
Towards Discovery and Attribution of Open-world GAN Generated Images

Sharath Girish*

sgirish@cs.umd.edu

Saksham Suri*

sakshams@cs.umd.edu

Saketh Rambhatla
rssaketh@umd.edu

Abhinav Shrivastava
abhinav@cs.umd.edu

University of Maryland, College Park

Abstract

With the recent progress in Generative Adversarial Net-
works (GANs), it is imperative for media and visual foren-
sics to develop detectors which can identify and attribute
images to the model generating them. Existing works
have shown to attribute images to their corresponding GAN
sources with high accuracy. However, these works are lim-
ited to a closed set scenario, failing to generalize to GANs
unseen during train time and are therefore, not scalable
with a steady influx of new GANs. We present an iterative
algorithm for discovering images generated from previously
unseen GANs by exploiting the fact that all GANs leave dis-
tinct fingerprints on their generated images. Our algorithm
consists of multiple components including network training,
out-of-distribution detection, clustering, merge and refine
steps. Through extensive experiments, we show that our
algorithm discovers unseen GANs with high accuracy and
also generalizes to GANs trained on unseen real datasets.
We additionally apply our algorithm to attribution and dis-
covery of GANs in an online fashion as well as to the
more standard task of real/fake detection. Our experiments
demonstrate the effectiveness of our approach to discover
new GANs and can be used in an open-world setup.

1. Introduction
With an ever increasing number of GANs introduced

each year, concerns about the malicious use of this technol-
ogy, especially in the case of social media content [1, 2, 3]
are increasing at an alarming rate which can have ad-
verse impacts on public security and privacy. Therefore,
a plethora of works have been proposed which focus on the
real/fake detection task [4, 5, 6]. However, it is also im-
portant to focus on the problem of attribution, i.e. identify-
ing the source of these images. Attributing images to their
sources can potentially deter malicious organizations and
hold them accountable by leading legal proceedings. Addi-
tionally, as GANs are becoming part of commercial services

*First two authors contributed equally

Online attribution and discovery of new GANs

Labeled set Discovery set (Unlabeled)

2017 2017-18 2018

SNGAN
(ImageNet)

Unseen GANs

Discovered clusters

Unseen
GANs

Seen GAN

Attribution

ProGAN
(LSUN)

BeGAN
(CelebA)

ProGAN
(CelebA-HQ)

StarGAN
(CelebA)

Cluster2 Cluster1ImageNet

StyleGAN
(CelebA-HQ)

ProGAN
(CelebA-HQ)

BigGAN
(ImageNet)

Cluster3 Cluster4 ProGAN
(CelebA-HQ)

Figure 1. A plethora of GANs are released every year, and there
could be a set of images that come from several unknown sources.
Our approach is capable of discovering and attributing unknown
GAN sources while requiring label supervision for only an initial
small set of GANs. We attribute with high accuracies, seen GANs
from a set of images as well as identify and cluster unknown GAN
sources with high purities.

such as face animation applications, their popularity draws
piracy and plagiarism [7] which is an attack on intellectual
property. Therefore, it is pertinent to develop effective tech-
niques to attribute images to specific sources.

To address this problem, [7, 8, 9] perform attribution for
multiple GAN architectures and obtain high classification
accuracies. However, they are limited to the closed-world
setup as they attribute only to the GANs seen during train-
ing and are incapable of identifying unseen GANs. Such a
setup is infeasible in practical scenarios where there are a
large number of images belonging to sources not seen dur-
ing training. This raises the question of whether we can
discover these new sources and group together the set of im-
ages which are generated by them. We term this problem as
“GAN discovery and attribution” as it involves attributing
images to known sources as well as discovering unknown
sources. This is a much more challenging and real world
setup as the number of sources are unknown and keep in-
creasing. Additionally, there can be a significant domain
shift based on the dataset type of GAN generated images.

Many works such as [5, 7, 8] show that GANs leave
unique artificial signatures in the images they generate. We
exploit this information to implicitly identify signatures and
cluster images belonging to unseen sources together while

14094

also attributing images to seen sources. We propose a novel
iterative pipeline which utilizes a fixed set of images, la-
beled according to their corresponding sources, and per-
form GAN attribution and discovery on an unlabeled set
of images. Our approach generalizes to an open-world
setup where images in the unlabeled/discovery set are not
restricted to be from the labeled class sources. Addition-
ally, due to the iterative nature of our pipeline, we can con-
tinuously discover images from new GANs added to our
discovery set in an online manner. Our approach only re-
quires labels for an initial set of images from real datasets
and a few GANs trained on these real datasets with each
real/GAN source representing a separate class. While we
can discover unseen GANs trained on these real datasets, we
additionally show through experiments that we can discover
new real datasets and GANs trained on these new datasets
as well without them being present in the initial labeled set.

