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Abstract

The classification and regression head are both indis-
pensable components to build up a dense object detector,
which are usually supervised by the same training samples
and thus expected to have consistency with each other for
detecting objects accurately in the detection pipeline. In
this paper, we break the convention of the same training
samples for these two heads in dense detectors and explore
a novel supervisory paradigm, termed as Mutual Supervi-
sion (MuSu), to respectively and mutually assign training
samples for the classification and regression head to en-
sure this consistency. MuSu defines training samples for
the regression head mainly based on classification predict-
ing scores and in turn, defines samples for the classification
head based on localization scores from the regression head.
Experimental results show that the convergence of detec-
tors trained by this mutual supervision is guaranteed and
the effectiveness of the proposed method is verified on the
challenging MS COCO benchmark. We also find that tiling
more anchors at the same location benefits detectors and
leads to further improvements under this training scheme.
We hope this work can inspire further researches on the in-
teraction of the classification and regression task in detec-
tion and the supervision paradigm for detectors, especially
separately for these two heads.

1. Introduction
Object detection has been drawing interest from re-

searchers for decades as one of the fundamental visual tasks
in the computer vision community, especially with the rise
of convolutional neural networks (CNNs). The commu-
nity has witnessed the fast evolution of both the method-
ology and the performance of detectors from region-based
ones [8, 24, 10, 1, 4, 18], to one-stage dense ones [20, 23,
22, 29, 37, 32] and then to end-to-end transformer-based
detectors [3, 41]. Among these methods, one-stage detec-
tors, also known as dense detectors, are favored in terms
of both the speed and accuracy, as well as the fast conver-
gence due to their tiling anchors densely to cover objects
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Figure 1. Inconsistency from the classification head and re-
gression head between spatial distributions of classification confi-
dence and IoUs with ground truth predicted in a converged FCOS
detector and our MuSu-trained detector. The brighter the pixel
looks, the higher the value stands for. The classification confi-
dence is a product of the output of the classification head and cen-
terness estimation as FCOS does in the NMS process. Note that
this input image is a training image in MS COCO and the con-
verged FCOS still suffers the inconsistency between classification
and regression head. Our MuSu alleviates this inconsistency.

of various scales and aspect ratios and directly predicting
bounding boxes with labels with these anchors.

As detection task is about classifying and localizing
simultaneously, object detectors are expected to produce
bounding boxes with both correct classification labels and
fine localization, and of course dense detectors are no ex-
ceptions. For a dense detector, these two tasks are usually
done with specialized classification and regression heads.
For the same input feature map from the backbone network,
these two heads are expected to function differently: the
classification head translates it into classification scores in-
variant with small shifts while the regression head trans-
forms it to shift-equivalent localizing offsets from anchors
to bounding boxes, which incurs intrinsic inconsistency be-
tween these two tasks.

An accurate dense object detector is supposed to produce
high-quality bounding boxes with correct labels, which re-
quires that these two heads of different functionalities coor-
dinate at the same spatial location of final outputs. In other
words, converged detectors should ensure spatial consis-
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tency on where the maximum classification and localizing
scores appear for an object. However, even for a converged
detector, this goal is hard to achieve and the maximum clas-
sification score and the most accurate localizing box for an
object frequently appear at different locations for a training
image as the input image depicted in Figure 1. This incon-
sistency hurts the performance of final models in the current
detection pipeline, especially in the process of the common
post-processing non-maximum suppression (NMS), which
only keeps the box with the maximum classification score
among overlapping ones without the consideration of local-
izing accuracy. As a result, bounding boxes with finer lo-
calization but lower classification scores are suppressed and
such detectors lead to inferior performance.

To tackle this problem, previous work focuses on input
features and network structures of these heads and disentan-
gles the classification and regression heads from feature or
structural perspectives. Different from those, we delve into
this problem from the view of the supervision for these two
heads, specifically, the definition of the training samples re-
spectively for both them, and alleviate this inconsistency by
proposing mutual supervision (MuSu) for dense detectors.

