principle behind the proposed method can be seen in
Fig. 3. In the beginning, due to the large domain shift, two
sets of points from different domains are distributed very
differently and feature gradients point to different parts of
the highly complicated decision boundary in high dimen-
sional space. Thus, most feature gradients of the two do-
mains are obviously different leading that the feature gra-
dient distribution discrepancy is large. Normally, the fea-
tures which are close to each other or in the small region
share similar gradients. Therefore, gradient alignment can
enforce these two sets of points to move towards each other
and stay in the small regions, e.g. red dashed circles in Fig. 3
where the gradients are similar. In other words, the domain
shift can be reduced. To further show domain shift leads to
large feature gradient discrepancy, we provide an analysis
in Fig. 3, where the mean gradient distance for each class
between two domains are plotted (note that normalization
is applied, thus the distance reflects the variance of gradient
direction). The plot shows gradient distribution discrepancy
is decreased gradually during feature gradient alignment.

In comparison, for conventional feature-based ADA
methods, as shown in Fig. 1, the domain shift is mea-
sured by the discriminator Dg: dis = |Ef∼D̃S

Dg(f) −
Ef∼D̃T

Dg(f)| where D̃S and D̃T are induced distribu-
tions in feature space of Ds and Dt. There exists a con-
stant α such that dis = α|Dg(Ef∼D̃S

f)−Dg(Ef∼D̃T
f)|.

When the mean features Ef∼D̃S
f and Ef∼D̃T

f are close,
the domain shift measured by conventional method dis
tends to be zero such that the corresponding gradients back
propagated to feature extractor tends to be zeros. There-
fore, the domain shift cannot be further reduced. Dif-
ferently, for our method, the domain shift is measured
by: disour = |Ef∈D̃S

Dg(∇fL) − Ef∈D̃T
Dg(∇fL)|.

Similarly, there exists a constant β such that disour =
β|Dg(Ef∼D̃S

∇fL) − Dg(Ef∼D̃T
∇fL)|. According to

Fig. 1, even if the distance between two mean features is
small, the domain shift measured by our method disour
can be still large due to obvious different gradients in non-
overlapping regions. Therefore, the domain shift can be fur-
ther reduced.

3.4. Feature-level Jacobian Regularization

Several works showed that the discriminative features
can help improve the performance of distribution align-
ment [30, 27, 35]. To learn more discriminative features,
in this paper, the gradient regularization method is utilized
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Figure 3. Geometric interpretation: Gradient alignment enforces
features of two domains to stay in the small regions (red dashed
circles) where the gradients are similar. Numerical analysis: Gra-
dient discrepancy analysis on D→A task of office-31.

for maximizing the classification margin [23, 13]. To this
end, Hoffman et al. proposed to minimize the norm of an
input-output gradient matrix, named Jacobian matrix [13].
Similarly, we adopt the Jacobian regularization at the fea-
ture level so that the feature extractor can learn more dis-
criminative features far away from the decision boundary
and the classifier can enlarge the classification margin si-
multaneously.

The input-output Jacobian matrix is defined as:

Jk;d(f
s) ≡ ∂zk

∂fs
d

(fs), (5)

where zsk and fs
d denote the k-th score value zs and d-th

element of feature fs in source domain. Then, Jacobian
regularization is defined as:

min
G,C

Ljr = ∥J(fs)∥2F ≡

∑
d,k

[Jk;d(f
s)]

2

 . (6)

3.5. Self-supervised Pseudo-labeling

Although employing online pseudo-labels predicted by
the model for gradient alignment is feasible, the incorrect
predictions will produce a sub-optimal gradient distribution
that prevents the gradient alignment from achieving the op-
timal performance.