Attribution and discovery in an open-world setup re-
quires us to separate images belonging to seen sources dur-
ing training from the unseen sources. We therefore intro-
duce an explicit out-of-distribution (OOD) step using the
deep network features to separate the images belonging to
the two types of sources. We propose to incorporate the
Winner Take All (WTA) hash [10] which, to the best of our
knowledge, has previously never been used for OOD detec-
tion. Additionally, we obtain clusters for the OOD images
and perform merge and refine steps to improve the group-
ing of the unknown GANs using 1-Nearest Neighbour (NN)
graphs and kernel SVMs, respectively. We combine these
components into a single unified pipeline which is executed
iteratively for improving the features and clusters while at-
tributing seen sources and discovering new GAN sources.

Through extensive experiments, we demonstrate the ca-
pability of our approach in an open-world setup. We show
the efficacy of our approach to generalize to a wide range of
dataset setups. We also analyze the importance of the vari-
ous stages. Additionally, we provide an approach to apply
our algorithm for the problem of real/fake image detection
and show competitive results on a variety of dataset setups.

We summarize our contributions as follows: 1) We in-
troduce a new problem for discovering and attributing im-
ages from real and GAN sources in an open-world setup; 2)
We propose a novel iterative pipeline consisting of several
components such as OOD detection, clustering and merge
and refine stages providing a strong benchmark for this task,
and; 3) We analyze the capability of our approach to dis-
cover GANs on a variety of dataset setups and also present
several insights into the various stages of our pipeline.

2. Related Work
OOD Detection and Open Set Recognition: Several
works [11, 12] have tackled OOD detection but require
an OOD dataset for tuning hyperparameters, which is not

possible as open-world knowledge is not known apriori.
[13] removes this constraint but requires modification of
the training setup to decompose confidence scores into two
probabilities.

On similar lines is the task of open set recognition [14].
[15, 16, 17] use the Extreme Value Theory to discard un-
known samples but require setting thresholds for recon-
struction errors and/or probability values to detect OOD
samples which requires careful tuning for each dataset. [18]
provides a detailed survey of more works in this area.
Open World learning: While Open Set Recognition only
rejects the unseen classes, Open World learning [19] also
focuses on reasoning about the unseen classes. [20] tack-
les this problem using meta classifiers but are limited to the
product classification problem. [21, 22, 23, 24] also focus
on a similar problem but require the unlabeled set to only
contain unseen classes and knowledge about number of un-
seen classes in some cases.
Rank correlation: [10] compute the WTA hash which are
ordinal embeddings providing a highly non-linear sparse
transformation of the feature vector. [25] use this hash-
ing algorithm for performing fast large scale object detec-
tion. To the best of our knowledge, no work utilizes ranking
based measures for OOD detection.
Clustering: Clustering is a highly explored field yet there is
no one-size fits all solution. [26] use a first Nearest Neigh-
bours (1-NN) graph to perform parameter free clustering.
Inspired from their work, we use a similar 1-NN graph for
our merge step. [27] perform K-means clustering on a net-
work’s features and retrain the network using the cluster
labels as pseudo-labels. Our approach partly involves this
setup but contains several other components such as OOD
detection and merge and refine steps. Spectral clustering
[28, 29, 30] is another common approach but requires eigen-
values for a large Laplacian which is not tractable for large
datasets, as is our case. Another common direction is train-
ing a deep network [31, 32, 33, 34, 35] which learns embed-
dings/clusters based on minimizing an objective function.
However, these require careful training so as to not diverge
while learning the features in an unsupervised manner.
Real/fake detection and GAN attribution: A plethora of
works [2, 3, 4, 5] exist for the problem of real/fake detection
but are only limited to this binary classification problem and
are not directly applicable to GAN attribution and discov-
ery. [5, 7, 8] tackle this problem but are, however, limited
to the GANs that they train on and fail to generalize in an
open world setup. [36] propose a more dynamic approach
to incrementally include GANs for attribution but require
clean datasets with images coming from only a single GAN
source which does not hold in practice, as images could be
generated from multiple sources. To the best of our knowl-
edge, there exists no work dealing with open-world GAN
discovery and attribution which is a much harder task than

14095

just real/fake detection or closed set GAN attribution.