MuSu separates the definition of training samples for
classification and regression head and then makes them
dependent on each other mutually. As illustrated in Fig-
ure 2, training samples are not shared between two heads.
Training targets for classification are adaptively determined
by IoU (Intersection over Union) scores between predicted
boxes and ground-truth boxes from the regression head.
Alike, training samples for the regression head are defined
by classifying scores from the classification head. Next,
MuSu translates scores of these training samples for these
two heads to soft targets by associating weights to losses of
each spatial location. By this means, MuSu aims to force
the consistency between these two heads by the mutual as-
signment in the training phase. Under this mutual supervi-
sion scheme, MuSu also enjoys the advantage of the training
samples adaptively emerging from the network itself, which
are refrained from being hand-crafted by expert knowledge.
Moreover, MuSu is exempt from any hand-crafted geomet-
ric prior and also get rids of subtle treatments to different
pyramid levels. In this sense, MuSu makes a big step fur-
ther to fully adaptive sample assignment and unleashes the
power of a detector more comprehensively.

We carry out extensive ablation experiments on MS
COCO dataset [21] to validate the effectiveness of our
proposed MuSu method. In particular, MuSu boosts the
FCOS detector with ResNet-50 backbone to a 40.6 AP in
the COCO validation set under the common 90k training
scheme without the sacrifice of the inference speed. More-
over, we investigate that tiling more anchors at the same
location will benefit the detector under this mutual supervi-
sion scheme, pushing to 40.9 AP over the competitive one-

anchor counterpart. We argue that our method of mutual su-
pervision for the classification and regression head exploits
multiple anchor settings more fully and thus boosts the per-
formance higher, in contrast to [35]. We also utilize MuSu
to train models with large backbones to compare state-of-
the-art models and our models achieve promising results on
COCO test-dev set.

2. Related Work

2.1. In the Context of Classification and Regression
Heads

The classification and regression head as sibling heads
serve as essential components for general object detectors,
where input features from the backbone network are trans-
formed into classification scores and predicted boxes, re-
spectively. Regional CNN (R-CNN) detectors [8, 24, 1]
commonly deployed the shared head (2fc) in the regional
network to classify and do the finer localization based on
the region of interest (RoI) which is pooled out of the fea-
ture map. The work [6, 30] proposed different heads for
R-CNN detectors and disentangle them by the individual
network to achieve consistency between the classification
and regression output. TSD [26] argued that classification
and regression heads need different spatial features and the
shared RoI pooling operator is a cause to the misalignment.
For dense object detectors, things are different and not so
straightforward to deal with for there are not RoI operators
and the feature into different heads is hard to disentangle.
As a common practice in [20, 29], the classification and lo-
calization heads are respectively comprised of several con-
volutional layers with the hope for different functionalities
where the input feature is the same.

Different from previous work on the feature or the struc-
ture, our proposed method tackles the problem of incon-
sistency from the perspective of designing training samples
respectively for each head. Previous methods on the su-
pervision [12, 28, 2, 34] involved solely the unidirectional
supervision either from the regression to the classification
or vice versa. In contrast, our proposed MuSu supervises
each head by training samples defined by the counterpart
head output and ensures the consistency in a bidirectional
manner. The work most related to this paper [33] shares
the same address with our method, which defined the cus-
tomized IoU criteria with the consideration of the counter-
part head output for sample definition. However, details
in [33] are highly hand-crafted with the customized IoUs
and the improvement is not validated on recent detectors
while our MuSu brings improvements over strong baselines
with the simple and adaptive supervision scheme design.
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Figure 2. Illustration of the mutual supervision (MuSu) for the classification and regression head. We apply soft targets to supervise
by weighting base loss at each location for these two heads respectively. The weights for the regression head are mainly decided by the
classification score and the weights for the classification head are in turn mostly based on the localization scores (IoU scores). For more
clarity, we do not show the construction of candidate bags and multi-level predictions.

2.2. In the Context of Training Sample Selection

The most popular strategy to select training samples is
to use IoU as a criterion between an anchor and a ground-
truth box, dating back to [9, 24]. Recently, various train-
ing sample selection strategies are proposed based on either
the geometric relation, the classification score, the IoU or
jointly them, to determine which object an candidate an-
chor belongs to in the training phase, and exploit the po-
tential of a detector more further. FreeAnchor [36] was the
first to adaptive training samples based on the customized
likelihood by classification scores and IoUs. The litera-
ture [13, 16, 38, 27] proposed to explicitly select train-
ing samples by the joint criteria of the classification and
the regression. ATSS [35] utilized the statistics of IoUs
with regard to anchors with an object to determine posi-
tive samples. PAA [14] introduced a probabilistic process to
the training sample selection and determine samples by the
expectation-maximization algorithm. All these work cast
improvements over the performance and has indicated the
significance of designing better training samples.

