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Abstract

In recent years, neural image compression emerges as
a rapidly developing topic in computer vision, where the
state-of-the-art approaches now exhibit superior compres-
sion performance than their conventional counterparts.
Despite the great progress, current methods still have
limitations in preserving fine spatial details for optimal
reconstruction, especially at low compression rates. We
make three contributions in tackling this issue. First, we
develop a novel back projection method with attentional
and multi-scale feature fusion for augmented representation
power. Our back projection method recalibrates the current
estimation by establishing feedback connections between
high-level and low-level attributes in an attentional and dis-
criminative manner. Second, we propose to decompose the
input image and separately process the distinct frequency
components, whose derived latents are recombined using a
novel dual attention module, so that details inside regions of
interest could be explicitly manipulated. Third, we propose
a novel training scheme for reducing the latent rounding
residual. Experimental results show that, when measured
in PSNR, our model reduces BD-rate by 9.88% and 10.32%
over the state-of-the-art method, and 4.12% and 4.32%
over the latest coding standard Versatile Video Coding
(VVC) on the Kodak and CLIC2020 Professional Validation
dataset, respectively. Our approach also produces more
visually pleasant images when optimized for MS-SSIM. The
significant improvement upon existing methods shows the
effectiveness of our method in preserving and remedying
spatial information for enhanced compression quality.

1. Introduction
Lately, the demand for image compression has increased

dramatically to cope with the enormous amount of high-
resolution images produced by modern devices. Based on
deep neural networks (DNNs), neural image compression
has reinvigorated this domain with its superb capacity to

Ground Truth

Ours [MSE] (0.354bpp, 28.45)Cheng (0.381bpp, 27.97)

VTM 12.0 (0.326bpp, 27.39)

Figure 1. Comparison of kodim05.png reconstructed by different
methods. The image is cropped for convenient visualization.
Notice that the tilted, shadowy artifacts in the yellow tube region
have been largely suppressed by our method.

learn in a data- and metric-driven manner, as opposed to
their conventional, handcrafted counterparts [17].

Neural image compression typically employs autoen-
coders to model the compression and reconstruction process
as a unified task and optimize the rate-distortion trade-
off jointly. Such methods map the input image into
a more compact latent intermediate via an encoder and
inversely transform the quantized latent back to generate the
reconstructed image on the decoder side. Many researches
concentrate on optimizing the network architecture, e.g.,
GDN [6], residual blocks [34, 23], RNNs [35, 22, 36], to
reduce bit-rates with alleviated quality degradation. Mean-
while, some other works focus on reducing the entropy
of the latent representations to attain fewer encoding bits.
Earlier works [8, 34] in this respect incorporate elementwise
entropy models to encode each element independently.
Later advancements introduce hierarchical hyperprior net-
works [7] and autoregressive components [20, 25] into
the VAE framework to explicitly estimate the entropy of
the latent representation by utilizing prior information.
Currently, the rate-distortion performance of the state-of-
the-art methods has surpassed that of reigning compression
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codecs, such as BPG [9] and VVC [33], in both PSNR and
MS-SSIM.

Nonetheless, existing schemes remain limited in faith-
fully restoring the original image from its compact repre-
sentation. The reconstructions at low compression rates
tend to be over-smoothed and contain undesirable artifacts.
One major issue of the autoencoder is that, while it excels
at extracting contextualized, non-linear information for
effective decorrelation, it stumbles in preserving spatial
image details that are crucial to faithful reconstruction,
since down-sampling via convolution layers is inherently
non-injective due to the loss of high-frequency details.
Another limitation of current implementations is that the
input image is usually compressed in its RGB format, in
which the easily-lost high-frequency details are mingled
with large-scale variations. The inability to distinguish
distinct frequency characteristics makes it even harder for
the network to preserve or infer fine-grained details for
optimal reconstruction.

