Anticipative Video Transformer

Rohit Girdhar† Kristen Grauman‡†
†Facebook AI Research ‡University of Texas, Austin

http://facebookresearch.github.io/AVT

Abstract

We propose Anticipative Video Transformer (AVT), an end-to-end attention-based video modeling architecture that attends to the previously observed video in order to anticipate future actions. We train the model jointly to predict the next action in a video sequence, while also learning frame feature encoders that are predictive of successive future frames’ features. Compared to existing temporal aggregation strategies, AVT has the advantage of both maintaining the sequential progression of observed actions while still capturing long-range dependencies—both critical for the anticipation task. Through extensive experiments, we show that AVT obtains the best reported performance on four popular action anticipation benchmarks: EpicKitchens-55, EpicKitchens-100, EGTEA Gaze+, and 50-Salads; and it wins first place in the EpicKitchens-100 CVPR’21 challenge.

1. Introduction

Predicting future human actions is an important task for AI systems. Consider an autonomous vehicle at a stop sign that needs to predict whether a pedestrian will cross the street or not. Making this determination requires modeling complex visual signals—the past actions of the pedestrian, such as speed and direction of walking, or usage of devices that may hinder his awareness of the surroundings—and using those to predict what he may do next. Similarly, imagine an augmented reality (AR) device that observes a user’s activity from a wearable camera, e.g. as they cook a new dish or assemble a piece of furniture, and needs to anticipate his next steps to provide timely assistance. In many such applications, it is insufficient to recognize what is happening in the video. Rather, the vision system must also anticipate the likely actions that are to follow. Hence, there is a growing interest in formalizing the activity anticipation task [24, 45, 49, 64, 73, 82] along with development of multiple challenge benchmarks to support it [13, 14, 49, 55, 82].

Compared to traditional action recognition, anticipation tends to be significantly more challenging. First of all, it requires going beyond classifying current spatiotemporal visual patterns into a single action category—a task nicely suited to today’s well-honed discriminative models—to instead predict the multi-modal distribution of future activities. Moreover, while action recognition can often sidestep temporal reasoning by leveraging instantaneous contextual cues [31], anticipation inherently requires modeling the progression of past actions to predict the future. For instance, the presence of a plate of food with a fork may be sufficient to indicate the action of eating, whereas anticipating that same action would require recognizing and reasoning over the sequence of actions that precede it, such as chopping, cooking, serving, etc. Indeed, recent work [23, 77] finds that modeling long temporal context is often critical for anticipation, unlike action recognition where frame-level modeling is often enough [43, 50, 81]. These challenges are also borne out in practice. For example, accuracy for one of today’s top performing video models [77] drops from 42% to 17% when treating recognition versus anticipation on the
same test clips [13]—predicting even one second into the future is much harder than declaring the current action.

The typical approach to solving long-term predictive reasoning tasks involves extracting frame or clip level features using standard architectures [12, 86, 91], followed by aggregation using clustering [32, 62], recurrence [23, 24, 42], or attention [28, 59, 77, 95] based models. Except the recurrent ones, most such models merely aggregate features over the temporal extent, with little regard to modeling the sequential temporal evolution of the video over frames. While recurrent models like LSTMs have been explored for anticipation [2, 23, 96], they are known to struggle with modeling long-range temporal dependencies due to their sequential (non-parallel) nature. Recent work mitigates this limitation using attention-based aggregation over different amounts of the context to produce short-term (‘recent’) and long-term (‘spanning’) features [77]. However, it still reduces the video to multiple aggregate representations and loses its sequential nature. Moreover, it relies on careful and dataset-specific tuning of the architecture and the amounts of context used for the different aggregate features.

In this work, we introduce Anticipative Video Transformer (AVT), an alternate video modeling architecture that replaces “aggregation” based temporal modeling with an anticipative architecture. Aiming to overcome the tradeoffs described above, the proposed model naturally embraces the sequential nature of videos, while minimizing the limitations that arise with recurrent architectures. Similar to recurrent models, AVT can be rolled out indefinitely to predict further into the future (i.e. generate future predictions), yet it does so while processing the input in parallel with long-range attention, which is often lost in recurrent architectures.