Our method follows this research line but differs from
these methods above. We step further in this line of adap-
tive training samples by assigning different samples to dif-
ferent heads and our proposed method automatically mines
classification samples from the IoU and regression samples
from the classification score. Fortunately, with this mutual
supervision, our method MuSu also gets rid of the geomet-
ric prior and subtle treatment for each pyramid level in these
adaptive approaches and in that sense, our proposed MuSu
method is the neatest way to adaptively assign training sam-
ples by far while achieving promising results.

3. Proposed Method

To make accurate detections, a dense detector is expected
to have alignment between the classification and regression
heads since that the post-processing NMS only keeps de-
tections with the maximum classification confidence when
there are multiple overlapping ones. In detectors like Reti-
naNet [20], the classification head is trained by the supervi-
sion signal where the overlapping of predicting and ground-
truth box is higher over a certain value, without the fur-
ther consideration of how well the ground-truth is localized.
Indeed, the current pipeline expects that the classification
confidence represents not just how well the detector clas-
sify but also how well the detector localizes, as argued by
[17, 14, 12, 29]. Therefore, the spatial distribution of the
supervision for the classification head should rely on the lo-
calizing performance of the regression head, that is, where
the IoU score is larger, where the classification supervision
is stronger. In turn, the supervision for the regression should
be also imposed more on the positions with higher classifi-
cation scores, forcing well-classified ones to regress accu-
rately as well. Figure 2 depicts this dependency between
them and mutual supervision.

We introduce the Mutual Supervision (MuSu) algorithm
for dense object detectors as a simple instantiation of this
mutual philosophy. Specifically, MuSu ensures the consis-
tency between the classification and regression in the train-
ing procedure by assigning training samples mutually and
reciprocally from and for these two heads. MuSu treats the
training sample in the soft target form by weighting losses
of anchors in a ranking mechanism. MuSu can be described
as three steps: i) construct adaptive candidate bags jointly
by the classification and regression head to select the can-
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didate anchors most belonging to an object; ii) compute
candidate rankings from the perspectives of the classifica-
tion and regression respectively inside the candidate bags;
iii) translate these rankings to weights to sum out losses of
each position and supervise the classification and regression
head. The MuSu algorithm is depicted in Procedure 1.

3.1. Adaptive Candidate Bag Construction

We first construct adaptive candidate bag for every ob-
ject as a preliminary step to filter out plenty of unsuitable
anchors to better perform the following mutual supervision.
The proposed candidate bag adaptively keeps out the false
candidates to an object jointly by the classification and re-
gression head and prevent anchors which obviously belong
to the background or other objects from feeding into the
next procedure. Otherwise, the mutual scheme will confuse
detectors since classification scores are instance-agnostic
and tend to be noisy at the initial stage.

More formally, considering for an object j, given an an-
chor i as well as its classification score pi and IoU criterion
IoUi w.r.t. object j, we define a joint likelihood of weight-
ing how much an anchor i is a candidate to object j, that is

Pi = piqi, (1)

where qi = IoUθi and θ is the weighting coefficient that
rescales IoU in the exponential way to approximate the
range of classification scores. θ is set to 4 our experiments.
We calculate the threshold of candidate bags by

t = b ·max
i
Pi, (2)

where b is the thresholding parameter less than 1. Any an-
chor in the ground-truth box with the joint likelihood higher
than t becomes a candidate in the candidate bag Cj for an
object j. As this procedure only chooses candidates loosely
and filters out obviously unsuitable anchors, the parameter
b is preferred to a low value, e.g., 0.1. For multiple objects
situation, we only keep the object j with the highest IoU
in an anchor i involved in this computation and leave other
ground-truth boxes out of consideration. This also makes
the candidate bag mutually exclusive with regard to the ob-
ject. By this means, we assign the ground-truth box j to
each candidate i ∈ Cj without conflicts.

The candidate bag is also adaptive in its size. When
the misalignment between the classification and regression
head occurs, the threshold of a candidate bag becomes
lower as the maximum of the joint likelihood for an object
is also lower. More candidates are selected into the bag un-
der this situation and this mechanism enables us to mines
hard objects concerning the inconsistency between the clas-
sification and regression by enlarging their sample number
and focus on them during training.

