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Abstract

Recent advances in trajectory prediction have shown
that explicit reasoning about agents’ intent is important
to accurately forecast their motion. However, the current
research activities are not directly applicable to intelli-
gent and safety critical systems. This is mainly because
very few public datasets are available, and they only con-
sider pedestrian-specific intents for a short temporal hori-
zon from a restricted egocentric view. To this end, we pro-
pose LOKI (LOng term and Key Intentions), a novel large-
scale dataset that is designed to tackle joint trajectory and
intention prediction for heterogeneous traffic agents (pedes-
trians and vehicles) in an autonomous driving setting. The
LOKI dataset is created to discover several factors that may
affect intention, including i) agent’s own will, ii) social in-
teractions, iii) environmental constraints, and iv) contex-
tual information. We also propose a model that jointly per-
forms trajectory and intention prediction, showing that re-
currently reasoning about intention can assist with trajec-
tory prediction. We show our method outperforms state-
of-the-art trajectory prediction methods by upto 27% and
also provide a baseline for frame-wise intention estimation.
The dataset is available at https://usa.honda-ri.
com/loki

1. Introduction
Over the past few years, there has been extensive re-

search into predicting future trajectories of dynamic agents
in scenes, such as pedestrians and vehicles. This is an in-
credibly important and challenging task for safety critical
applications such as autonomous vehicles or social robot
navigation. While these methods have been significantly
advanced over recent years, very few benchmarks specifi-
cally test if these models can accurately reason about key
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Figure 1: We show that reasoning about long-term goals
and short-term intents plays a significant role in trajectory
prediction. With a lack of comprehensive benchmarks for
this purpose, we introduce a new dataset for intention and
trajectory prediction. An example use case is illustrated in
(a) where we predict the trajectory of the target vehicle. In
(b), long-term goals are estimated from agent’s own mo-
tion. Interactions in (c) and environmental constraints such
as road topology and lane restrictions in (d) influence the
agent’s short-term intent and thus future trajectories.

maneuvers such as sudden turns and lane changes of vehi-
cles or pedestrians crossing the road. Traditional trajectory
error metrics may not capture performance on frame-level
maneuvers, which is critical for safe planning.

An intelligent trajectory prediction system should be
able to understand and model dynamic human behaviors.
The study of human behavior as goal-directed entities has
a long and rich interdisciplinary history across the sub-
fields of psychology [1], neuroscience [2] and computer
vision [3]. The human decision making process is inher-
ently hierarchical, consisting of several levels of reasoning
and planning mechanisms that operate in tandem to achiev-
ing respective short and long term desires. Recent works
have showed that explicitly reasoning about long-term goals
[3, 4, 5] and short-term intents [6, 7, 8] can assist with tra-
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jectory prediction.
In this work, we propose to couple the tasks of hetero-

geneous (vehicles, pedestrians, etc.) multi-agent trajectory
forecasting and intention prediction. We believe it is critical
to explicitly reason about agents’ long-term goals as well as
their short-term intents. In our work, we define goals to
be a final position an agent wants to reach for a given pre-
diction horizon [9, 5], while intent refers to how an agent
accomplishes their goal [10]. For example, consider a ve-
hicle at an intersection. At the highest level, say they want
to reach their ultimate goal of turning left to their final goal
point, which in turn might be necessary for some higher-
level end (such as going home). However, the exact mo-
tion of their trajectory is subject to many factors including
i) agent’s own will, ii) social interactions, iii) environmen-
tal constraints, iv) contextual cues. Thus, when reasoning
about the agent’s intent to turn left it is important to con-
sider not only agent dynamics but also how intent is subject
to change based on map topology or neighboring agents (see
Figure 1). We believe this complex hierarchy of short-term
intents and long-term goals is ubiquitous and in fact, crucial,
for agent motion planning and hence by extension, for mo-
tion prediction. We propose an architecture that considers
long-term goals similar to [9, 5, 3, 4] but adds a key com-
ponent of frame-wise intention estimation which is used to
condition the trajectory prediction module. By forcing the
model to learn discrete short-term intents of agents, we ob-
serve improved performance by the prediction module.