Specifically, AVT leverages the popular transformer architecture [89, 92] with causal masked attention, where each input frame is allowed to attend only to frames that precede it. We train the model to jointly predict the next action while also learning to predict future features that match the true future features and (when available) their intermediate action labels. Figure 1 shows examples of how AVT’s spatial and temporal attention spreads over previously observed frames for two of its future predictions (wash tomato and turn-off tap). By incorporating intermediate future prediction losses, AVT encourages a predictive video representation that picks up patterns in how the visual activity is likely to unfold into the future. This facet of our model draws an analogy to language, where transformers trained with massive text corpora are now powerful tools to anticipate sequences of words (cf. GPT and variants [8, 69, 70]). The incremental temporal modeling aspect has been also been explored for action recognition [53], albeit with convolutional architectures and without intermediate self-supervised losses.

While the architecture described so far can be applied on top of various frame or clip encoders (as we will show in experiments), we further propose a purely attention-based video modeling architecture by replacing the backbone with an attention-based frame encoder from the recently introduced Vision Transformer [18]. This enables AVT to attend not only to specific frames, but also to spatial features within the frames in one unified framework. As we see in Figure 1, when trained on egocentric video, the model spontaneously learns to attend to spatial features corresponding to hands and objects, which tend to be especially important in anticipating future activities [57].

In summary, our contributions are: 1) AVT, a novel end-to-end purely attention based architecture for predictive video modeling; 2) Incorporation of a self-supervised future prediction loss, making the architecture especially applicable to predictive tasks like action anticipation; 3) Extensive analysis and ablations of the model showing its versatility with different backbone architectures, pre-trainings, etc. on the most popular action anticipation benchmarks, both from first and third person viewpoints. Specifically, we outperform all published prior work on EpicKitchens-55 [13], EpicKitchens-100 [14], EGTEA Gaze+ [55], and 50-Salads [82]. Most notably, our method outperforms all submissions to the EpicKitchens-100 CVPR’21 challenge4, and is ranked #1 on the EpicKitchens-55 leaderboard5 for seen (S1) and #2 on unseen (S2) test sets.

2. Related Work

Action anticipation is the task of predicting future actions given a video clip. While well explored in third-person video [2, 26, 38, 39, 47, 49, 82, 90], it has recently gained in popularity for first-person (ego-centric) videos [13, 14, 16, 24, 57, 64, 77], due to its applicability on wearable computing platforms. Various approaches have been proposed for this task, such as learning representations by predicting future features [90, 96], aggregating past features [24, 77], or leveraging affordances and hand motion [57, 64]. Our work contributes a new video architecture for anticipation, and we demonstrate its promising advantages on multiple popular anticipation benchmarks.

Self-supervised feature learning from video methods learn representations from unlabeled video, often to be fine-

1We use the term “anticipative” to refer to our model’s ability to predict future video features and actions.

2Throughout we use the term “causal” to refer to the constraint that video be processed in a forward, online manner, i.e. functions applied at time t can only reference the frames preceding them, akin to Causal Language Modeling (CLM) [51]. This is not to be confused with other uses of “causal” in AI where the connotation is instead cause-and-effect.

3EpicKitchens-55/100 datasets are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

4competitions.codalab.org/competitions/25925

5competitions.codalab.org/competitions/20071
tuned for particular downstream tasks. Researchers explore a variety of “free” supervisory signals, such as temporal consistency [21, 41, 44, 94, 99], inter-frame predictability [36, 37, 40, 83], and cross-modal correspondence [3, 48, 83, 84]. AVT incorporates losses that encourage features predictive of future features (and actions); while this aspect shares motivation with prior [25, 36, 37, 58, 60, 75, 78, 83, 84, 90] and concurrent work [96], our architecture to achieve predictive features is distinct (transformer based rather than convolutional/recurrent [25, 36, 37, 78, 96]), it operates over raw frames or continuous video features as opposed to clustered ‘visual words’ [84], assumes only visual data (rather than vision with speech or text [83, 84]), and is jointly trained for action anticipation (rather than pre-trained and then fine-tuned for action recognition [36, 37, 83]).

Language modeling (LM) has been revolutionized with the introduction of self-attention architectures [89]. LM approaches can generally be classified in three categories: (1) encoder-only [17, 67], which leverage bidirectional attention and are effective for discriminative tasks such as classification; (2) decoder-only [8, 69], which leverage a causal attention [51] attending on past tokens, and are effective for generative tasks such as text generation; and (3) encoder-decoder [52, 71], which incorporate both a bidirectional encoder and causal decoder, and are effective for tasks such as machine translation. Capitalizing on the analogy between action prediction and generative language tasks, we explore causal decoder-only attention architectures in our model. While language models are typically trained on discrete inputs (words), AVT trains with continuous video features. This distinction naturally influences our design choices, such as an L_2 loss for generative training as opposed to a cross entropy loss for the next word.