In this paper, to enable mutual facilitation between low-
and high-level image properties, we replace the standard
feedforward up- and down-sampling layers with a novel
Attentional Multi-scale Back Projection (AMBP) module.
Our AMBP module efficiently aggregates intermediate fea-
tures from higher to lower layers of the network, allowing
it to attain semantically rich features, on the one hand,
and extrapolate fine spatial details, on the other. Retaining
the desired properties of both gives the network greater
flexibility to decide which information should be preserved
for better rate-distortion trade-offs. To extract richer visual
representations, we leverage channel attention and a soft
attention mechanism that consolidates the input feature
maps in a weighted average fashion.

Moreover, we propose to extract and process the distinc-
tive frequency components of the input image via frequency
decomposition. In this way, the network could yield further
efficiencies in representation by exploiting various pieces
of information that carry different frequency characteristics.
Our method deploys a dual-branch encoder to compress the
separate layer components in parallel and later recombines
their derived latents using a novel dual attention module.
Besides, to reduce the quantization residual of the latent,
we modify the mixed training scheme [26] by adding a
rounding loss of the latent, which enforces the network to
focus on reducing the quantization error whilst optimizing
for the final reconstruction. The main contributions of this
work are:

• A novel back projection approach capable of produc-
ing contextualized outputs with enriched details via
multi-scale context aggregation across stages.

• An effective scheme that decomposes the image into
distinct frequency components, processes them sepa-

rately, and recombines the results via a dual attention
module to yield the latent representation.

• A finetuning strategy for reducing the error caused by
rounding the latent to facilitate reconstruction.

2. Related Work

2.1. Conventional Image Compression

Conventional compression standards, such as JPEG [37],
JPEG2000 [30], BPG [9] and VVC [33], are handcrafted
pipelines that rely on manual tuning, which requires ex-
tensive expertise and is extremely time-consuming. These
schemes transform the input image into compressed coeffi-
cients, apply quantization to prune the least informative bits,
and entropy encode the quantized coefficients into bitstream
files. Moreover, some hybrid techniques [18, 16] have been
developed, which apply learned image restoration methods
to remove the undesirable artifacts from images recon-
structed by conventional codecs. Nonetheless, such hybrid
methods still suffer from blocking effects and cannot be
jointly optimized via the automated process, which hampers
the development of more sophisticated architectures.

2.2. Neural Image Compression

Network Architecture Design. Neural image compres-
sion has achieved some major breakthroughs in the past
few years. Since the early attempts by Toderici et al. [35]
to utilize convolutional LSTMs for image compression,
considerable improvements have been made in incorpo-
rating tailored modules for neural image compression.
Ballé et al. [6] put forward a nonlinear normalization
technique called generalized divisive normalization (GDN),
which demonstrates impressive capacities in decorrelating
data from natural images. Zhang et al. [42] exploit the
expressive power of residual connections and propose a
non-local attention block to capture the global dependencies
between latent elements. Some works [39, 22] resort
to recurrent structures to remove the spatial redundancy
between parts of the neural images, where each previous
part serves as a reference for the current part. Recent
efforts [4, 31, 32, 24, 27, 29, 28] in abridging the huge gap
between human perceptual preferences and the dominating
distortion metrics have also achieved remarkable progress
in helping the networks reconstruct images that are more
perceptually convincing.

Quantization. The extracted latent is usually discretized
via quantization to support lossless entropy coding. Many
studies adopt additive uniform noises [8] to simulate the
effects of quantization within a differentiable process, while
others either adopt straight-through gradients that propagate
the gradient of the identity function or develop a soft
quantization technique [2, 23], e.g., learnable clustering
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Figure 2. Network architecture of the proposed method. Q denotes the quantization operation. ŷ and ẑ denote the quantized latent and the
quantized side information, respectively. The black and red arrows in the attentional fusion blockRa denote reweighting byW and (1−W ),
respectively, where W denotes the attention weights learned by channel attention module S. ⊗ denotes element-wise multiplication. C ↑
and C ↓ denote down-sampling and up-sampling, implemented by strided convolutions and subpixel convolutions (activation = LeakyReLU,
kernel size = 3x3), respectively. R denotes the residual block that consists of two 3x3, ReLU-activated convolution layers with a skip
connection.

and nearest neighbor assignment, to reduce the round-
off residual. Meanwhile, how to correctly predict the
quantization residual is an actively studied topic. For
instance, Dumas et al. [12] propose a model that optimizes
the quantization step size for each feature map of the latent,
and Minnen et al. [26] condition the latent rounding residual
on the hyperprior and the already-decoded latent slices for
more accurate prediction.