Equally rich & successful is the contemporary history of
the use of datasets for benchmarking progress in computer
vision. Ushered by seminal works such as MNIST [11] and
benchmarks such as ImageNet [12], benchmarking progress
and learning from data has played a key role in the success
of modern deep learning. Currently, there exists no public
datasets that allow for explicit frame-wise intention predic-
tion for heterogeneous agents in highly complex environ-
ments. Although few datasets are designed to study pedes-
trian intents or actions [13, 7, 6, 14] from egocentric view,
it is an inherent limitation to extensive study of tasks for au-
tonomous driving. Thus, we propose a joint trajectory and
intention prediction dataset that contains RGB images with
corresponding LiDAR point clouds with detailed, frame-
wise labels for pedestrians and vehicles. The LOKI dataset
allows explicit modeling of agents’ future intent and exten-
sive benchmarking for both tasks. It also shows promising
directions to jointly reason about intentions and trajectories
while considering different external factors such as agents’
predilection, social interactions and environmental factors.
We show that by modeling short-term intent and long-term
goals with explicit supervision via intention labels, better
trajectory prediction accuracy can be achieved. In addition,
predicting a specific intention at each frame adds a layer
of abstraction to our model that improves understanding

prediction decisions, an important step towards maintaining
safety critical applications.

In conclusion, the contribution of our work is twofold.
First, we propose the first publicly available heterogeneous
dataset which contains frame-wise intention annotations
and captures trajectories of up to 20 seconds containing
both 2D and 3D labels with RGB and LiDAR inputs. Sec-
ond, we illustrate the efficacy of separately reasoning about
both long-term goals and short-term intents through abla-
tion studies. Specifically, we highlight how the subtask
of intention prediction improves prediction performance,
and propose a model that outperforms state-of-the-art mul-
timodal benchmarks by upto 27%. We believe our highly
flexible dataset will allow the trajectory prediction commu-
nity to further explore topics within the intention-based pre-
diction space. In addition, the problem of intention estima-
tion is an involved task in and of itself for which our work
provides a strong baseline.

2. Related Work
Over the past few years, there has been a rapid improve-

ment in the field of trajectory prediction owing to the suc-
cess of deep neural networks and larger publicly available
datasets [15, 7, 6, 13, 16, 17, 18, 19, 20]. There have been
numerous subtopics of interest within the trajectory predic-
tion community including compliant trajectory prediction,
multi-modal trajectory prediction, and goal-oriented predic-
tion [21, 22, 23, 24, 25, 3, 9, 26, 4, 27, 28, 29, 30, 7, 31, 5].

2.1. Contextual Trajectory Prediction
Earlier works in the field of trajectory prediction focused

on unimodal trajectory prediction – predicting a single fu-
ture path for each agent. These works underscored the im-
portance of social [32, 27, 33] and scene compliance [34]
when making predictions. Over the past few years, trajec-
tory prediction studies have extended these ideas to multi-
modal frameworks to account for multiple plausible futures
each agent can have. In SocialGAN, Gupta et al. [23] in-
troduce a socially-aware multi-modal framework that uses
generative adversarial networks to sample a varying number
of future trajectories for each agent. Since then, there has
been a major emphasis and many interesting approaches to
with multimodal forecasting [22, 35, 9, 23, 36, 4, 30, 37].

2.2. Goal-based Prediction
When modeling vehicle and human trajectories, it is nat-

ural to formulate the problem as a goal-directed task. Be-
cause humans are not completely stochastic agents and have
a predilection towards certain actions, very recent trajectory
forecasting studies have shown the effectiveness of goal-
conditioned predictions [38, 28, 9, 3, 39, 7, 40, 4, 5, 41].
Recently, [9] and [5] showed that considering agents’ final
goal points can immensely aid in forecasting trajectories.

9804



However, both of these works only consider positional in-
formation as their goal states. In our work, we propose and
show the effectiveness of considering both long-term posi-
tional goals as well as short-term intended actions.