To obtain high-quality pseudo-labels in the target do-
main, we integrate an unsupervised approach, capturing
the target distributions of different classes, termed self-
supervised pseudo-labeling [18] into our framework. Af-
ter the initial training stage, this strategy will be executed
for every fixed number of iterations for generating an of-
fline pseudo-label set Ỹt (offline pseudo-labels of the cur-
rent sample are predicted with the feature centroids). Once
offline pseudo-labels are obtained, ỹt ∈ Ỹt will replace the
online pseudo-label (online pseudo-labels are predictions
for the current samples with classifier) ŷt for feature gra-
dient calculation of each target sample.
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The centroid of feature distribution for each class is also
considered as one prototype representation and its distri-
bution should emerge in the region where a large num-
ber of samples are predicted confidently by the classifier.
The update of the centroid is similar to k-means clustering
by weighting each target feature with the classifier’s confi-
dence:

c
(0)
k =

∑
xt∈Xt

δk

(
C̃(G̃(xt))

)
G̃(xt)∑

xt∈Xt
δk

(
C̃(G̃(xt))

) , (7)

where G̃(·) and C̃(·) have been trained in the previous it-
eration to predict online pseudo-labels. The offline pseudo-
label of each target sample is assigned with the label of the
nearest centroid:

ỹt = argmin
k

Mf

(
G̃ (xt) , c

(0)
k

)
, (8)

where Mf (a, b) is cosine distance metric between a and b.
Finally, the category centroids will be determined according
to new pseudo labels:

c
(1)
k =

∑
xt∈Xt

I (ỹt = k) G̃(xt)∑
xt∈Xt

I (ỹt = k)
,

ỹt = argmin
k

Mf

(
G̃
(
xt

)
, c

(1)
k

)
,

(9)

where I is a binary indicator function. When ỹt = k, the
function outputs 1. Within Eq. 9, the class centroids and
pseudo-labels are alternately updated for multiple rounds.
As observed practically, even these parameters are updated
once, it can still enhance the quality of pseudo-labels.

3.6. Overall Learning Objective

To sum up the previous components, we present the total
training loss in the following. At the initial training stage,
the model is trained with feature gradient distribution align-
ment and feature-level Jacobian regularization. The corre-
sponding objective can be formulated as:

min
G,C

max
Dg

(Lsrc + λ1Ladv + λ2Ljr) , (10)

where λ1, λ2 ≥ 0 are two balancing parameters. Initially,
the online pseudo-labels ŷt are employed for calculating
feature gradient gt of target samples to obtain the Ladv of
Eq. 4. After a fixed number iteration, the self-supervised
pseudo-labeling involves in training. We then change Ladv

to L̃adv where gt is given by offline pseudo-labels ỹt and
Ltgt (·, ỹt). In summary, the complete loss is shown as:

min
G,C

max
Dg

LFGDA = Lsrc + λ1L̃adv + λ2Ljr. (11)

To show the advantage of our method, we couple pro-
posed FGDA with some conventional feature-based ADA

methods, such as DANN [8], CDAN [22] and MDD [38].
The simple way for the combination is adding a gradient
discriminator directly and reusing their architectures. The
combined training loss is formulated as:

LFGDA+fada = Lsrc +λ1L̃adv+λ2Ljr+λ3Lfada, (12)

where Lfada is the adversarial loss of feature-based ADA
model and λ3 is its balancing parameter.

3.7. Model Analysis

In this section, we provide both the theoretical and em-
pirical analysis for the proposed FGDA method. We first
consider the feature f = G(x) and a family of source clas-
sifiers C on a fixed representation space F , and hypothesis
space H respectively. The error of a hypothesis C ∈ H
on source domain is ϵS(C) = Ef∼D̃S

[C(f) ̸= y], where
D̃S denotes the induced feature distribution of source data
distribution DS and y is the label of feature f . The dis-
agreement between hypotheses C1, C2 ∈ H is given by
ϵS(C1, C2) = Ef∼D̃S

[C1(f) ̸= C2(f)]. To estimate dis-
tribution divergence from unlabeled data, one ideal joint hy-
pothesis that minimizes the combined error on two domains
is introduced as C∗ = argminC ϵS(C) + ϵT (C). Then, the
probabilistic bound of target error is given by

ϵT (C) ≤ ϵS + λ+ |ϵT (C,C∗)− ϵS (C,C∗)| , (13)

where λ = ϵS (C∗) + ϵT (C∗) is the error of the ideal joint
hypothesis.