3. Proposed Approach
3.1. Overview

In this section, we briefly describe our approach as
shown in Fig. 2. Our initial labeled set consists of ns im-
ages corresponding to the seen classes and is denoted by
Is = {Is1 , Is2 , ..., Isns

}, and their ground truth class la-
bels, denoted by Ys = {ys1 , ys2 , ..., ysns

}. The discov-
ery set consists of nt unlabeled images, from both seen and
unseen classes, and is denoted by It = {It1 , It2 , ..., Itnt

}.
Our pipeline proceeds iteratively, and at any point in the
pipeline, our discovery set is partitioned into Ic and In.
Ic is a set of nc clustered images with predicted labels Ŷc

while In is a set of images which could be potentially clus-
tered in future iterations. In each iteration, we improve
the predicted labels in the clustered set (Ic) and add new
samples from the non-clustered set (In) into the clustered
set. We do this via several stages using algorithms or tools
which have previously not been applied for the specific
tasks. We also combine the various stages in a unified man-
ner for iteratively improving the features and clusters.
Network training: Our network consists of a feature ex-
tractor f(·) and classifier g(·). We train the network in a
supervised manner using the two sets of images and labels,
labeled set (Is,Ys) and clustered set

(
Ic, Ŷc

)
.

Out-of-distribution detection: We use f(·) to extract fea-
tures for Ic and In and perform OOD detection. This stage
predicts samples from In to be in-distribution or OOD with
respect to the clusters in Ic. The in-distribution samples are
classified using the classifier and attributed to Ic with the
corresponding predicted labels.
Clustering: We use the K-means algorithm to overcluster
the remaining samples in In. These clusters are then added
to the clustered set Ic with a new set of labels based on the
cluster labels. At the end of this stage all samples have a
predicted label and the non-clustered set, In, is empty.
Merge and refine: To deal with overclustering we perform
merge and refine operations. Specifically, coherent clusters
are merged to reduce the number of clusters. This reduces
the purity of the clusters and hence a refine operation is
performed which throws away impure clusters, or samples
likely to not have belonged to their existing clusters. The re-
jected samples are added to the non-clustered set In. At the
end of this stage, we have a new clustered set, Ic along with
its predicted labels Ŷc, and non-clustered set, In. The four
steps described above are then repeated. We now describe
each of the steps enumerated above in detail.

3.2. Network Training

This stage involves training the network using the cluster
labels Ŷc corresponding to Ic and Ys corresponding to Is

in a supervised manner. The network consists of a feature
generation network f(·) parameterized by θf , constructed
using an off-the-shelf CNN followed by a few fully con-
nected layers to reduce the dimensionality. The classifica-
tion part of the network g(·) parameterized by θg involves a
fully connected layer followed by the softmax function.

The parameters of the network θf , θg are optimized as
per the following expression:

min
θf ,θg

[
1

nc

nc∑
i=1

L
(
gθg (fθf (Ici)), ŷci

)
+

1

ns

ns∑
j=1

L
(
gθg (fθf (Isj)), ysj

)]
, (1)

where L is the cross-entropy loss, Ici and ŷci are the ith

images and labels from Ic and Ŷc respectively while Isj
and ysj are the jth images and labels from Is and Ys re-
spectively. Subsequent to network training, we use the fea-
ture generation network to extract the features Xc and Xn

corresponding to the clustered set of images Ic, and non-
clustered set of images In, respectively.

3.3. Out-of-distribution detection

We utilize the WTA hashing algorithm proposed by Yag-
nik et al. [10] who show that ordinal representations of
feature vectors provide strong nonlinear transformations
and demonstrate their algorithm’s capability on downstream
tasks, such as similarity search and classification. They
show that such rank correlation measures are robust to noise
unlike cosine or Euclidean based distances. Additionally,
Euclidean/cosine based distances are highly sensitive to
thresholds used for OOD detection which would require
careful hyperparameter tuning for different dataset setups.
We refer readers to their work or our supplementary mate-
rial for a detailed explanation of the WTA hash.

The WTA hash maps a d dimensional feature vector x
to a H dimensional vector xH with elements lying in [K].
Using this hash for each feature vector, we then represent
the distance between any two feature vectors x and y, as
d(x,y), which is the Hamming distance between their cor-
responding hashes. For each class in set Ŷc = {ŷi ∈
[N], i ∈ [nc]} (nc is the number of samples in the clus-
tered set, N is number of clusters), we obtain OOD detec-
tors in the following manner: For a cluster with cluster la-
bel j ∈ [N] and for a feature sample i ∈ [nc] in the non-
clustered set represented by xni

∈ Xn, we compute the
distance of xni

from each sample in the cluster j. We then
average these sample distances to get the distance of sample
xni from cluster j, i.e.,

dj(xni
) =

1

Nj

nc∑
k=1,yck

=j

d(xni
,xck), (2)

14096

GAN 1

GAN 2

Real 1

Real 2

Labeled set

Non-clustered set

Clustered set
Discovery set

Network training
(Sec. 3.2)

Training

Ground-
truth
class
labels

Cluster
pseudo-
labels

Feature extraction

New clustered and
non-clustered set

Cluster 1

....