2.3. Intention Datasets
To better understand agent intent in traffic scenes, a

few works have proposed datasets that contain intention
labels to study underlying intent in addition to the tradi-
tional trajectory prediction task. The JAAD [7], PIE [13]
and STIP [6] datasets are recent datasets designed to study
pedestrian intent. The JAAD dataset focuses on traffic scene
analysis and behavior understanding of pedestrian at inter-
section crossing scenarios. The PIE dataset expands on
JAAD further and contains more annotations for both in-
tention estimation and trajectory prediction. PIE [7] only
predicts intent at the current timestep and focuses on shorter
horizon predictions (1.5 seconds). The STIP dataset solves
the limitation of only being able to do single-shot intention
prediction, as it contains frame-wise intention labels for up
to 3 seconds. However, this dataset only contains ”cross-
ing/not crossing” labels for pedestrians and does not focus
on trajectory prediction. All these datasets only consider in-
tentions of pedestrians at intersections which may not cap-
ture the intents of all agents in a highly complex traffic en-
vironment with both vehicles and pedestrians.

IntentNet [8] does consider intents for vehicle trajectory
prediction; however, they do not consider frame-wise in-
tentions. Furthermore, the dataset and labels are not pub-
licly available. TITAN [14] is another driving action dataset
collected from egocentric view. Although it can be po-
tentially used for intention prediction of traffic agents, it
only contains ego-view tracklets and lacks environmental
and LiDAR information that can be crucial to find agents’
intent. Both these works also only focus on short term
predictions (less than 3 seconds). Compared with general
driving dataset (such as Waymo [42], Nuscenes[43], and
INTERACTION[44]), LOKI extends the standard bound-
ing box, track id, etc. to richer intention, contextual and
environmental labels.

To the best of our knowledge, currently no publicly avail-
able dataset contains detailed, frame-wise annotations to
allow for heterogeneous multi-agent trajectory forecasting
and intention prediction in joint camera and lidar space.
Our dataset contains very diverse traffic scenarios through
long data collection periods in different locations, weather
conditions, roads and lighting. Table 1 shows the details of
our LOKI dataset in comparison to other recently available
intention datasets (PIE, JAAD, STIP).

3. LOKI Dataset
Exploring predictions in a large traffic environment is a

complex problem because the future behavior of each traf-

PIE [7] JAAD [13] STIP [6] LOKI (ours)
# of scenarios - 346 556 644
# of agents 1.8K 2.8K 3.3k 28K
# of labeled agents 1.8K 0.6K 3.3 28K
# of classes 1 1 1 8
# of bboxes 740K 391K 350k 886K
# of agent types 1 (Ped) 1 (Ped) 1 (Ped) 8 classes
Avg. agent per frame 2.5 5.2 3.2 21.6
Annotation freq. - - 2 FPS 5 FPS
Frame-wise labels no 3 3 3
RGB Images 3 3 3 3
LiDAR Point cloud no no no 3
2D Bounding box 3 3 3 3
3D Bounding box no no no 3
Lane Info no no no 3
Pedestrian attributes no 3 no 3

Table 1: Comparison of LOKI dataset with PIE [7],
JAAD [13] and STIP [6].

Figure 2: Distribution of labels sorted according to the dif-
ferent types of intention among the different classes

fic participant is not only indicated by the past behavior,
but also highly impacted by the future goals and inten-
tions. With a lack of comprehensive benchmarks for this
purpose, we introduce a large scale dataset that is designed
for the task of joint intention and trajectory prediction. Our
dataset is collected from central Tokyo, Japan using an in-
strumented vehicle that is equipped with a camera , LiDAR
, GPS and vehicle CAN BUS. The recordings are suburban
and urban driving scenarios that contain diverse actions and
interactions of heterogeneous agents, captured from differ-
ent times of the day.