Procedure 1 : Mutual Supervision algorithm
Input: G, A
G is a set of ground-truth boxes
A is a set of all anchors across all pyramid levels

Output: Lcls ,Lreg

Lcls is the total loss for the classification head
Lreg is the total loss for the regression head

1: initialize wcls
i and wreg

i to zeros for all i ∈ A;
2: for every ground-truth box j ∈ G do
3: // construct candidate bag Cj for box j
4: Aj ← {i ∈ A : anchor i lies in the box j and has maxi-

mum IoU with j across G};
5: compute Pi in Equ 1 for every anchor i ∈ Aj ;
6: Cj ← {i ∈ Aj : Pi > b ·maxk∈Aj Pk};
7: // compute candidate rankings in candidate bags Cj
8: compute vclsi , vregi for i ∈ Cj according to Equ 3;
9: sort vclsi and vregi in descending order and obtain ranking

Rcls
i and Rreg

i (starting from 0);
10: // compute base losses and transform rankings to weights
11: assign box j to i in Cj as detection target and compute base

losses for all i in Cj ;
12: translate Rcls

i , Rreg
i to wcls

i and wreg
i according to Equ 4;

13: end for
14: caculate Lcls and Lreg according to Equ 5;

3.2. Mutual Supervision

As we complete constructing candidate bags to filter
out background anchors, we are ready to apply our pro-
posed mutual supervision for classification and regression
heads. For each head, MuSu assigns each candidate a rank-
ing in descending order by evaluating the accuracy between
the counterpart head prediction and the ground-truth ob-
ject. Then MuSu translates the ranking to the weight for
each candidate. We reuse the classification score pi and the
scaled IoU qi in Equation 1 as the evaluation criteria for the
classification and regression head. A natural choice is to
use pi for computing rankings for candidates of the regres-
sion head, Rreg

i , and use qi for rankings of the classification
head, Rcls

i . However, we found that this straightforward
way of mutual supervision performed inferior in our exper-
iments. In contrast, MuSu utilizes the regularized criteria
values to compute rankings for candidates in the symmetric
form, v

cls
i = qi · pαi ,

vregi = pi · qαi ,
(3)

where α acts like a hyper-parameter, varying from 0 to
1, which regularizes the mutual scheme by also consider-
ing the output of the head itself. Our mutual supervision
scheme can be a generalized training sample framework,
where α = 1 gives recently studied training sample strate-
gies based on joint likelihood by these two heads [38, 13,

3644



14] and α = 0 gives the straightforward mutual supervision
without the regularization of the supervised head itself.

3.3. Loss Weighting Paradigm

As we obtain regularized criteria vclsi and vregi , MuSu
sorts these values in a descending order within each candi-
date bag separately for both the classification and regression
head to acquire the ranking Rcls

i and Rreg
i (starting from 0,

increasing by step size 1, i.e., 0, 1, 2, · · · ). MuSu supervises
these two heads in the soft target form by weighting losses
for each candidate and summing these weighted losses into
a total loss. The weights wcls

i and wreg
i for candidates are

decided by the ranking of each candidate separately for two
heads and MuSu adopts a negative exponential way to trans-
late rankings to weights:w

cls
i = exp(−Rcls

i /τcls),

wreg
i = exp(−Rreg

i /τ reg),
(4)

where τcls and τ reg are temperature coefficients for the
classification and regression head, indicating how many
weights are assigned for samples to an object. As the rank-
ing R(·)

i increases (v(·)i becomes smaller), the weights are
exponentially decreasing at a speed related to the tempera-
ture τ (·). Thanks to the mutual supervision scheme, we can
control the number of positive training samples respectively
for each head and we found that the performance would be
better if we assign less weights to the regression head.

The total loss in an image for each head can be formu-
lated in general as:

L =
1

N

∑
i

wi`i, (5)

where the normalized term N =
∑
i wi and `i is the loss

function with regard to the prediction and ground-truth as-
signed for each anchor i. ` can be arbitrary loss functions
for each head, e.g., the focal loss [20] for classification and
GIoU [25] loss for regression. Details with not-assigned
classes for the focal loss are discussed in Section 4.1.

It is notable that MuSu is not a specific loss function
for either classification or regression and de facto acts as
a hyper-loss formulation built upon these base losses. Actu-
ally, the focus of MuSu is to discuss the sample assignment
for each head in two aspects: first, the ground-truth assign-
ment for position i, stands for which object is the target of
position i to supervise; second, weights for assigned train-
ing samples, wi, indicating how much the position i should
be supervised. As a plus, we separate the assignment strate-
gies from underlying loss function choices and put attention
on the relative rankings of anchors inside candidate bags,
guaranteeing that the absolute amplitude of losses has no
effect on assignments.