Clustering
(Sec. 3.4)

New clusters

OOD Detection
(Sec. 3.3)

In-distribution
features

Modified
clusters

OOD
features

Merge
(Sec. 3.5.1)

Merged
cluster

Refine
(Sec. 3.5.2)

Refined
cluster

Rejected samples
and clusters

Discovery Set
features

Clustered
features

Non-clustered
features

Cluster 2 Cluster 3

GAN 3

Real 3

Cluster 4

Figure 2. Illustration of our algorithm, where we iteratively discover new classes and retrain our network using them as pseudo-labels.

where Nj represents the number of samples in cluster j.
The detector then classifies xni

as an in-distribution sample
of class j if dj(xni

) < tj for a threshold tj for class j. The
threshold tj is computed using the intra cluster distances for
each cluster j and setting a high percentile of these distances
as the threshold. By doing so, the algorithm learns different
thresholds for different clusters and is controlled only by a
single percentile scalar which generalizes across different
dataset setups. A test sample, xni

is classified as an OOD
sample to Xc, if all of the detectors for the clusters classify
it as OOD. All in-distribution samples are classified using
our classifier and their corresponding labels lie in Ŷc. The
samples are subsequently added to Ic.

3.4. Clustering
We now overcluster samples remaining in In by running

K-Means on the feature set Xn. We form a high number
of clusters in order to get clusters with high purity. Once
the clusters are obtained, they are added to the clustered set
Ic. Their new labels, corresponding to the cluster labels,
are added to Ŷc. At the end of this stage, no samples remain
in the non-clustered set. More importantly, as we generate
a large number of clusters, it makes the clustered set highly
fragmented. In order to reduce the number of clusters and
improve the purity of the clusters we perform a merge and
refine step as explained in the following section.

3.5. Merge and refine
Overclustering results in a highly fragmented cluster set

which could belong to the same class. To deal with this, a
merge step is performed. Anything less than an ideal merge
step results in impure clusters. To improve the purity a re-
fine step is also performed. We discuss these in detail below.

3.5.1 Merge
We merge clusters in Ic using a 1-Nearest Neighbour graph.
We obtain centroids, uj , for each cluster j ∈ [N] (N is the
number of clusters) by averaging the features of all samples
in the cluster. Using the hashing described in Section 3.3
for each centroid, we define the distance between two cen-
troid feature vectors ui and uj , d(ui,uj), as the Hamming

distance between their corresponding hashes uiH and ujH .
We use the centroid distances between every pair of clus-

ters to create a directed 1-Nearest Neighbour graph with
each node representing a cluster centroid. A directed edge
is present from one node to another if the latter node is the
nearest neighbour centroid of the former node. Strongly
connected components are computed for this graph and
each connected component in the graph is considered to be
a merged cluster. This stage generates a new set of labels,
Ŷc, for the clustered set Ic.

3.5.2 Refine
As the merge step is not ideal, it reduces the average purity
of the clusters. In order to increase it, a refine step is per-
formed to remove impure samples from each cluster. As the
ground truth labels are unknown, SVM classifiers are lever-
aged to obtain a proxy measure for purity. [37, 38] show
that weak SVM classifiers can be fit to a single positive in-
stance with the remaining samples as negatives. Therefore,
we use this formulation of weak classifiers that can fit to the
majority class distribution of a cluster and mark the samples
which do not belong to the majority class as negatives.
For each cluster j ∈ [N], an SVM classifier, Qj , is trained
in a one-vs-all manner, where the positive samples belong
to cluster j while the rest of the samples in the clustered set
are negative samples. After training Qj , we use the SVM
to predict the labels for samples in cluster j as positive and
negative. The samples which are predicted negative are then
rejected and added back into the non-clustered set In. If the
percentage of predicted positive samples by Qj in cluster j
is below a threshold ϵ, the entire cluster is discarded and all
the samples are added to In.

Additionally, some refined clusters might have very few
samples and the class distribution for training the network
in the next iteration could become long tailed. In order to
avoid this issue, we threshold clusters based on their sizes
and discard those below a size threshold τ into In.