Self-attention and transformers in vision. The general idea of self-attention in vision dates back to non-local means [9], and is incorporated into contemporary network architectures as non-local blocks [10, 56, 93, 95] and gating mechanisms [30, 46, 62, 97]. While self-attention approaches like transformers [89, 92] offer strong results for high-level vision reasoning tasks [11, 101], more recently, there is growing interest in completely replacing convolutional architectures with transformers for image recognition [18, 85]. For video, prior work has mostly leveraged attention architectures [28, 93, 95] on top of standard spatio-temporal convolutional base architectures [12, 86, 88]. In contrast, AVT is an end-to-end transformer architecture for video—to our knowledge the first (concurrent with [4, 7, 19, 54, 65]). Unlike the concurrent methods [4, 7, 19, 54, 65], which are bidirectional and address traditional action recognition, AVT has a causal structure and tackles predictive tasks (anticipation). AVT yields the best results to date for several well-studied anticipation benchmarks.

3. Anticipation Problem Setup

While multiple anticipation problem setups have been explored in the literature [45, 64, 73], in this work we follow the setup defined in recent challenge benchmarks [13, 14] and illustrated in Figure 2. For each action segment labeled in the dataset starting at time τ_a, the goal is to recognize it using a τ_o length video segment τ_o units before it, i.e. from $\tau_a - (\tau_a + \tau_o)$ to $\tau_a - \tau_o$. While methods are typically allowed to use any length of observed segments (τ_o), the anticipation time (τ_a) is usually fixed for each dataset.

4. Anticipative Video Transformer

We now present the AVT model architecture, as illustrated in Figure 3. It is designed to predict future actions given a video clip as input. To that end, it leverages a two-stage architecture, consisting of a backbone network that operates on individual frames or short clips, followed by a head architecture that operates on the frame/clip level features to predict future features and actions. AVT employs causal attention modeling—predicting the future actions based only on the frames observed so far—and is trained using objectives inspired from self-supervised learning. We now describe each model component in detail, followed by the training and implementation details.

4.1. Backbone Network

Given a video clip with T frames, $V = \{X_1, \ldots, X_T\}$ the backbone network, B, extracts a feature representation for each frame, $\{z_1, \ldots, z_T\}$ where $z_t = B(X_t)$. While various video base architectures have been proposed [12, 20, 87, 91] and can be used with AVT as we demonstrate later, in this work we propose an alternate architecture for video understanding based purely on attention. This backbone, which we refer to as AVT-b, adopts the recently proposed Vision Transformer (ViT) [18] architecture, which has shown impressive results for static image classification.

Specifically, we adopt the ViT-B/16 architecture. We split each input frame into 16×16 non-overlapping patches. We flatten each patch into a 256D vector, and linearly project them to 768D, which is the feature dimension used throughout the encoder. While we do not need to classify each frame individually, we still prepend a learnable [class] token embedding to the patch features, whose
output will be used as a frame-level embedding input to the head. Finally, we add learned position embeddings to each patch feature similar to [18]. We choose to stick to frame-specific spatial position encodings, so that the same backbone model with shared weights can be applied to each frame. We will incorporate the temporal position information in the head architecture (discussed next). The resulting patch embeddings are passed through a standard Transformer Encoder [89] with pre-norm [92]. We refer the reader to [18] for details of the encoder architecture.

AVT-b is an attractive backbone design because it makes our architecture purely attentional. Nonetheless, in addition to AVT-b, AVT is compatible with other video backbones, including those based on 2D CNNs [80, 91], 3D CNNs [12, 20, 87], or fixed feature representations based on detected objects [5, 6] or visual attributes [63]. In §5 we provide experiments testing several such alternatives. For the case of spatiotemporal backbones, which operate on clips as opposed to frames, we extract features as \(z_t = B(X_{t-L}, \cdots, X_t) \), where the model is trained on \(L \)-length clips. This ensures the features at frame \(t \) do not incorporate any information from the future, which is not allowed in the anticipation problem setting.