From our recordings, we extracted 644 scenarios with
average 12.6 seconds length. The synced LiDAR data and
RGB image were down sampled to 5HZ for annotation. The
total number of agents is over 28K including 8 classes (i.e.,
Pedestrian, Car, Bus, Truck, Van, Motorcyclist, Bicyclist,
Other) of traffic agents, which results in 21.6 average agents
in a scene. We annotated all these agents’ bounding boxes
(total 886K) in the RGB image (2D) as well as LiDAR point
cloud (3D) by linking with a same track-ID. The compar-
ison with existing benchmarks is shown in Table 1. The
LOKI dataset is annotated with unique attributes that can
influence agents’ intent such as interaction related labels,
environmental constraints and contextual information.
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Figure 3: Visualization of three types of labels: (1a-1b)
Intention labels for pedestrian; (2a-2b) Intention labels for
vehicle; and (3a-3b) Environmental labels. The left part of
each image is from laser scan and the right part is from cam-
era. In (1a), the current status of pedestrian is ”Waiting to
cross”, and the potential destination shows the intention of
pedestrian. In (3a), the blue arrow indicates the possible ac-
tion of the current lane where the vehicle is on, and the red
words present the lane position related to the ego-vehicle.

3.1. Dataset Annotation
Considering that LiDAR point clouds better capture po-

sitional relations among agents than RGB images, we anno-
tate 3D bounding box of agents with their orientation, po-
tential destination of pedestrians, road entrance / exit, and
agents’ intention as well as action labels in this space. In
contrast, in the RGB image space we leverage its contex-
tual clarity to annotate environmental labels such as lane
information (what actions can be made from this lane), lane
number for vehicles (relative position with respect to the
autonomous agent), the gender and age for pedestrian, the
state of traffic light, and the type of traffic sign. Note that we
also annotate 2D bounding box, potential destination and
road entrance / exit information in the RGB space to inspire
the potential research in the egocentric view. By using the
consistent tracking ID between the same agent in the 3D Li-
DAR space and 2D image space, our labels can be shared
across different spaces.

To dig into more complex prediction researches, our
dataset provides denser agents per frame and more metic-
ulous intention attributes compared to other datasets.

We have three types of labels in the LOKI dataset: In-
tention labels, Environmental labels and Contextual labels

to explore how these can affect the future behavior of agents
(details and visuals are in Figure 2 and Figure 3).
Intention labels Intentions are defined to be ”how” an ac-
tor decides to reach a goal via a series of actions [10]. At
each frame, we annotated the current actions of the traffic
participants and then used future actions to generate our in-
tention labels. For example, if the current action of vehicle
is “Moving” and the future action in 1 second is ”Stopped”,
the vehicle’s current intention is to stop. Various intention
horizons can be explored; we use 0.8s, as we explore how
short-term intent can help guide trajectory prediction.
Environmental labels The environment of driving scene
can heavily impact the intention of agent especially for the
driving area users, so we include the environmental infor-
mation such as ”Road Exit and Entrance” positions, ”Traf-
fic light”, ”Traffic Sign”, ”Lane Information” in the LOKI
dataset. Those labels determined by the structure of the road
and the traffic rules that can be applied to any agent in the
scene. The lane information includes the allowed actions
of the current lane where the vehicle is on and the relative
position between other vehicle and ego-vehicles.
Contextual labels There are some other factors may
also affect the future behavior of agent. We define the
”Weather”, ”Road condition”, ”Gender”, ”Age” as exter-
nal contextual labels. These factors are the characters of the
agent or environment which can cause the different inten-
tions even under similar environment condition.

4. Proposed Method
4.1. Problem Formulation

In this work, we tackle the problem of multi-agent tra-
jectory forecasting while concurrently predicting agent in-
tentions. The type of intentions vary between agent classes:
vehicles and pedestrians. We formulate the problem as fol-
lows. Suppose in a given scene, S , we have N agents,
A1:N . Given the past tobs = 3s of trajectory history in
BEV coordinates, the problem requires forecasting the fu-
ture tpred = 5s coordinates of the agent in top-down image
space. Since our dataset allows for frame-wise intention
predictions depending on agent type (pedestrians vs. ve-
hicles), we define another task to predict discrete intentions
for each agent at each timestep, in addition to the traditional
trajectory prediction problem.