Entropy Model. Entropy coding occupies more bits
to encode elements that have a smaller probability of
occurrences. Many works concentrate on obtaining a more
accurate entropy estimation of the latent representations.
The pioneering works by Toderci et al. [35] and Ballé et
al. [8] develop a fully factorized entropy model to predict
the probability distribution of the latent and independently
encode each element with arithmetic coding. Expanding on
this design, Ballé et al. [7] introduce hyperprior to compe-
tently learn the pixel-wise dependencies of the latent, where
the distribution is approximated by an isotropic Gaussian
with standard deviation σ. Similar to Lee et al. [20],
Minnen et al. [25] improve the hyperprior by estimating
both mean and standard deviation of the learned latent’s
distribution and incorporate an autoregressive context mod-
el that explicitly conditions each element on previously
decoded elements to further reduce the spatial redundancy
between adjacent pixels. Later studies [10, 21] augment the
context model by utilizing more complex distributions and
incorporating other types of correlations.

However, most of the existing neural image compression
methods fail to make efforts to retain both low- and high-

level features as the computation forwards or consider the
frequency entanglement issue, which will be discussed
further in Section 3.3.

3. Method
3.1. Overall Framework

Problem Formulation. The objective of neural image
compression is to achieve minimal distortion of the restored
image under a specific rate constraint. Given an input image
x, the encoder E squeezes out the spatial redundancies in it
and generates the latent intermediate y. The latent y is then
quantized using the quantization function Q to attain the
discrete code ŷ, from which the reconstructed image x̂ is
generated. The complete process can be formulated as:

y = E(x;φ)

ŷ = Q(y)

x̂ = D(ŷ; θ),

(1)

where φ and θ denote the trainable parameters of the
encoder E and decoder D, respectively. The rate term R
represents the required number of bits to encode ŷ, and
to more accurately estimate the entropy of latent code ŷ,
we parameterize its true distribution pŷ using an entropy
model P (ŷ) with Gaussian Mixture Likelihoods and an
autoregressive context model. Here, R can be formulated
as the cross-entropy of pŷ and P (ŷ), which is minimized
when two distributions match:

R = Eŷ∼pŷ
[−logP (ŷ)]. (2)
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Compression and quantization incur a distortion d(x, x̂)
that is usually measured by PSNR or MS-SSIM. Formulat-
ing E, D and P (ŷ) as neural networks allows them to be
optimized jointly by minimizing the rate-distortion trade-
off L:

L = λ · d(x, x̂) +R, (3)

where λ controls the trade-off.
Network Architecture. As shown in Fig.2, the encoder

side of our design consists of a decomposition module,
a dual-branch encoder, and a dual attention module. In-
stead of processing the input image in its RGB format,
we propose to extract its low- and high-frequency layer
components and compress them separately using the dual-
branch encoder. The two identical branches consist of four
AMBP↓ modules responsible for down-sampling with two
spatial attention blocks [10] in between. We adopt the dense
connectivity from [13], meaning that the current AMBP
module process the concatenated outputs of all previous
modules. The down-sampled latents of the frequency
layers are then rescaled and combined to form the complete
latent representation y via the dual attention module. The
hyperprior model and the context model of our network
follow the same design as in [10]. The single-branch
decoder is the mirror reflection of the encoder’s branch,
consisting of four AMBP↑ modules for up-sampling and
two spatial attention blocks in between. The decoder up-
samples the quantized latent ŷ to yield the reconstruction
image x̂.