4.2. Head Network

Given the features extracted by the backbone, the head network, referred to as AVT-h, is used to predict the future features for each input frame using a Causal Transformer Decoder, \(D \):

\[
\mathbf{\hat{z}}_1, \cdots, \mathbf{\hat{z}}_T = D(z_1, \cdots, z_T).
\]

(1)

Here \(\mathbf{\hat{z}}_t \) is the predicted future feature corresponding to frame feature \(z_t \), after attending to all features before and including it. The predicted features are then decoded into a distribution over the semantic action classes using a linear classifier \(\theta \), i.e., \(\mathbf{\hat{y}}_t = \theta(\mathbf{\hat{z}}_t) \). The final prediction, \(\hat{y}_T \), is used as the model’s output for the next-action anticipation task. Note that since the next action segment \((T + 1) \) is \(\tau_a \) seconds from the last observed frame \((T) \) as per the problem setup, we typically sample frames at a stride of \(\tau_a \) so that the model learns to predict future features/actions at that frame rate. However, empirically we find the model is robust to other frame rate values as well.

We implement \(D \) using a masked transformer decoder inspired from popular approaches in generative language modeling, such as GPT-2 [70]. We start by adding a temporal position encoding to the frame features implemented as a learned embedding of the absolute frame position within

Figure 3: (Left) AVT architecture. We split the \(T \) input frames into non-overlapping patches that are linearly projected. We add a learned [CLASS] token, along with spatial position embeddings, and the resulting features are passed through multiple layers of multi-head attention, with shared weights across the transformers applied to all frames. We take the resulting features corresponding to the [CLASS] token, append a temporal position encoding and pass it through the Causal Transformer Decoder that predicts the future feature at frame \(t \), after attending to all features from \(1 \cdots t \). The resulting feature is trained to regress to the true future feature \((L_{feat}) \), and the last prediction is trained to predict the future action \((L_{next}) \). (Right) Causal Transformer Decoder. It follows the Transformer architecture with pre-norm [92], causal masking in attention, and a final LayerNorm [70].
the clip. The embedded features are then passed through multiple decoder layers, each consisting of masked multi-head attention, LayerNorm (LN) and a multi-layer perceptron (MLP), as shown in Figure 3 (right). The final output is then passed through another LN, akin to GPT-2 [70], to obtain the future frame embeddings.

Aside from being visual rather than textual, this model differs from the original Transformer Decoder [89] in terms of the final LN and the masking operation in the multi-head attention. The masking ensures that the model only attends to specific parts of the input, which in the case of predictive tasks like ours, is defined as a ‘causal’ mask. That is, for the output corresponding to the future after frame \(t \), i.e. \(\hat{z}_t \), we set the mask to only attend to \(z_1 \cdots z_t \). We refer the reader to [70] for details on the masking implementation.

This design differs considerably from previous applications of language modeling architectures to video, such as VideoBERT [84]. It operates directly on continuous clip embeddings instead of first clustering them into tokens, and it leverages causal attention to allow for anticipative training (discussed next), instead of needing masked language modeling (MLM) as in BERT [17]. These properties make AVT suited for predictive video tasks while allowing for the long-range reasoning that is often lost in recurrent architectures. While follow-ups to VideoBERT such as CBT [83] operate on raw clip features, they still leverage a MLM objective with bidirectional attention, with the primary goal of representation learning as opposed to future prediction.

4.3. Training AVT

To sample training data, for each labeled action segment in a given dataset, we sample a clip preceding it and ending \(\tau_a \) seconds before the start of the action. We pass the clip through AVT to obtain future predictions, and then supervise the network using three losses.

First, we supervise the next-action prediction using a cross-entropy loss with the labeled future action, \(c_{T+1} \):

\[
L_{\text{next}} = -\log \hat{y}_T[c_{T+1}].
\]

Second, to leverage the causal structure of the model, we supervise the model’s intermediate future predictions at the feature level and the action class level. For the former, we predict future features to match the true future features that are present in the clip, i.e.

\[
L_{\text{feat}} = \sum_{t=1}^{T-1} ||\hat{z}_t - z_{t+1}||_2^2.
\]

This loss is inspired from the seminal work by Vondrick et al. [90] as well as follow ups [36, 37] that show that anticipating future visual representations is an effective form of self-supervision, though typically for traditional action recognition tasks. Concurrent and recent work adopts similar objectives for anticipation tasks, but with recurrent architectures [25, 78, 96]. Whereas recent methods [36, 37, 96] explore this loss with NCE-style [66] objectives, in initial experiments we found simple \(L_2 \) loss to be equally effective. Since our models are always trained with the final supervised loss, we do not suffer from potential collapse during training that would necessitate the use of contrastive losses.