4.2. Model Design
4.2.1 Long-term Goal Proposal Network

Intuitively, agents have a predetermined, long-term goal that
they want to reach. Many recent goal-directed works have
focused on modeling this through estimating final ”end-
point” or ”goal state” distributions as done in [9, 3, 5, 28, 4].
Inspired by agents’ rational decision-making process and
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Figure 4: Our model first encodes past observation history
of each agent to propose a long-term goal distribution over
potential final destinations for each agent independently. A
goal, G is then sampled and passed into the Joint Interac-
tion and Prediction module. A scene graph is constructed
to allow agents to share trajectory information, intentions,
and long-term goals. Black nodes denote road entrance/exit
information which provides agents with map topology in-
formation. At each timesteps, current scene information is
propagated through the graph. We then predict an intent (the
action will the agent take in the near future) for each agent.
Finally, the trajectory decoder is conditioned on predicted
intentions, goals, past motion, and scene before forecasting
the next position. This process is recurrently repeated for
the horizon length. Note that

L
denotes concatenation.

the success of prior works, we design a goal network simi-
lar to the method proposed in [9]. For each agent, Ak, we
use a Conditional Variational Autoencoder (CVAE) to esti-
mate the final long term goal Gk that is simply the estimated
position in BEV ukf = (xkf , ykf ) where f indicates the fi-
nal frame. The inputs into the CVAE are the encodings from
the Observation RNN Encoder. The goal network only con-
sider agents’ own history, as agents have a predetermined
long term goal irrespective of other agents.

4.2.2 Scene Graph + Trajectory Decoder

Our main insight and promising directions from our pro-
posed dataset comes from agents’ short-term intentions. As
described earlier, we have different intentions for pedestri-
ans and vehicles. Without loss of generality, we will refer
to agents, A, and intentions, I , without specifying the type
of agent. We believe agents’ have intermediate stochastic
intents that can change depending on agent behavior, agent-
agent interaction, or environmental factors. To account for
this, we construct a traffic scene graph G to account for so-
cial and environmental factors that may affect intent and
trajectory prediction.

More concretely, suppose we have a scene graph G =
(V, E) where vertices, V , denote agents and road en-
trances/exits and edges, E , capture agent-agent and agent-
map influence. In a given scene, for neighboring agents

vi and vj , there is a directional edge eij if agent i affects
agents j (within a certain distance threshold). Static road
entrance/exit nodes can affect agents but without incom-
ing edges. We connect a directional edge eij if road en-
trance/exit node i is within a certain distance from agent j.

We then predict agents’ future locations via a daisy
chained process described as follows. At each frame, m,
our model first shares information between agents via the
attention mechanism used in [45]:

xt+1
i = �(xt

i) +
X

xj2N (xi)

↵ij ⇤ �(xt
j , eij),

where xt+1
i represents the updated node features following

attention-based feature aggregation with all of its neighbors
xj 2 N (xi). We use agents’ velocities and relative po-
sitions as edge features. These features are encoded by a
2-layer MLP prior to message passing at each timestep. We
use the scaled dot-product attention [45] formulation:

aij = softmax(
 (xi)T ⇠(xj , eij)p

d
)

Here, aij represents the attention coefficient between two
nodes i and j and d represents the degree of the node. We
use a single-layer for �, �,  , and ⇠.

After message passing which allows agents to share their
past trajectory, goal, and intention information along with
road information through the road entrance/exit nodes, our
model then predicts agent intent, which we define to be the
agent’s future action m + q frames ahead. In our experi-
ments, we set q = 4, thus predicting short-term intent 0.8s
in the future. We then condition trajectory prediction for
frame m+1 based on agent intent at frame m. This process
of information sharing and intention conditioning is recur-
rently repeated for the next f � ob timesteps where f de-
notes the last prediction frame number and ob denotes the
last observation frame. Formally, at each frame, m, we first
estimate the probability distribution over a discrete set of
intentions (different set of intentions for pedestrian vs. ve-
hicle) for an agent, Ai:

P (Iim |Iiob:m�1 , Ui0:m�1 , Gi, ai0:ob ,[Aj2N (Ai)Ijob:m�1 ,

Uj0:m�1 , Gj , aj0:ob , Ree)

where I refers to intention, U is position, G is long-term
positional goal, a is action, and Ree refers to road en-
trances/exit labels. The intention networks are two-layer
MLPs which predicts intention using each actor’s updated
hidden states from the most recent message passing. Fol-
lowing this, we then predict the next position of each agent,
U , conditioned as follows:

P (Uim+1 |Iio:m , Ui0:m , Gi, ai0:ob ,[Aj2N (Ai)Ijo:m ,

Uj0:m , Gj , aj0:ob , Ree)
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The trajectory decoder module consists of a GRU that up-
dates each actor’s current hidden state followed by a 2-layer
MLP used to predict positions at each step. The overview of
our model is illustrated in Figure 4. Specific model architec-
ture details will be provided in the supplementary material.

4.2.3 Loss Functions

Our goal proposal network (GPN) follows the approach in-
troduced in [9] and is trained via the following loss function:

LGPN = ↵1DKL(N (µ,�)kN (0, I)) + ↵2kĜ�Gk22

Here ↵1 and ↵2 are tunable parameters to weight the KL
Divergence loss and goal reconstruction loss for training
the CVAE. We observed that training via conditioning with
ground-truth goal positions helps with model convergence
because the intentions are dependent on the long-term goal.

Our decoder module which is responsible for both inten-
tion and trajectory prediction is composed of separate loss
terms for each. Our intention loss is defined as follows:

Lint = �
tfX

j=tob+1

nX

i=0

wij ⇤ yij ⇤ log(ŷij)

Due to heavy class imbalance, we not only augment rare
trajectories such as lane changes and turning but also weight
the cross entropy loss by wi, which is the inverse frequency
of the class.

Since we predict offsets in position (velocity) rather than
position directly for better model convergence, our loss is
on the predicted velocity V for all timesteps:

Ltraj = ||V � V̂ ||2

We train our network end-to-end by weighting each of
the loss terms:

LFinal = �1LGPN + �2Lint + �3Ltraj

4.2.4 Evaluation Metrics

For trajectory prediction evaluation, we use the standard
Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) metrics:

ADE =

Ptf
j=tob+1 kûj � ujk2

(tf � tob) FDE = kûtf � utf k2

where û and u are the estimated and ground truth posi-
tions respectively. Furthermore, we use the minADE-N
and minFDE-N error metric introduced in [23] for multi-
modal evaluation. The metric is simply the minimum ADE
and FDE out of N future trajectories predicted at test-time.

For intention prediction, we evaluate frame-wise classi-
fication accuracy of intents and visualize the confusion ma-
trix to analyze classification performance.

5. Experiments
In this section, we present results of our model on tra-

jectory & intent prediction tasks and demonstrate a su-
perior performance against prior state-of-the-art baselines
(with publicly available code) across a variety of settings.
We benchmark against PECNet [3], a strong scene agnos-
tic trajectory prediction method with state-of-the-art perfor-
mance on standard intention agnostic prediction datasets.
S-STGCNN [46] and S-GAN [23] are strong socially-
aware models that achieved prior state-of-the-art on vari-
ous benchmarks. We also report an interesting ablation on
the effect of annotation frequency on the final performance,
which confirms our hypothesis for the effectiveness of de-
tailed intent annotations in trajectory prediction.

Trajectory Prediction Performance. We report our
model’s performance and benchmark it against prior state-
of-the-art models for unimodal (single shot, N = 1) pre-
diction in Table 2 and for multimodal predictions (N = 20
shots) in Table 3. Our ablations are with Ours (without ac-
tion/intention labels), IC (with action/intention labels for in-
tention conditioning), SG (with scene graph for social rea-
soning and environmental cues).

Several interesting trends emerge. First, we observe that
in the single shot setting, our intention conditioned model
outperforms prior state-of-the-art method by a significant
margin of 12% in ADE, 9% in FDE. Second, we see a sim-
ilar trend in multi-shot prediction setting as well with our
model outperforming PECNet by 33% in ADE and 9% in
FDE for pedestrians and a delta of 26% in ADE and 13%
in FDE for moving vehicles. Third, notice that the perfor-
mance gap is significant in hard non-linear cases such as
lane changes and turns, where our model achieves 30% and
16% better performance in ADE and FDE respectively.