3.2. Attentional Multi-scale Back Projection

Back projection was first put forward in DBPN [13]
for image super-resolution. The back projection technique
iteratively utilizes the feedback residual to refine high-
resolution (HR) images, based on the assumption that
the projected, down-sampled version of a super-resolution
image should be as close to the original low-resolution (LR)
image as possible. We adopt and extend this technique
to solve image compression problems and construct our
building blocks entitled AMBP. Specifically, we replace
the standard convolution and deconvolution (or subpixel
convolution) layers with AMBP↓ and AMBP↑, respectively.

Convolution layers of the autoencoder trade fine spatial
details for copious semantic information after repetition
of down-sampling operations, making it less reliable for
faithful image reconstruction. To address this issue, AMBP
aggregates multi-scale features across stages in a trainable
way. That is, the current stage features are consolidated
by the complementary information (spatially accurate or
contextually rich) from later computations. The refined
feature maps in turn produce features of higher quality in
the next stage, thereby achieving progressive improvement
to the intermediate features that propagate throughout the
computation. Diversifying the contexts also empowers the

network with greater flexibility in selecting the important
portion of information to be retained.

initial LR map
Ht up-sample

C ↑

down-sample 
C ↓

Rb

re-sampled LR map
Yt

updated LR map
Ĥt

initial HR map
Ht+1

re-sampled HR map
Yt+1

updated HR map
Ĥt+1

up-sample 
C ↑

Ra

Figure 3. Illustration of the back projection procedure using
feature maps sampled from the decoder when reconstructing
kodim21.png. The updated HR map Ĥt+1 contains better defined
details than the initial HR map Ht+1. Here, C ↑ and C ↓ denote
down-sampling and up-sampling, resepctively.

Taking up-sampling as an example (Fig. 3), our AMBP↑
module refines an HR map Ht+1, up-sampled from Ht, by
applying reverse mapping to recover its original resolution.
Ht contains multi-scale information from previous layers
due to the dense connections. Despite having the same
resolution, the re-sampled feature map Yt encloses details
that were not priviously available to Ht. These details
are then integrated into Ht using a fusion module Rb,
producing an updated LR map Ĥt which is up-sampled
again by C ↑ to yield a re-sampled HR map Yt+1. To
facilitate in-scale feature fusion, we leverage an attentional
fusion module Ra that aggregates Ht+1 and Yt+1 and
update the former as Ĥt+1 that contains finer details. The
described process can be written as:

Yt = C ↓ (Ht+1) = C ↓ (C ↑ (Ht))

Ĥt = Rb(Ht, Yt)

Yt+1 = C ↑ (Ĥt)

Ĥt+1 = Ra(Ht+1, Yt+1).

(4)

Specifically, the feature fusion is based on residual
calculation, rather than addition or concatenation. As
shown in Fig. 2, the residual fusion module Rb adaptively
aggregates Ht and Yt according to their residual et =
Ht − Yt. Intuitively, et represents distinctive information
available in one source while missing in the other. We
further incorporate the attentional fusion module Ra for
the (Ht+1, Yt+1) pair. Instead of processing the residual
with residual blocksR as in Rb, we complement the spatial
attention blocks with channel attention [15] to enhance the
modelling capacity of Ra. Similar to [11], we adaptively
aggregate the information carried by et+1 using a soft
fusion scheme that reweights the respective inputs by W
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and (1−W ), where W is the normalized attention map. In
this way, the network subtly performs importance weighing
between the two inputs without explicitly learning two sets
of weights. The back projection procedure is formulated as:

Rb(Ht, Yt) = R(Yt +R(et))

W = S(R(et+1)) (5)

Ra(Ht+1, Yt+1) = R(W ⊗Ht+1 + (1−W )⊗ Yt+1),

where R denotes residual blocks, W denotes the attention
map, S denotes channel attention, and ⊗ denotes element-
wise multiplication.