Third, as an action class level anticipative loss, we leverage any action labels available in the dataset to supervise the intermediate predictions, i.e., when the input clip overlaps with any labeled action segments that precede the segment to be anticipated.\(^6\) Setting \(c_t = -1 \) for any earlier frames for which we do not have labels, we incur the following loss:

\[
L_{\text{cls}} = \sum_{i=1}^{T-1} L_{\text{cls}}^t; \quad L_{\text{cls}}^t = \begin{cases} \log \hat{y}_t[c_{t+1}] & \text{if } c_{t+1} \geq 0 \\ 0 & \text{otherwise.} \end{cases}
\]

We train our model with

\[
L = L_{\text{next}} + L_{\text{cls}} + L_{\text{feat}}
\]

as the objective, and refer to it as the anticipative [a] training setting. As a baseline, we also experiment with a model trained solely with \(L = L_{\text{next}} \), and refer to it as the naive [n] setting, as it does not leverage our model’s causal attention structure, instead supervising only the final prediction which attends to the full input. As we will show in Table 7, the anticipative setting leads to significant improvements.

4.4. Implementation Details

We preprocess the input video clips by randomly scaling the height between 248 and 280px, and take 224px crops at training time. We sample 10 frames at 1FPS for most experiments. We adopt network architecture details from [18] for the AVT-b backbone. Specifically, we use a 12-head, 12-layer transformer encoder model that operates on 768D representations. We initialize the weights from a model pretrained on ImageNet-1K (IN1k), ImageNet-21K (IN21k) or ImageNet-1K finetuned from ImageNet-21K (IN21+1k), and finetune end-to-end for the anticipation tasks. For AVT-h, we use a 4-head, 6-layer model that operates on a 2048D representation, initialized from scratch. We employ a linear layer between the backbone and head to project the features to match the feature dimensions used in the head. We train AVT end-to-end with SGD+momentum using \(10^{-6} \) weight decay and \(10^{-4} \) learning rate for 50 epochs, with a 20 epoch warmup [33] and 30 epochs of cosine annealed decay. At test time, we employ 3-crop testing, where we compute three 224px spatial crops from 248px input frames, and

\(^6\)For example, this would be true for each frame for densely labeled datasets like 50-Salads, and a subset of frames for sparsely labeled datasets like EpicKitchens-55.
average the predictions over the corresponding three clips. The default backbone for AVT is AVT-b, based on the ViT-B/16 architecture. However, to enrich our comparisons with some baselines [23, 24, 77], below also we report performance of only our head model operating on fixed features from 1) a frame-level TSN [91] backbone pre-trained for action classification, or 2) a recent spatiotemporal convolutional architecture irCSN-152 [67] pre-trained on a large weakly labeled video dataset [27], which has shown strong results when finetuned for action recognition. We finetune that model for action classification on the anticipation dataset and extract features that are used by the head for anticipation. In these cases, we only train the AVT-h layers. For all datasets considered, we use the validation set or split 1 to further optimize the hyperparameters, and use that setup over multiple splits or the held out test sets. Code and models will be released for reproducibility.

5. Experiments

We empirically evaluate AVT on four popular action anticipation benchmarks covering both first- and third-person videos. We start by describing the datasets and evaluation protocols (§ 5.1), followed by key results and comparisons to the state of the art (§ 5.2), and finally ablations and qualitative results (§ 5.3).

5.1. Experimental Setup

Datasets and metrics. We test on four popular action anticipation datasets summarized in Table 1. EpicKitchens-100 (EK100) [14] is the largest egocentric (first-person) video dataset with 700 long unscripted videos of cooking activities totalling 100 hours. EpicKitchens-55 (EK55) [13] is an earlier version of the same, and allows for comparisons to a larger set of baselines which have not yet been reported on EK100. For both, we use the standard train, val, and test splits from [14] and [23] respectively to report performance. The test evaluation is performed on a held-out set through a submission to their challenge server. EGTEA Gaze+ [55] is another popular egocentric action anticipation dataset. Following recent work [57], we report performance on the split 1 [55] of the dataset at $\tau_a = 0.5 s$. Finally, 50-Salads (50S) [82] is a popular third-person anticipation dataset, and we report top-1 accuracy averaged over the pre-defined 5 splits following prior work [77]. Some of these datasets employ top-5/recall@5 criterion to account for the multimodality in future predictions, as well as class-mean (cm) metrics to equally weight classes in a long-tail distribution. The first three datasets also decompose the action annotations into verb and nouns. While some prior work [77] supervises the model additionally for nouns and verbs, we train all our model solely to predict actions, and estimate the verb/noun probabilities by marginalizing over the other, similar to [23]. In all tables, we highlight the columns showing the metric used to rank methods in the official challenge leaderboards. Unless otherwise specified, the reported metrics correspond to future action (act.) prediction, although we do report numbers for verb and nouns separately where applicable. Please see Appendix A for further details.