Also noteworthy is the crucial effect of conditioning pre-
dictions on intentions and incorporating social and environ-
mental cues through the scene graph, which is also shown
in Table 2 and Table 3. We note that both intention cues
and scene graph information are critical to overall perfor-
mance, with intention improving ADE performance by up
to 7% and 8% across all agent types (especially nonlinear
trajectories such as lane changes and turns) for the unimodal
and multimodal settings. We notice that the scene graph
boosts performance by 3% in ADE for the multimodal set-
ting across all agent types.

We notice an interesting behavior with pedestrians. Con-
ditioning on pedestrian intent such as crossing vs. waiting
to cross helps for single-shot prediction as shown in Table 2.
However, we do not see a benefit for multimodal prediction.
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S-STGCNN EvolveGraph PECNet Ours Ours + IC Ours + IC + SG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Pedestrians 0.96 1.98 0.83 1.49 0.79 1.31 0.61 1.38 0.56 1.24 0.55 1.21
Vehicles 3.03 7.01 3.03 2.58 6.63 6.34 2.37 6.20 2.23 5.80 2.24 5.82

Lane Change 4.41 10.17 2.96 7.92 2.78 7.60 2.93 7.88 2.47 6.78 2.52 6.71
Turn 3.48 8.15 3.13 7.85 2.97 7.44 2.76 7.26 2.69 7.03 2.69 7.02

Table 2: Trajectory error metrics for N=1 samples: ADE and FDE of various state-of-the-art baselines and our method using unimodal
(single-shot) evaluation. Reported errors are in meters. Lower is better. We show results evaluated on separate classes to gain more insight
on prediction performance. We report errors on 1) pedestrians, 2) vehicles (non-static), 3) agents that change lanes, and 4) agents that turn.

S-GAN S-STGCNN EvolveGraph PECNet Ours Ours + IC Ours + IC + SG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Pedestrians 1.04 2.18 0.63 1.01 0.55 0.79 0.51 0.70 0.36 0.70 0.37 0.71 0.34 0.64
Vehicles 3.57 8.05 2.28 4.46 1.72 3.41 1.59 3.05 1.33 3.09 1.20 2.63 1.18 2.64

Lane Change 3.50 8.41 3.00 6.09 1.86 3.39 1.62 2.85 1.42 3.30 1.26 2.70 1.22 2.71
Turn 3.75 9.01 2.68 5.71 2.25 4.32 1.96 4.07 1.54 3.59 1.45 3.24 1.40 3.13

Table 3: Trajectory error metrics for N=20 samples: ADE and FDE of various state-of-the-art baselines and our method using multi-
modal evaluation. Reported errors are in meters. Lower is better. We report errors on the same classes described in Table 2.

Figure 5: Visualization of top-1 trajectory prediction result
(green: past observation, blue: ground truth, red: predic-
tion) and frame-wise intention of a particular agent in dark
green circle at the start of the observation time step(GI:
Ground truth Intention, PI: Predicted Intention) is shown
at the bottom of each scenario. More detailed visualizations
and comparisons are provided in supplementary material.

We hypothesize that this is because the type of intent we la-
bel for pedestrian is not as granular as for vehicles in that
it does not change drastically frame-by-frame. This is vali-
dated in Figure 8 which shows experiments with downsam-
pled intention annotations. We observe that for pedestrians,
lower frequency annotations does not diminish performance

(a) Vehicle (N=1) (b) Vehicle (N=20)

(c) Pedestrian (N=1) (d) Pedestrian (N=20)

Figure 6: Intention prediction confusion matrices. (a-b) re-
sults for vehicles under both unimodal and multimodal sam-
pling, (c-d) those for pedestrians.

as compared to vehicles due to more unconstrained behav-
ior, we cannot have as detailed intent labels that are used for
vehicles such as turn or lane change. This may explain the
behavior of why intention conditioning only helps for the
single-shot case for pedestrians.