To prove the efficacy of our proposed method FGDA,
we show that our method can obtain a tighter upper bound
for the target domain error than conventional domain
adaptation methods. The main theory is presented in
Theorem 1 and 2.

Theorem 1 Let G be a fixed representation function
from X to F , and H be a hypothesis space of VC-
dimension d. If a random labeled sample of size m is
generated by applying G to a Ds - i.i.d. The feature f is
drawn from D̃S or D̃T with corresponding label y. Denote
that ŨS , ŨT are the set of unlabeled samples of size m′

each, drawn from D̃S and D̃T respectively. Then with the
probability at least 1 − δ (over the choice of the samples),
for every C ∈ H:

ϵT (C) ≤ ϵ̂S(C) + λ+ d∇

(
ŨS , ŨT

)
+

4

m

√(
d log

2em

d
+ log

4

δ

)

+ 4

√
d log (2m′) + log

(
4
δ

)
m′

= const+ d∇

(
ŨS , ŨT

)
(14)
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Figure 4. Test accuracy and ∇-distance during training progress
on A→W and W→A of Office-31.

where ϵ̂S(C) is empirical error of source sam-
ples, λ is a very small constant, e represents the
base of the natural logarithm, d∇

(
ŨS , ŨT

)
=

a supDgHD

∣∣∣Ef∈ŨS
Dg(∇fL)− Ef∈ŨT

Dg(∇fL)
∣∣∣ is

the introduced ∇-distance, Dg is the discriminator and
a = 1

minC(f)∈[0,1] ∇CL(C(f),y) . Here L(·) denotes the loss
function.

Theorem 2 When a ≤ 1, our method can obtain a
tighter upper bound than traditional domain adaptation
methods:

const+ d∇

(
ŨS , ŨT

)
≤ const+ dH

(
ŨS , ŨT

)
,where

dH

(
ŨS , ŨT

)
=supDg∈HD

|Ef∈ŨS
Dg(f)−Ef∈ŨT

Dg(f)|.
Proof of Theorem 1-2 can be seen in the supplementary
document.

Theorem 1-2 show that feature gradient distribution dis-
crepancy can help bound the test error. In other words, fea-
ture gradient alignment can certificate to reduce the test er-
ror. More importantly, a tighter bound ensures the superi-
ority of our proposed method to the conventional domain
adaptation methods.

From the empirical perspective, it may however be diffi-
cult to calculate the ∇-distance directly. In this work, we
resort to the domain discriminator Dg to approximate it.
Specifically, Dg attempts to distinguish which domain fea-
ture gradient ∇fL comes from. Hg is a ∇ hypothesis space
over the feature gradient ∇fL. Hence, the domain discrep-
ancy |ϵT (C,C∗)− ϵS (C,C∗)| can be upper bounded by
∇-distance. The detail proof can be found in the supple-
mental material.

We further show the correlation between ∇-distance and
test error in Fig. 4. We consider an ideal situation where
all the feature gradients of target samples are calculated
with their true target labels. As observed, there is an ex-
plicit negative correlation between them. The decrease of
∇-distance leads that the test accuracy increases directly
for different training epochs consistently. Until the conver-

gence of ∇-distance, the accuracy of A→W and W→A are
100% and 90% respectively. It indicates that ∇-distance
is highly correlated with the test error, and aligning feature
gradient distribution between two domains is analogous to
train the model with the target pseudo-labels softly.