We summarize our proposed mutual supervision ap-
proach MuSu as several key points: first, MuSu exploits the
spatial distribution of scores originating from the counter-
part head to adaptively determine training samples for the
classification and regression heads in a respective manner.
This paradigm circumvents either any hand-crafted train-
ing sample assignments or geometric clues1. Thus, MuSu
emerges as a simple and general training sample selection
approach; second, MuSu enables detectors to align classi-
fication scores to IoUs scores, making detectors friendly
to the NMS procedure and the final detection evaluation;
third, MuSu disentangles the training sample assignment
and the choices of base loss functions in the mutual su-
pervision since it utilizes the relative ranking to determine
loss weights associated with these anchors, which is exten-
sible to any loss function improvement in the future; finally,
MuSu alleviates the regressing difficulty of the regression
head by assigning fewer positive samples for it and focus-
ing on positions with higher classification scores. Experi-
ments shows that MuSu-trained detectors lead to the con-
sistent better performance.

4. Experiments
To validate the effectiveness of our proposed mutual su-

pervision scheme for classification and regression head, we
conduct experiments on MS COCO detection dataset [21]
in this section. Following the common practice of previ-
ous work, we use trainval35k subset consisting up of
115K images to train our models and use minival subset
of 5K images as the validation set. We report our ablation
study results on minival subset. We also submit our fi-
nal model results on the test-dev subset, whose labels
are not publicly visible, to the MS COCO evaluation server
to compare with state-of-the-art models. We implement our
MuSu method in mmdetection codebase [5].

4.1. Implementation Details

Network structure. Theoretically, our mutual super-
vision method is universal for dense object detectors. In
this paper, we adopt the recently-proposed dense detector
FCOS [29] as our network architecture. The FCOS archi-
tecture serves as a strong baseline for dense detectors by
utilizing Group Normalization [31] to both the classifica-
tion and regression detection head, adding trainable scalars
for each pyramid level on FPN [19] and using the centerness
layer from the last feature map of the regression head to fil-
ter out a number of inaccurate detections. As our proposed
method selects training samples adaptively and does not de-
pend on the fixed centerness estimation, following previous
work [38], we redirect the output of the centerness layer

1Except for the inner-box restriction, which is necessary as the FCOS-
like architecture uses non-negative distance to predict offsets to bounding
box borders.
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in the FCOS architecture to the output of the classification
head as so-called implicit objectness and merge them by
multiplication to get final classification scores.

Initializations. All backbones of detectors throughout
our experiments are initialized from the pre-trained models
on the ImageNet dataset [7]. For stabilization during early
training, we initialize weights of the last convolutional layer
in the regression head to zeros. We also set a constant stride
factor on each feature pyramid level of FPN [19] to scale
regression boxes, starting from stride s = 8 at the finest
pyramid level P3 to s = 128 at the level P7. These settings
make boxes predicting from the regression branch for each
position initialized to the same size 2s×2s for a FPN level,
serving as a geometric prior in early iterations for more sta-
ble mutual supervision.

Mutual supervision instantiation. We set the temper-
ature τ cls, which controls the number of positive samples
assigned to an object, to the squared root of the candidate
bag size, and then set the temperature for the regression
branch to the half of the temperature for the classification
(τ cls : τ reg = 2 : 1) as our default. That is,{

τ cls =
√
|Cj |,

τ reg = 0.5τ cls = 0.5
√
|Cj |.

(6)

The temperature τ cls and τ reg are specific to a candidate
bag of a ground-truth object j. The squared root operator
makes the temperature vary moderately across different ob-
jects when the candidate bag size varys a lot and leads to
more stable training. We set the thresholding coefficient b
in Equation 2 to 0.1 as our default.

We adopt the focal loss [20] as our base loss for the clas-
sification and the GIoU loss [25] for the regression. The
focal loss tackles the classification task in detection as the
multi-class binary classification problem. For an anchor,
there exists the negative classification of non-target classes
along with the positive classification of the target class. In
addition, the negative classification should be also applied
to the assigned class with soft targets. Thus, we treat it care-
fully and separate the focal loss into three parts: the positive
term for the assigned class label, the negative penalty term
for the assigned class label, and the background term for all
other not-assigned class labels. We extend the loss form in
Equation 5:

Lcls =
1

N

∑
i

[wcls
i · `+i + (1− wcls

i )β · `−i + `bgi ], (7)

where the `+i is the focal loss to the positive classification of
the assigned label while `−i is the focal loss for the negative
classification of the assigned label as the penalty for the po-
sition with insufficient wcls

i . These two loss terms function
as the soft target in a unified manner. Background loss term
`bgi is the sum of the focal loss for negative classification of

method AP AP50 AP75 APS APM APL

FCOS 36.5 55.7 38.3 21.2 40.3 48.1
FCOS++ 38.6 57.2 41.7 22.4 42.4 50.2
MuSu with
vclsi = vregi = pi 38.3 60.0 40.5 22.8 41.5 49.3
vclsi = vregi = qi 31.8 49.9 33.7 15.0 34.9 45.2

MuSu under vclsi and vregi in Equ 3 with
α = 1.0 40.4 59.6 43.9 23.5 43.5 53.7
α = 1/2 40.3 59.1 43.8 23.1 43.7 53.5
α = 1/3 40.6 58.9 44.3 23.0 44.0 54.2
α = 1/4 40.5 58.9 43.8 23.4 44.2 53.6
α = 1/6 40.4 59.0 43.6 22.5 44.2 53.9
α = 0 38.5 57.5 41.4 20.9 42.9 52.4

Table 1. MuSu criteria value settings for each head on COCO
minival set with ResNet-50 backbone (same in tables below,
unless otherwise specified). FCOS and FCOS++ are baselines.
FCOS++ denotes the improved FCOS with tricks (e.g., center sam-
pling). The term α refers to the regularizing factor in Equation 3.
The settings v(·) = p and v(·) = q stand for that the method
assigns the same weights for each head, totally according to the
classification or localization score of an anchor inside the bag.

all other classes which are not assigned to anchor i. The fo-
cusing and balance parameter for the focal loss follows the
default settings in [29] and the penalty decay term β is set to
4 following [15, 37]. The total loss for detection is simply
the sum of the classification and regression loss,

Ldet = Lcls + Lreg . (8)

Optimization and inference. We use SGD with the
learning rate 0.01, momentum factor 0.9, and weight decay
0.0001 to optimize our models throughout experiments. A
total batch of 16 images, 2 images per GPU, are used in the
training. The statistics and affine parameters of batch nor-
malization layers in the backbone are frozen as in [29]. For
ablation studies, we train models with the ResNet-50 back-
bone [11] in 90K iterations with the learning rate warmup
during the first 500 iterations. The learning rate is divided
by a factor of 10 at the 60K and 80K iteration, respectively.
All images in the 90K training scheme are resized to their
shorter size being 800 and their longer size not greater than
1333 and are randomly flipped horizontally as the only data
augmentation. At the inference stage, we resize the input
image to the same size in the training procedure without
random flipping. The threshold of the classification score
is set to 0.05 and the NMS threshold is set to 0.6 in the
detection pipeline, also following recent common practice.
The optimization and inference details are kept the same
throughout our experiments unless otherwise stated.

4.2. Training with Mutual Supervision

Study on the mutual supervision. We start our ex-
periments from the vanilla FCOS detector as our baseline.
The vanilla FCOS is supervised by dense signals and serves
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b AP AP50 AP75 APS APM APL

0.20 40.3 58.8 43.7 22.8 43.4 53.4
0.10 40.6 58.9 44.3 23.0 44.0 54.2
0.05 40.4 58.9 43.7 23.5 43.8 54.0

Table 2. Different threshold coefficients b in Equation 2.

(τcls , τ reg ) AP AP50 AP75 APS APM APL

(10.0, 5.0) 40.1 58.5 43.3 22.2 43.4 53.7
(5.0, 2.5) 39.9 58.5 43.4 22.1 43.5 53.2

(
√

|Cj |, 0.5
√

|Cj |) 40.6 58.9 44.3 23.0 44.0 54.2

Table 3. Adaptive temperatures τ cls and τ reg benefit. First two
rows act as counterparts with fixed temperatures.

as a competitive baseline for dense detectors, which got
36.5 AP in Table 1. The FCOS++ model in Table 1 de-
notes the improved architecture and more importantly, the
refined highly hand-crafted training sample, which only as-
signs positive samples within the center area of objects. In
contrast, our MuSu emerges as an adaptive training sample
assignment approach for dense object detectors and the key
component in MuSu is the criteria value in Equation 3 as
it decides which training sample selection strategy for each
head our method adopts. In Table 1, we carry out experi-
ments of various settings for criteria values in Equation 3.
The settings whose weights for two heads are totally de-
cided by the single head output (the classification pi or the
regression qi) and assign the same criteria value for both
two heads, which in other words enables the sole unidirec-
tional supervision without the mutual scheme, leads to infe-
rior results of 38.3 and 31.8 AP respectively.