In Figure 5, we visualize our model’s best-of-20 perfor-
mance. We observe that predicted trajectories are fairly ac-
curate and with underlying turning intentions. While there
are limitations in exact frame-wise intention predictions, we
notice it can capture key future actions of turning and can
help guide predictions.
Intention Prediction: In addition to trajectory prediction,
our dataset enables for a more high level understanding of
agent intent to mimic how they plan their trajectory. Fig-
ure 7 illustrates the performance of intention prediction over
a 25 frame (5s) prediction horizon. Our work is the first to
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(a) Vehicle (N=1) (b) Vehicle (N=20)

(c) Pedestrian (N=1) (d) Pedestrian (N=20)

Figure 7: Accuracy vs. Future Horizon (in frames). The
x axis of each figure is time and the y axis of each figure is
accuracy (from 0 to 1). The change of intention prediction
accuracy over a time horizon for both unimodal and multi-
modal predictions. In (a-b) we plot intention accuracy over
time for vehicles for N=1 and N=20 samples respectively.
In (c-d) we plot intention accuracy over time for pedestri-
ans with N=1 and N=20 samples.

baseline both pedestrian and vehicle intent on a frame-wise
level. We notice that prediction performance monotonically
worsens over the horizon. However, we notice that for vehi-
cles the intention accuracy in the multimodal setting are sig-
nificantly improved from the unimodal case. This explains
why intention conditioning helps more in the multimodal
case, as agent intents are much more accurately understood.
In contrast, only a slight improvement in intention perfor-
mance for pedestrians. We posit this is because the intents
for pedestrians do not change as frequently and are not as
granular capturing direction such as ”turn left”; thus, having
more samples does not necessarily increase performance.

To better understand intention estimation, we visualize
the confusion matrices as shown in Figure 6. For vehi-
cles, we use the following set of discrete actions: mov-
ing, stopped, parking, lane change, turn left, and turn right.
We observed improved performance for vehicle intention
prediction with multimodal goal destination sampling, in-
dicating that our model can correlate long-term goals with
short-term intent. For pedestrians, we use moving, waiting
to cross, crossing, and stopped. The intents for pedestri-
ans do not rapidly change unlike those for vehicles. Thus,
we see that multimodal predictions do not actually improve
pedestrian intention estimation. These results corroborate
the results in Table 3 where multimodal predictions with
intention fail to outperform predictions without intentions.
This is further examined in the next section.
Effect of Annotation Frequency: Our dataset provides
very detailed frame-wise intention labels at 5FPS for all

Figure 8: ADE Performance based on varying ground-truth
intention annotation frequency.

agents. To examine the importance of having a dataset with
such detailed annotations, we experiment with how chang-
ing annotation frequency can affect performance. We pro-
vide our model with oracle intentions available at varying
frequencies. As shown in Figure 8, trajectory prediction
performance worsens roughly linearly as the frequency of
intention labels reduces. This highlights the importance of
our highly detailed annotations, as a choice to annotate ev-
ery other frame (2.5FPS) clearly affects performance. Note
that this effect is witnessed for primarily for vehicles, es-
pecially those that change lanes or turn. Pedestrian perfor-
mance is not affected much, as the intention labels used for
pedestrians do not change drastically for each frame. This
also explains why intention conditioning did not help for
multimodal evaluation for pedestrians as seen in Table 3.

6. Conclusion
In this work, we presented a large-scale heterogeneous

dataset with detailed, frame-wise intention annotations.
This dataset allows for both traditional trajectory predic-
tion as well as understanding how intent changes over a
long time horizon. In doing so, this dataset is this first
that can be used as a benchmark for intention understanding
for both vehicles and pedestrians. Furthermore, we formu-
late a joint trajectory and intention prediction framework
which outperforms state-of-the-art on trajectory prediction
metrics and offers a strong baseline for intention prediction.
We bridge the gap between trajectory prediction and inten-
tion prediction and show that combining the two can better
model agents’ decision-making process, assisting in trajec-
tory prediction. We believe our dataset can inspire future
works that consider intention prediction in addition to tradi-
tional trajectory forecasting. Doing so can give more insight
into models’ decisions and will be critical in designing and
maintaining a safe forecasting system.
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