Baselines. We compare AVT to its variants with different backbones and pretrained initializations, as well as to the strongest recent approaches for action anticipation, i.e. RULSTM [23, 24], ActionBanks [77], and Forecasting HOI (FHOI) [57]. Please see Appendix B for details on them. While FHOI trains the model end-to-end, RULSTM and ActionBanks operate on top of features from a model pretrained for action classification on that dataset. Hence, we report results both using the exact same features as well as end-to-end trained backbones to facilitate fair comparisons.

5.2. Comparison to the state-of-the-art

EK100. We first compare AVT to prior work using individual modalities (RGB and Obj [23]) in Table 2 for apples-to-apples comparisons and to isolate the performance of each of our contributions. First, we compare to the state-of-the-art RULSTM method using only our AVT (head) model applied to the exact same features from TSN [91] trained for classification on EK100. We note this already improves over RULSTM, particularly in anticipating future objects (nouns). Furthermore, we experiment with backbone fea-

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Viewpoint</th>
<th>Segments</th>
<th>Classes</th>
<th>τ_a (s)</th>
<th>Metric(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK100 [14]</td>
<td>1st</td>
<td>90.0K</td>
<td>3,807</td>
<td>1.0 [14]</td>
<td>recall</td>
</tr>
<tr>
<td>EGTEA Gaze+ [55]</td>
<td>1st</td>
<td>10.3K</td>
<td>106</td>
<td>0.5 [57]</td>
<td>top-1, cm top-1</td>
</tr>
<tr>
<td>50S [82]</td>
<td>3rd</td>
<td>0.9K</td>
<td>17</td>
<td>1.0 [2]</td>
<td>top-1</td>
</tr>
</tbody>
</table>

Table 1: Datasets used for evaluation. We use four popular benchmarks, spanning first and third person videos. Class-mean (‘cm’) evaluation is done per-class and averaged over classes. Recall refers to class-mean recall@5 from [22]. For all, higher is better.

RULSTM [14]	TSN	IN1k	27.5	29.0	13.3
AVT-h	TSN	IN1k	27.2	30.7	13.6
AVT-h irCSN152	IG65M	25.5	28.1	12.8	
AVT-h AVT-b	IN1k	28.2	29.3	13.4	
AVT-h AVT-b IN21+1k	28.7	32.3	14.4		
AVT-h AVT-b IN21k	30.2	31.7	14.9		

Table 2: EK100 (val) using RGB and detected objects (OBJ) modalities separately. AVT outperforms prior work using the exact same features, and further improves with our AVT-b backbone. Performance reported using class-mean recall@5.
Finally, A VT++ ensembles multiple model variants, suggesting our model is particularly effective at few-shot anticipation. Note we get the largest gains on tail classes, suggesting our model is particularly effective at few-shot anticipation. Finally, A VT++ ensembles multiple model variants, and outperforms all submissions on the EK100 CVPR’21 challenge leaderboard. Please refer to the workshop paper [29] for details on A VT++. EK55. Since EK100 is relatively new and has few baseline methods reported, we also evaluate AVT on EK55. As before, we start by comparing single modality methods (RGB-only) in Table 4. For AVT-h models, we found a slightly different set of (properly validated) hyperparameters performed better for top-1/5 metrics vs. the recall metric, hence we report our best models for each set of results. Here we find AVT-h performs comparably to RULSTM, and outperforms another attention-based model [77] (one of the winners of the EK55 2020 challenge) on the top-1 metrics. The gain is more significant on the recall metric, which averages performance over classes, indicating again that AVT-h is especially effective on tail classes which get ignored in top-1/5 metrics. Next, we replace the backbone with AVT-b, and find it to perform comparably on top-1/5 metrics, and outperforms on the recall metric. Finally, we experiment with irCSN-152 [87] pretrained using IG65M [27] and fine-tuned on EK55, and find it to outperform all methods by a significant margin on top-1/5. We show further comparisons with the state-of-the-art on EK55 in Appendix C.