The naive mutual supervision without the regularized
term (setting α = 0.0) achieves 38.5 AP, comparable to
the highly hand-crafted FCOS++ model. When we add the
regularized factor, even from α = 1/6, the performance of
models significantly improves to 40.4 AP. With the regu-
larized factor α = 1/3, the performance of models trained
with the mutual supervision leads to a best 40.6 AP, 2.0 AP
higher than the FCOS++ model. We argue that the regu-
larizing term is necessary for the assignment because it is
also aware of how well each head itself learned in the train-
ing procedure and makes the best of the use of each head
prediction to avoid the assignment fluctuation. It is notable
that the MuSu with α = 1.0, which assigns the same criteria
value for training sample selection for two heads, is also a
case of mutual supervision where the supervision of a head
is also aware of the prediction of the counterpart head. In
this sense, we include training samples based on the joint

τcls : τ reg AP AP50 AP75

1 : 1 40.4 58.6 44.0
1.5 : 1 40.6 58.9 44.1
2 : 1 40.6 58.9 44.3
3 : 1 40.2 59.0 43.7

Table 4. Varying the ratio of temperature coefficients of the
classification to the regression τ cls : τ reg .

α #A AP AP50 AP75 APS APM APL

1.0
1 40.4 59.6 43.9 23.5 43.5 53.7
2 40.4 59.6 44.1 23.7 43.4 53.6
3 39.9 59.4 43.3 23.9 43.2 51.9

1/3

1 40.6 58.9 44.3 23.0 44.0 54.2
2 40.6 58.8 44.4 23.1 44.0 54.3
3 40.9 59.0 44.3 23.3 44.3 54.2
4 40.8 58.9 44.6 23.6 44.5 54.4
5 40.3 58.6 44.3 22.8 43.9 53.0

Table 5. Tiling more anchors when the regularizing term α = 1.0
and α = 1/3 in MuSu.

likelihood explored by the recent approach [38, 13, 14] in
our proposed MuSu approach. However, this same criteria
strategy (α = 1) suffers from stagnant or even degenerate
performance when tiling more anchors while the MuSu with
α = 1/3 benefits from more anchors as discussed below.

Study on adaptive candidate bags and temperature.
As we discuss in Section 3.1, the candidate bag is designed
for filtering out the plenty of background anchors adaptively
by the joint likelihood of the classification and regression.
The candidate bag only serves as a preliminary procedure
to keep obviously unsuitable anchors from the next mutual
assignment procedure, so the threshold coefficient b is pre-
ferred to a relatively low value. In Table 2, we vary the
coefficient to see its impact. The coefficient b = 0.10 gives
the best result.

A candidate bag is also adaptive with regard to its size.
On account of that, MuSu can put more focuses on objects
with strong inconsistency between classification and regres-
sion by assigning more positive samples to them in the re-
lation depicted in Equation 4 and 6. We validate the effec-
tiveness of adaptive candidate bag on final detectors by dis-
abling the adaptive temperature w.r.t the bag size and setting
τcls and τ reg to a fixed number. Borrowing the average tem-
perature τcls and τ reg when using adaptive candidate bags,
the temperature for the classification τcls is set to the fixed
constant 5.0 across objects and keep τcls : τ reg = 2 : 1. For
more ablation, we add the situation τcls = 10.0 in Table 3.
We find that the adaptive temperature as the function of the
bag size benefits our method by adaptively mining hard ob-
jects with regard to the inconsistency. We also present re-
sults of applying different ratios of temperatures for assign-
ing samples to each head (τcls :τ reg ) under the setting of
adaptive temperature to anchor bag sizes in Table 4, which
indicates that moderately reducing samples for regression is
favourable for the fine localization and overall performance.