The benefits of our proposed AMBP module are three-
fold. First, it further optimizes the original feature map
Ht+1 and facilitates both in-scale and cross-scale feature
fusion without necessarily relying on iterations. Second,
the proposed soft content selection scheme enables more
adaptive feature fusion by implicitly balancing the weighing
of the source inputs before aggregation. Third, the feature
fusion based on residuals allows the network to focus
only on distinctive information, making the gradient update
better guided and more efficient, so incorporating another
residual-based fusion operation could further stabilize and
accelerate the training procedure.

3.3. Frequency Decomposition

Frequency Decomposition Module. Most natural im-
ages contain prolific frequency attributes that are, however,
intertwined and therefore hard to extract. Hence, we believe
that greater adaptivity could be attained by decomposing an
image into several layer components of different frequency
attributes, i.e., the base layer and the detail layer [18, 40].
With the decomposed signals, improved flexibility could be
achieved from manipulating the layer components separate-
ly and recombining them to yield the final result. Further,
the high-frequency components lost during down-sampling,
as pointed out by Nyquist-Shannon sampling theorem,
could now be explicitly manipulated by the network so
that details inside intended regions could be better retained
during the detail layer pass.

As illustrated in Fig.4, the low-frequency components
across scales are obtained using average pooling with
various kernel sizes. The high-frequency components are
attained by subtracting the corresponding low-frequency
component from the input image x. To produce the
base layer xb, we pass the concatenated low-frequency
components to a residual block R. The detail layer
xd containing high-frequency information is attained in a
similar manner. As the original image x also contains
rich information, it is concatenated with xb and xd, which
are then processed separately by the dual-branch encoder.
The dual-branch encoder progressively down-samples the
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Figure 4. The frequency decomposition module, where the red
and blue arrows denote the low- and high-frequency components,
respectively. R denotes the residual block.
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Figure 5. Dual attention module. FC denotes fully connected
layers. The black and red arrows indicate multiplying the
feature map by the corresponding attention weight W and (1-W ),
respectively. GAP and GWP denote global average pooling and
global max pooling, respectively. R denotes the residual block.

Dual Attention. The latents ylf and yhf are aggregated
then using a dual attention module (as shown in Fig. 5),
which is adopted to facilitate information sharing along
both dimensions. The latents of the respective frequency
layers are concatenated along the channel dimension to
produce feature map F , which is then transformed by a
residual block and passed to the channel and the spatial
attention module. To reduce computation, the spatial atten-
tion module independently applies global average pooling
and global max pooling to F along the channel dimension
and concatenates the results to form feature map Fs ∈
RH×W×2, from which is the spatial attention map Ws ∈
RH×W×1 extracted. The channel attention feature map
Wc ∈ R1×1×C is generated using SE blocks [15]. We
adopt the soft selection trick to improve representations as
well. The low-frequency latent ylf is rescaled by Wc and
then Ws while the high-frequency latent yhf is rescaled by
(1 −Wc) and then (1 −Ws). The re-weighted latents are
then summed to yield the final latent representation y.

3.4. Mixed Training Scheme

Following the work [26], we adopt noisy relaxation
to approximate quantization to jointly optimize the net-
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Figure 6. Performance evaluation on the Kodak dataset. Our method yields improved coding performance than existing learning-based
methods and VVC-intra [33].
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Figure 7. Comparison of rate-distortion performance on the CLIC Professional Validation dataset [1]. Our method outperforms existing
learning-based methods and VVC-intra [33].

work and then finetune the decoder D with rounding
representation and an additional rounding loss term dr =
MSE(y, ỹ), where ỹ denotes the latent refined by the first
AMBP↑ module on the decoder side. We notice that the
reconstruction quality could be considerably enhanced by
decoding the original rather than quantized latent, even
without further tuning, so we incorporate this constraint
into the loss function, which enforces the network to focus
on reducing the latent rounding residual while optimizing
for the quality of the final reconstructed image. The loss
function Lf for finetuning is:

Lf = d(x, x̂) + β · dr, (6)

where β controls the weight of the rounding loss term.