4. Experiments

4.1. Datasets

Office-31. Office-31 is a widely used dataset for eval-
uating visual domain adaptation algorithms. It includes
4, 652 images and 31 categories, which are collected from
three distinct domains: Amazon (A), Webcam (W), and
DSLR (D). We evaluate all the methods on six transfer tasks
A→W, D→W, W→D, A→D, D→A, and W→A.

Office-Home. Office-Home is a more challenging
dataset. It consists of 15, 500 images in 65 classes in office
and home settings. On four extremely dissimilar domains:
Artistic images (A), Clip Art (C), Product images (P), and
Real-World images (R), we evaluate all the transfer tasks.

Implementation Details. Following standard evaluation
protocols for UDA [3], all labeled source and unlabeled tar-
get instances are used as training data. For fair comparisons,
we exploit the same network structure as the compared
methods. Concretely, ResNet-50 [12] is used as the back-
bone network in all the experiments, and a linear layer fol-
lowed by the softmax function is taken as a category classi-
fier. For our gradient discriminator, it consists of two hidden
layers that are a fully connected layer followed by ReLu ac-
tivation function and BatchNorm layer, and a domain classi-
fier that linearly transforms the hidden feature and then acti-
vates it with the sigmoid function. The adversarial learning
algorithm is implemented similar to the original DANN [8],
where a reverse gradient layer is applied on feature gradi-
ents. In Eq. 11, when FGDA is examined individually, λ1 is
set to 1. When FGDA is combined with MDD [38] as shown
in Eq. 12, λ3 is fixed as 0.5, and λ1 = 1 and λ1 = 0.5
are used for Office-31 and Office-Home respectively. For
λ2, it is searched from [0.05, 0.10, 0.15, 0.20, 0.25] so as to
achieve the best results.

Method A→W D→W A→D D→A W→A Avg
ResNet-50 [12] 68.4 96.7 68.9 62.5 60.7 76.1
DANN [8] 82.0 96.9 79.7 68.2 67.4 82.2
ADDA [35] 86.2 96.2 77.8 69.5 68.9 82.9
MADA [25] 90.0 97.4 87.8 70.3 66.4 85.2
CDAN [22] 94.1 98.6 92.9 71.0 69.3 87.7
MCDDA [27] 82.6 98.9 84.3 66.2 66.3 83.0
MDD [38] 94.5 98.4 93.5 74.6 72.2 88.9
SymNets [22] 90.8 98.8 93.9 74.6 72.5 88.4
ALDA [4] 95.6 97.7 94.0 72.2 72.5 88.7
DADA [30] 92.3 99.2 93.9 74.4 74.2 89.0
DCAN [17] 95.0 97.5 92.6 77.2 74.9 89.5
GSDA [15] 95.7 99.1 94.8 73.5 74.9 89.7
FGDA 93.3 99.1 93.2 73.2 72.7 88.6
FGDA+MDD 95.1 98.7 95.4 78.1 76.5 90.6

Table 1. Accuracy (%) on Office-31 for UDA (ResNet-50)
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Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
ResNet-50 [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [22] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SymNets [39] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD [38] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
ALDA [4] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
DCAN [17] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
GSDA [15] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
FGDA 52.3 77.0 78.2 64.6 75.5 73.7 64.0 49.5 80.7 70.1 52.3 81.6 68.3
FGDA+MDD 57.1 77.5 81.0 68.4 77.2 75.9 65.8 55.8 81.0 74.3 60.5 83.6 71.5

Table 2. Accuracy (%) on Office-Home for UDA (ResNet-50)

4.2. Results

We compare the proposed method with a number of pre-
vious ADA methods. Results are reported in Table 1 and 2.
All the results of W→D on Office-31 are hidden, but partic-
ipate in the calculation of the average result, because most
of models achieve 100% on this task. MADA [25], CDAN
[22] and GSDA [15] condition on a single or multiple dis-
criminators on classifier outputs to improve DANN [8].
SymNets [39] and DADA [30] further achieve domain dis-
crimination and confusion by relying on classifier outputs
and creative adversarial learning mechanisms. MCDDA
[27] and MDD [38] consider disagreement of two classi-
fiers for alleviating intra-class distribution discrepancy. As
observed, FGDA achieves competitive results with MDD,
which indicates that applying feature gradient alignment in-
dividually is feasible for distribution discrepancy reduction.
Furthermore, FGDA+MDD outperforms the best results of
the comparison models by 0.9% on Office-31 dataset and
by 1.0% on Office-Home dataset respectively.