EGTA Gaze+. In Table 5 we compare our model at $\tau_a = 0.5s$ on the split 1 as in recent work [57]. Even using fixed features with AVT-h on top, AVT outperforms the best reported results, and using the AVT-b backbone further improves performance. Notably, FHOI leverages attention on hand trajectories to obtain strong performance, which, as we see in Figure 1, emerges spontaneously in our model. 50-Salads. Finally, we show that our approach is not lim-

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>chance</td>
<td>6.4 2.0 0.2</td>
<td>14.4 2.9 0.5</td>
<td>1.6 0.2 0.1</td>
<td>RULSTM [24]</td>
<td>TSN</td>
<td>IN1k</td>
<td>13.1 30.8 12.5</td>
<td>12.3 28.5 13.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RULSTM [14]</td>
<td>27.8 30.4 14.0</td>
<td>28.8 27.2 14.2</td>
<td>19.8 22.0 11.1</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>13.1 28.1 13.5</td>
<td>12.5 30.1 13.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVT+ (TSN)</td>
<td>25.5 31.8 14.8</td>
<td>25.5 23.6 11.5</td>
<td>18.5 25.8 12.6</td>
<td>AVT-h</td>
<td>AVT-b</td>
<td>IN21+1k</td>
<td>14.4 31.7 13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVT+</td>
<td>28.2 32.0 15.9</td>
<td>29.5 23.9 11.9</td>
<td>21.1 25.8 14.1</td>
<td>AVT-h</td>
<td>irCSN152</td>
<td>IG65M</td>
<td>28.2 32.0 15.9</td>
<td>29.5 23.9 11.9</td>
<td>21.1 25.8 14.1</td>
</tr>
<tr>
<td>Test</td>
<td>chance</td>
<td>6.2 2.3 0.1</td>
<td>8.1 3.3 0.3</td>
<td>1.9 0.7 0.0</td>
<td>RULSTM [14]</td>
<td>TSN</td>
<td>IN1k</td>
<td>13.1 28.1 13.5</td>
<td>12.5 30.1 13.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBN [100]</td>
<td>21.5 26.8 11.0</td>
<td>20.8 28.3 12.2</td>
<td>13.2 15.4 7.2</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>14.4 31.7 13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVT+</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
<tr>
<td></td>
<td>IIF+ مجر</td>
<td>25.3 26.7 11.2</td>
<td>19.4 26.9 9.7</td>
<td>17.6 16.0 7.9</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
<tr>
<td></td>
<td>NUS-CVML [76]</td>
<td>21.8 30.6 12.6</td>
<td>17.9 27.0 10.5</td>
<td>13.6 20.6 8.9</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
<tr>
<td></td>
<td>ICL+SJTU [15]</td>
<td>36.2 32.2 13.4</td>
<td>27.6 24.2 10.1</td>
<td>32.1 29.9 11.9</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
<tr>
<td></td>
<td>Panasonic [98]</td>
<td>30.4 33.5 14.8</td>
<td>21.1 27.1 10.2</td>
<td>24.6 27.5 12.7</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
<tr>
<td></td>
<td>AVT++</td>
<td>25.2 32.0 16.5</td>
<td>20.4 27.9 12.8</td>
<td>17.6 23.5 13.6</td>
<td>AVT-h</td>
<td>TSN</td>
<td>IN1k</td>
<td>25.6 28.8 12.6</td>
<td>20.9 22.3 8.8</td>
<td>19.0 22.0 10.1</td>
</tr>
</tbody>
</table>

Table 3: EK100 val and test sets using all modalities. We split the test comparisons between published work and CVPR’21 challenge submissions. We outperform prior work including all challenge submissions, with especially significant gains on tail classes. Performance is reported using class-mean recall@τ. AVT+ and AVT++ late fuse predictions from multiple modalities; please see text for details.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EK55</td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
</tbody>
</table>

Table 4: EK55 using only RGB modality for action anticipation. AVT performs comparably, and outperforms when combined with a backbone pretrained on large weakly labeled dataset.

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Method</th>
<th>Top-1 acc.</th>
<th>Class mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK55</td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
</tbody>
</table>

Table 5: EGTEA Gaze+ Split 1 at $\tau_a = 0.5s$. AVT outperforms prior work by significant margins, especially when trained end-to-end with the AVT-h backbone.