4. Experimental Results
4.1. Implementation and Training Details

We trained the proposed networks using cropped images
of size 256x256 from DIV2K [3] , Flickr2K[3], and CLIC
training dataset [1] without augmentation. The weights

of two identical branches of the encoder are shared to
reduce the model complexity. We used the Adam algorithm
to jointly optimize the networks for 1.5M steps with a
mini-batch size of 4. The initial learning rate was set to
1 × 10−4 and halved every 5k steps for the last 300k steps.
After that, we finetuned the sub-modules responsible for
reconstruction (i.e., the decoder) for the objective described
by Eq.(6) for 500k steps, where the initial learning rate
was set to 5 × 10−5 and halved every 100k steps. The
networks were optimized for MSE and MS-SSIM, respec-
tively. When optimized for MSE, the value of λ belongs to
the set {0.0015, 0.0032, 0.004, 0.0075, 0.015, 0.03, 0.05}
and the channel number was set to 128 for the four lower-
rate networks and 192 for the three higher-rate networks.
When optimized for MS-SSIM, the value of λ belongs to
the set {3, 4.5, 12, 32, 45, 120}, where the channel number
was set to 128 for the four lower-rate and 192 for the two
higher-rate networks. The distortion d is defined as d=1-
MS-SSIM(x,x̂). The coefficient β was set to 1 and 0.01 for
MSE- and MS-SSIM-optimized models, respectively.
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Figure 8. Comparison of kodim21.png reconstructed by different methods. The details of the cloud are well preserved using our model
optimized for MS-SSIM, and the image reconstructed using our MSE-optimized attains comparable visual quality with VVC-intra and the
reference network [10].

4.2. Performance Comparison

We first evaluated our networks by obtaining the average
rate-distortion performance in terms of PSNR and MS-
SSIM on the commonly used Kodak PhotoCD dataset [19],
which contains 24 high-quality images. The rate-distortion
(RD) curves are plotted in Fig.6, where the rate is measured
by bits per pixel (bpp). Note that MS-SSIM is converted
to decibels, in accordance with the previous works [10, 21],
so that differences in performance are more distinguishable.
It can be seen from the results that our model consistently
outperforms both the state-of-the-art deep learning-based
methods and the advanced compression standard VVC-intra
(VTM 12.0) for all rates measured. We further measured the
reductions in BD-rate of our model, which is defined as the
average saving in bitrate between two models for a given
quality metric. Regarding PSNR, the average reduction in
BD-rate of our method on the Kodak dataset are 9.88% and
4.12% against the current state-of-the-art model [10] and
the VVC-intra, respectively.

Moreover, we assessed the effectiveness of our method
on two high-resolution datasets, the CLIC Professional
Validation set [1] and the Tecnick dataset [5]. As illustrated
in Fig. 7, our method yields better coding performance than
previous methods and VVC-intra in terms of both PSNR
and MS-SSIM. Regarding PSNR, the average reduction
in BD-rate of our model against the current state-of-the-
art model [10] and the VVC-intra is 10.32% and 4.32%,
respectively, on the CLIC Professional validation dataset.

Please refer to the supplementary materials for comparisons
of RD curves regarding PSNR on the Tecnick dataset.

Our proposed method also attains desirable visual
quality. Fig.1 and Fig.8 show the reconstructed images
kodim05.png and kodim21.png by various compression
methods. As shown in the enlarged part of Fig.1, the
color and edges are better restored by our method, and
the tilted, shadow-like artifacts in the yellow tube region
in the reconstructed images of other methods are largely
suppressed by that of ours. Further, as shown in Fig.8,
the textures of the cloud are well preserved using our
MS-SSIM-optimized model, and the reconstruction by our
MSE-optimized model yields comparable visual quality
with VVC-intra and the reference image compression
network [10]. We also quantitatively evaluated our MSE-
optimized model regarding LPIPS [41] and verified that
our method attains better LPIPS scores than VVC-intra on
all three datasets tested. For the RD curve plots regarding
LPIPS and more visual comparisons of reconstructed
images, please refer to the supplementary materials.