Soft versus hard targets. As our method defines train-
ing samples for both heads as soft targets by weighting
losses of them, one natural question is whether we can use
hard targets instead of soft targets to achieve a similar per-
formance. We trained the model with hard targets by mod-
ifying Equation 4 to w(·)

i = I[R(·)
i < τ (·)], where I[·] is the

indicating function and this resulted in a 40.0 AP model,
which is 0.6 AP behind the soft target scheme. This com-
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method backbone AP AP50 AP75 APS APM APL

FCOS [29] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6
FreeAnchor [36] ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8
SAPD [39] ResNet-101 43.5 63.6 46.5 24.9 46.8 54.6
MAL [13] ResNet-101 43.6 61.8 47.1 25.0 46.9 55.8
ATSS [35] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
AutoAssign [38] ResNet-101 44.5 64.3 48.4 25.9 47.4 55.0
PAA [14] ResNet-101 44.8 63.3 48.7 26.5 48.8 56.3
MuSu (ours) ResNet-101 44.8 63.2 49.1 26.2 47.9 56.4
SPAD [39] ResNet-101-DCN 46.0 65.9 49.6 26.3 49.2 59.6
ATSS [35] ResNet-101-DCN 46.3 64.7 50.4 27.7 49.8 58.4
PAA [14] ResNet-101-DCN 47.4 65.7 51.6 27.9 51.3 60.6
MuSu (ours) ResNet-101-DCN 47.4 65.0 51.8 27.8 50.5 60.0

Table 6. Comparison on COCO test-dev set by different training sample selection methods with ResNet-101 and ResNet-101-DCN.

parison supports the conclusion of the literature [17, 39, 34]
and soft targets in our method share the same idea in the
flexible classification to align regression scores.

Tiling more anchors. Placing multiple anchors at each
spatial position of output detection maps is a common way
to cover image boxes of different scales and aspect ratios
as many as possible in dense object detectors. This strategy
is popular among both one-stage detectors [20] or proposal
networks of two-stage detectors [24] for achieving better
performance. However, recent work [29, 35] challenges
this necessity of tiling more anchors by changing sample
assignment strategies and shows that there are no perfor-
mance gains by placing more anchors under their settings.

To discuss multiple anchor situations, we set the initial
scale and aspect ratio of anchors by initializing the bias pa-
rameter of the last convolutional layer to produce bounding
boxes. The scale factor of an anchor and the aspect ratio
are drawn uniformly at random from the interval [1, 2] and
[ 12 , 2], respectively.

Surprisingly, we find that tiling more anchors has a boost
on the detection performance over competitive results under
our mutual supervision scheme, even without well-crafted
settings of scales and aspect ratios. As shown in Table 5,
these results show that MuSu enables the detector to fully
exploit the setting of more anchors. The performance of
a detector can increase to about 40.9 AP when adding an-
chor per location to 3 or 4. In contrast, the counterpart re-
sults, which assigns the same criteria values for two heads
with α = 1.0, will not be better when adding more anchors
and even suffer from that. The final MuSu model is 2.3 AP
higher than FCOS++ model, 4.1 AP higher than the vanilla
FCOS model, and 0.5 AP higher than our competitive base-
line with α = 1.0 and #A = 1. This empirical evidence
validates the effectiveness of our MuSu method beyond the
single anchor situation.

4.3. Comparison to the State of the Art

To compare with other state-of-the-art methods of train-
ing sample selection for detection, we use deeper backbones
and deformable one [40] to train with our MuSu. To align
with previous work and compare fairly, we extend the train-

ing schedule to the 180K iterations and reduce the learning
rate at the 120K and 160K iteration by a factor of 0.1. For an
input image, we resize the shorter side to a scale randomly
chosen value of [640, 800]. We train our MuSu detectors
with 3 anchors per location (#A = 3). For the DCN vari-
ant, we also apply deformable convolutional layer to the last
layer on each head following [35, 14]. As shown in Table 6,
both the ResNet-101 detector and the DCN variant trained
by the MuSu surpass previous competitive models in the
overall AP while achieving the new state-of-the-art AP75

without bells and whistles at the inference stage. Further,
MuSu-trained models are on par with PAA models that are
with the score voting as the improvement at inference stage.

It is worth noting that our MuSu offers as a simple instan-
tiation of our proposed mutual supervision and this scheme,
in general, is also compatible to specific training sample se-
lection methods, such as the PAA algorithm [14] for each
head to expect better results.

5. Conclusion
In this paper, we have presented the mutual supervision

(MuSu) scheme for training accurate dense object detec-
tors in which we break the convention of the same training
samples for the classification and regression heads and then
these two heads are supervised based on the output of each
other in the soft target way. MuSu makes a big step fur-
ther to fully adaptive training sample selection by means of
assigning different samples to these two heads in a mutual
manner without the subtle geometric designing. Moreover,
we discuss multiple anchor settings under our proposed mu-
tual supervision and find that is beneficial to our method.
Experimental results on the challenging MS COCO bench-
mark validate the effectiveness of our proposed MuSu train-
ing scheme on detectors.
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