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Method</th>
<th>Top-1 acc.</th>
<th>Class mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK55</td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
<tr>
<td></td>
<td>AVG-h</td>
<td>51.7 50.3 36.6</td>
<td>32.5 25.3 11.9</td>
</tr>
</tbody>
</table>

Table 6: 50-Salads. AVT outperforms prior work even in 3rd person videos.
Table 7: Anticipative training. Employing the anticipative training losses are imperative to obtain strong performance with AVT. Reported on EK100/cm recall@5.

<table>
<thead>
<tr>
<th>Setting</th>
<th>\mathcal{L}_{cls}</th>
<th>\mathcal{L}_{feat}</th>
<th>TSN</th>
<th>AVT-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive [a]</td>
<td>-</td>
<td>-</td>
<td>10.1</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>11.5</td>
<td>14.4</td>
</tr>
<tr>
<td>anticipative [a]</td>
<td>✓</td>
<td>✓</td>
<td>13.7</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>13.6</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Figure 4: Temporal context. AVT effectively leverages longer temporal context, especially in the [a] setting.

Figure 5: Long-term anticipation. AVT can also be used to predict further into the future by rolling out predictions autoregressively. The text on top represents the next action predicted at provided frames, followed by subsequently predicted actions, with the number representing how long that action would repeat.

5.3. Ablations and Analysis

We now analyze the AVT architecture, using the RGB modality and EK100 validation set as the test bed.

Anticipative losses. In Table 7, we evaluate the contribution of the two intermediate prediction losses that leverage the causal structure of AVT. We find using those objectives leads to significant improvements for both backbones. We find \mathcal{L}_{cls} is more effective for TSN, and \mathcal{L}_{feat} for AVT-b. Given that both combined work well in both settings, we use both for all experiments. Note that the naive setting also serves as a baseline with AVT-b backbone followed by simple aggregation on top, and shows our proposed losses encouraging the predictive structure are imperative to obtain strong performance. We analyze per-class gains in Appendix D.1 and find classes like ‘cook’, which require understanding the sequence of actions so far to anticipate well, obtain the largest gains in the anticipative setting.

Temporal context. Next, we analyze the effect of temporal context. In Figure 4, we train and test the model with different lengths of temporal context, τ_p. We notice that the performance improves as we incorporate more frames of context, with more consistent gains for AVT-b. The gains are especially pronounced when trained using the anticipative setting ($11.2 \rightarrow 14.9 = 3.5 \uparrow$) vs. the naive ($11.0 \rightarrow 13.1 = 2.1 \uparrow$). This suggests end-to-end trained AVT using anticipative losses is better suited at modeling sequences of long-range temporal interactions.

Attention visualization. To better understand how AVT models videos, we visualize the learned attention in the backbone and head. For the backbone, following prior work [18], we use attention rollout [1] to aggregate attention over heads and layers. For the head, since our causal modeling would bias aggregated attention towards the first few frames, we visualize the last layer attention averaged over heads. As shown in Figure 1, the model spontaneously learns to attend to hands and objects, which has been found beneficial for egocentric anticipation tasks [57]—but required manual designation in prior work. The temporal attention also varies between focusing on the past or mostly on the current frame depending on the predicted future action. We show additional results in Appendix D.2.

Long-term anticipation. So far we have shown AVT’s applicability in the next-action anticipation task. Thanks to AVT’s predictive nature, it can also be rolled out autoregressively to predict a sequence of future actions given the video context. We append the predicted feature and run the model on the resulting sequence, reusing features computed for past frames. As shown in Figure 5, AVT makes reasonable future predictions—‘wash spoon’ after ‘wash knife’, followed by ‘wash hand’ and ‘dry hand’—indicating the model has started to learn certain ‘action schemas’ [68], a core capability of our causal attention and anticipative training architecture. We show additional results in Appendix D.3.

6. Conclusion and Future Work

We presented AVT, an end-to-end attention-based architecture for anticipative video modeling. Through extensive experimentation on four popular benchmarks, we show its applicability in anticipating future actions, obtaining state-of-the-art results and demonstrating the importance of its anticipative training objectives. We believe AVT would be a strong candidate for tasks beyond anticipation, such as self-supervised learning [37, 90], discovering action schemas and boundaries [68, 79], and even for general action recognition in tasks that require modeling temporal ordering [34]. We plan to explore these directions in future work.

Acknowledgements: Authors would like to thank Antonio Furnari, Fadime Sener and Miao Liu for help with prior work; Naman Goyal and Myle Ott for help with language models; and Tushar Nagarajan, Gedas Bertasius and Laurens van der Maaten for feedback on the manuscript.
References