5. Further Analysis

5.1. Ablation Study

Our study starts with setting a non-adaptation model
as the first baseline, which simply fine-tunes RestNet-50
[12] on source data. To demonstrate the advantage of our
method towards representation-based ADA method, DANN
[8], CDAN-E [22] and MDD [38] will be respectively com-
bined with our method and considered as the other base-
lines. To investigate how high-quality pseudo-labels would
improve the performance, we remove the self-supervised
pseudo-labeling (SPL) method from our approach; to ex-
amine performance of the gradient regularization, we also
remove the feature-level Jacobian regularization (FJR); to
validate the feasibility of feature gradient alignment for re-
ducing the distribution divergence, we remove both FJR and
SPL. To observe the influence of loss function, when only
feature gradient alignment is applied, the loss function for
calculating gradients in the target domain is changed from
cross-entropy to conditional entropy minimization (Ent.).

As reported in Table 3, with the same network structure,
FGDA (w/o FJR, SPL) improves over DANN, showing that
employing gradient as the representation is not only able to
reduce distribution divergence, but also results in a better
distribution alignment. FGDA (w/o FJR) and FGDA (w/o
SPL) are observed to be able to improve over FGDA (w/o
FJR, SPL) significantly , which demonstrates the effective-
ness of our each component. Meanwhile, FGDA (w/ Ent.)
applied on DANN still leads to significant performance gain
though not as evident as FGDA+DANN.

Regarding FGDA, it leads to comparable performance
with MDD and outperforms DANN and CDAN in a large
margin. Moreover, when FGDA is combined with DANN,
CDAN-E, and MDD respectively, the results confirm that
unitizing gradient as representation for measuring the distri-
bution divergence can indeed improve representation-based
ADA consistently.

Method A-W D-W A-D D-A W-A Avg
ResNet-50 [12] 68.4 96.7 68.9 62.5 60.7 76.1
DANN [8] 82.0 96.9 79.7 68.2 67.4 82.2
MDD [38] 94.5 98.4 93.5 74.6 72.2 88.9
CDAN-E [22] 94.1 98.6 92.9 71.0 69.3 87.7
FGDA 93.3 99.1 93.2 73.2 72.7 88.6
w/o FJR 93.5 98.6 93.2 72.7 71.8 88.3
w/o SPL 91.3 98.6 89.8 69.1 67.2 86.0
w/o FJR, SPL 89.2 98.0 89.2 69.0 64.8 85.0
w/ Ent. +DANN 94.8 98.4 90.6 71.6 70.1 87.6
FGDA+DANN 92.6 99.1 94.2 73.9 73.7 88.9
FGDA+CDAN-E 92.6 98.7 95.0 74.7 74.4 89.2
FGDA+MDD 95.1 98.7 95.4 78.1 76.5 90.6

Table 3. Accuracy (%) on Office-31 for UDA (ResNet-50)

5.2. Visualization Analysis

To have an intuitive understanding of FGDA and show
that gradient alignment can surely help reduce the distribu-
tion discrepancy, we visualize the features and their gradi-
ents of the source and target domains on Office-31 with t-
SNE [36]. As seen in Fig. 5, in ResNet-50 (source only),
both feature and gradient distributions of source and tar-
get domains are distributed differently due to the large do-
main shift. When MDD is employed to align feature dis-
tributions, the gradient distribution discrepancy is still ob-
vious, even though the feature distribution discrepancy has
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(a) Source only (b) MDD (c) FGDA+MDD

