






aL;g with values in [0; 1] and of shape T �HL�WL:

aL;1; � � � ; aL;G = LTAE(eL) , applied pixelwise. (2)

In order to use these attention masks at all scale levels l of
the encoder, we compute spatially-interpolated masks al;g

of shape T �Hl �Wl for all l in [1; L� 1] and g in [1; G]
with bilinear interpolation:

al;g = resize aL;g to Hl �Wl : (3)

The interpolated masks al;g at level l of the encoder are
then used as if they were generated by a temporal atten-
tion module operating at this resolution. We apply the
L-TAE channel-grouping strategy at all resolution levels:
the channels of each feature map sequence el are split
into G contiguous groups el;1; � � � ; el;G of identical shape
T�Cl=G�Wl�Hl. For each group g, the feature map se-
quence el;g is averaged on the spatial dimension using al;g

as weights. The resulting maps are concatenated along the
channel dimension, and processed by a shared 1 � 1 con-
volution layer Convl1�1 of width Cl. We denote by f l the
resulting map of size Cl �Wl �Hl by :

f l = Convl1�1

0@" TX
t=1

al;gt � e
l;g
t

#G
g=1

1A ; (4)

with [ � ] the concatenation along the channel dimension and
� the term-wise multiplication with channel broadcasting.

c) Spatial Decoding. We combine the feature maps f l

learned at the previous step with a convolutional decoder
to obtain spatio-temporal features at all resolutions. The
decoder is composed of L � 1 blocks Dl for 1 � l < L,
with convolutions, ReLu activations, and BatchNorms [14].
Each decoder block uses a strided transposed convolution
Dup
l to up-sample the previous feature map. The decoder at

level l produces a feature map dl of size Dl�Hl�Wl. In a
U-Net fashion, the encoder’s map at level l is concatenated
with the output of the decoder block at level l � 1:

dl = Dl([Dup
l (dl+1); f l]) for l 2 [1; L� 1] ; (5)

with dL = fL and [ � ] is the channelwise concatenation.

3.2. Panoptic Segmentation

Our goal is to use the multi-scale feature maps fdlgLl=1

learnt by the spatio-temporal encoder to perform panop-
tic segmentation of a sequence of satellite images over an
area of interest. The first stage of panoptic segmentation
is to produce instance proposals, which are then combined
into a single panoptic instance map. Since an entire se-
quence of images (often over 50) must be encoded to com-
pute fdlgLl=1, we favor a simple approach for our panop-
tic segmentation module. Furthermore, given the relative

(a) Instance masks (b) Target heatmap

(c) Observation from sequence. (d) Predicted centerpoints

Figure 3: Centerpoint Detection. The ground truth in-
stance masks (a) is used to construct a target heatmap (b).
Our parcel detection module maps the raw sequence of ob-
servation (c) to a predicted heatmap (d). The predicted cen-
terpoints (red crosses) are the local maxima of the predicted
heatmap (d). The black dots are the true parcels centers.

simplicity of parcels’ borders, we avoid complex region
proposal networks such as Mask-RCNN. Instead, we adapt
the single-stage CenterMask instance segmentation network
[48], and detail our modifications in the following para-
graphs. We name our approach Parcels-as-Points (PaPs) to
highlight our inspiration from CenterNet/Mask [55, 48].

We denote by P the set of ground truth parcels in the
image sequence X . Note that the position of these parcels
is time-invariant and hence only defined by their spatial ex-
tent. Each parcel p is associated with (i) a centerpoint ı̂p; ȷ̂p
with integer coordinates, (ii) a bounding box of size ĥp; ŵp,
(iii) a binary instance mask ŝp 2 f0; 1gH�W , (iv) a class
k̂p 2 [1;K] with K the total number of classes.

Centerpoint Detection. Following CenterMask, we per-
form parcel detection by predicting centerness heatmaps
supervized by the ground truth parcels’ bounding boxes. In
the original approach [55], each class has its own heatmap:
detection doubles as classification. This is a sensible choice
for natural images, since the tasks of detecting an object’s
nature, location, and shape are intrinsically related. In our
setting however, the parcels’ shapes and border characteris-
tics are mostly independent of the cultivated crop. For this
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