4.3. Complexity Analysis

As shown in Table 1, our model has 2.27 times more
parameters than that of the reference model [10]. On
average, our encoding time and decoding time are about
2.57 times and 1.64 times longer, respectively, with the
same hardware configuration. The larger increase in latency
on the encoder side attributes to the fact that, in practice, the
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branches of the encoder are executed sequentially instead of
in parallel.

Table 1. Number of parameters, average encoding and decoding
time of our model against the reference model [10] on the Kodak
dataset for low-bit image compression.

No. of Params Encoding (s) Decoding (s)
Ours 25.4M 104.24 43.12

Ref [10] 11.2M 40.52 26.28

4.4. Ablation Study

We present ablative experiments to analyze the contribu-
tion of each component of our model. We ablated the design
choices and measured the average increase in BD-rate on
the Kodak dataset. The followings can be summarized from
the ablation results:

AMBP. As shown in Table 2, the model suffers from
the greatest performance drop after discarding AMBPs.
Replacing the soft selection with a single set of channel
attention weights yields a 1.21% increase in BD-rate. The
complexity analysis shows that our model has considerably
more parameters than the reference model [10], so we
also replaced AMBPs with the 3-iteration DBPN mod-
ules [13] to make the number of parameters comparable.
We observed a 1.17% and 1.98% increase in BD-rate from
ablating AMBP↓ and AMBP↑, respectively, which further
validates that the architectural modifications we made to the
back projection methods are effective.

Table 2. Ablative analysis of AMBPs by measuring the average
increase in BD-rate.

AMBP↓ AMBP↑ Soft Selection BD-rate↑
7 7 7 8.61%
4 4 7 1.21%

DBPN [13] 4 4 1.17%
4 DBPN [13] 4 1.98%

Frequency Decomposition. Table 3 indicates that
replacing base layer xb and detail layer xd with the original
image increases the BD-rate by 2.08%, which validates
that decomposing and separately processing the distinctive
frequency components of the input image are beneficial
to improving the coding efficiency. We further ablated
the specific design choices, including concatenating the
original image and adding the residual block, for the
frequency decomposition module and verify their effective-
ness according to the increased BD-rate. To ablate the
dual attention module, we replaced it with stacks of four
convolution layers and attained a 2.37% increase in BD-
rate.

Rounding Loss. We show that removing the round-
ing loss for mixed training from the full model leads to
deteriorated coding efficiency. Excluding the proposed

Table 3. Ablative analysis of design choices for frequency
decomposition. Here, Concat refers to concatenating the original
image to the low- & high-frequency components, and ResBlock
denotes the residual blockR in the decomposition module.

Base/Detail Concat ResBlock Dual Attention BD-rate↑
Original Image 4 4 4 2.08%

4 7 4 4 0.09%
4 4 7 4 0.15%
4 4 4 7 2.37%

rounding loss from the finetuning process increases the BD-
rate by 3.52%. We visualize the effect of incorporating the
rounding loss by sampling the top four feature maps with
the greatest discrepancy after rounding from the original
latent and plotting the pixel-wise absolute error. As shown
in Fig. 9, the refined feature maps with rounding loss added
are much less deviated than those without.

Figure 9. Visualization of latent residual maps with (upper row)
and without (lower row) rounding loss during finetuning (λ =
0.004). Imposing the latent rounding loss effectively reduces the
residual without modifying the network architecture.

5. Conclusion
In this paper, we propose a neural image compres-

sion scheme using a novel AMBP module and frequency
decomposition. We reformulate the iterative projection
operations into a multi-scale feature fusion module and
incorporate channel attention with soft content selection.
We also propose a novel frequency decomposition method
that enables the network to focus on distinct frequency
components of the input image, where their derived latents
are adaptively rescaled and integrated using an efficient dual
attention module. Further, we adopt a novel training scheme
that exploits upsampled results to reduce the residual caused
by rounding the latent. Experimental results show that
our method outperforms the existing neural compression
frameworks and the next-generation compression standard
VVC-intra by a noticeable margin.
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