(d) Source only (e) MDD (f) FGDA+MDD

Figure 5. t-SNE visualizations of feature distribution and gradi-
ent distribution for source only model (RestNet-50), MDD and
FGDA+MDD on task A→W of Office-31. Blue and red points
denote the source and target domain samples respectively.

already reduced. By contrast, FGDA+MDD shows superi-
ority over MMD with smaller distribution discrepancies for
both the features and gradients. Moreover, it is observed
that the target features are as discriminative as source fea-
tures, where the target distribution is inter-class separated
and intra-class clustered after feature gradient alignment is
conducted. Note that the visualization results for CDAN-E
[22], FGDA (w/o FJR, SPL), and FGDA are provided in the
supplementary document.

5.3. Sensitivity Analysis

In Table 4, we empirically show the influence of the
balancing parameter λ2 of FJR in FGDA (w/o SPL). By
choosing λ2 from [0.05, 0.10, 0.15, 0.20, 0.25], all results
of Office-31 are presented for sensitivity analysis. Although
there is not a consistent trend for setting λ2, we observe that
the chosen parameter range, from 0.05 to 0.25, could gen-
erally cover most of the best results. Sensitivity analysis on
other parameters λ1 and λ3 can be seen in the supplemen-
tary document.

λ2 A-W D-W A-D D-A W-A
0.005 85.0 98.6 87.1 68.2 65.7
0.010 91.3 98.5 88.0 68.9 67.0
0.015 89.4 98.6 88.4 68.9 67.0
0.020 87.4 98.5 88.2 69.1 67.2
0.025 89.8 98.6 89.8 68.8 67.0

Table 4. Accuracy (%) of FGDA (w/o SPL) on Office-31 (ResNet-
50)

To investigate how pseudo-label noise in the tar-
get domain affects the performance, a case study for
FGDA+MDD is conducted in Fig. 6. Notably, FJR, SPL,
and MDD are applied after 900 iterations. Initially, even
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Figure 6. Accuracy of model prediction and pseudo-labelling of
target domain on Office-31 for FGDA+MDD.

without high-quality pseudo-labeling, gradient alignment
appears effective as well. Once SPL is involved, a more ac-
curate gradient distribution of the target domain promotes
the performance obviously. When training with gradient
alignment, a more separable feature space for target sam-
ples is obtained so that the accuracy of pseudo-labeling and
model prediction increase alternately. Thus, gradient align-
ment can benefit from pseudo-labeling and vice versa. Ad-
ditionally, there are other methods to achieve high quality
pseudo-labels, such as the temporal ensembling approach
named mean teacher model [31].

6. Conclusion
In this work, we show that present adversarial domain

adaptation methods have an inherent drawback in which
even if the discriminator is fully confused, sufficient sim-
ilarity between two distributions cannot be guaranteed. To
cope with this problem, we propose a novel method named
feature gradient distribution alignment which can certifi-
cate a further distribution discrepancy reduction between
the source and target domain. We show that the distribu-
tion discrepancy can be reduced by aligning feature gradi-
ents theoretically and empirically. More importantly, our
proposed novel framework enjoys a theoretical guarantee
that a tighter error upper bound on the target domain can be
attained than that of the existing adversarial domain adapta-
tion methods. Extensive experiments validate that our pro-
posed novel framework can achieve state-of-the-art perfor-
mance on two real-world benchmark data quantitatively and
qualitatively.

Acknowledgement
We would like to thank Dr. Rui Zhang from School of

Science, XJTLU for the valuable discussion as well as the-
oretical analysis on the research in this paper. The work
was partially supported by the following: National Natu-
ral Science Foundation of China under no.61876155 and
61876154; Jiangsu Science and Technology Programme
(Natural Science Foundation of Jiangsu Province) under no.
BE2020006-4B, K20181189, BK20181190; Key Program
Special Fund in XJTLU under no. KSF-T-06, KSF-E-26.

8944



References
[1] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus
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