After the refine step we have a new set of clustered im-
ages with their corresponding pseudolabels. These are used
along with the seen class train data Is in order to train the
network for the next iteration.

14097

3.6. Cluster set initialization
The start of every iteration of our pipeline requires a

clustered set Ic along with the seen labeled set Is. For the
first iteration, as we do not have any pseudolabels for the
discovery set It, we train our network using only the set Is
and their corresponding ground truth labels Ys. Our OOD
detection step then determines whether images in It belong
to the seen classes Ys or not. In-distribution samples are
classified and are added to the clustered set Ic while OOD
samples are added to In. At the end of this stage, we now
have a clustered and non-clustered set for the discovery set
images. The rest of the stages of our pipeline, i.e., K-Means
Clustering, Merging and Refinement proceed as explained
in the previous sections using the initialized Ic and In. The
refine step then produces a set of images in the clustered
set with their corresponding cluster labels as pseudo-labels
which are used to train the network for the next iteration.
Additionally, at every iteration t, the feature extractor is ini-
tialized with the weights of the previous iteration t−1. The
classifier is replaced with a new linear layer with weights
randomly initialized as number of classes, which is depen-
dent on number of clusters N , change across iterations. The
algorithm then proceeds for a few iterations until fraction of
undiscovered samples fall below a small threshold.

4. Experiments
We now evaluate our approach on real world dataset se-

tups while providing detailed analysis of the several com-
ponents of our pipeline. In Section 4.1, we describe the
implementation details. Our labeled dataset consists of im-
ages from 4 real datasets as well as from certain GANs
trained on these real datasets as shown in Table 1. To-
gether, they make up 12 classes in the labeled set. Our
discovery set consists of additional images from these 12
classes as well as from 8 unseen GANs as shown in Table 1
making up a total of 20 classes. We use, by default, this
dataset for all our experiments unless mentioned otherwise.
Note that the same GAN trained on different datasets cor-
responds to different classes. Section 4.2 shows extensive
comparisons with other related works on GAN attribution
and real/fake image detection. Section 4.3 provides several
insights into our algorithm and also analyzes several com-
ponents of our pipeline. Subsequently, we examine the re-
sults of our pipeline on varying dataset setups. Section 4.4.1
shows an analysis of number of GANs needed in our labeled
set to reliably discover new GANs in the discovery set. Sec-
tion 4.4.2 changes number of unseen real datasets as well as
corresponding GANs in the discovery set and shows the ef-
fectiveness of our approach to discover these new classes.

4.1. Experimental details
For our feature extractor, we use the standard ResNet-50

[53] backbone. We add 3 fully-connected layers to reduce

Table 1. List of GANs trained on the corresponding 4 real datasets
used in our labeled and discovery set. Note that the same GAN
can be trained on multiple datasets.

Dataset Labeled GANs Discovery GANs

CelebA[39] StarGAN[40],
AttGAN[41]

StarGAN, BEGAN[42],
ProGAN[43], SNGAN [44],
AttGAN, MMDGAN[45],
CramerGAN[46]

CelebA-HQ
[43]

ProGAN,
StyleGAN[47]

ProGAN, StyleGAN,
ResNet19[48]

ImageNet [49] BigGAN[50],
S3GAN[51]

BigGAN, S3GAN, SNGAN

LSUN
Bedroom [52]

ProGAN,
MMDGAN

ProGAN, MMDGAN,
SNGAN

the dimensionality of the feature vector to 128. Another
fully connected layer is used as the classification head on
top of the feature extractor. The full network is trained in
a supervised manner and using cross entropy loss. Every
image is resized and center cropped to 256 × 256 except
when specified otherwise. We use a batch size of 256 for
our training for each iteration of the pipeline. The weights
are optimized using the Adam optimizer with β1 = 0.9,
β2 = 0.999 and a fixed learning rate of 0.0001 throughout
our training. For the first iteration, we train our network
for 50 epochs, while for subsequent iterations we train for
100 epochs, as the network takes longer to converge with
additionally discovered samples with noisy pseudo labels.
For our OOD detection step using WTA hash described in
Section 3.3, we use H = 2048 hashes and a window size of
K = 2. Our clustering stage uses the K-Means algorithm
for 500 clusters initialized using K-Means++ [54]. For the
refine stage, we train SVMs with the RBF-kernel. We set
the threshold, ϵ = 0.5, for dropping a cluster, as described
in Section 3.5.2. To avoid training on clusters with very few
samples, we discard clusters with less than 100 members.

Metrics and analysis: We evaluate our pipeline on 2
clustering metrics. We use Average Purity as a metric for
evaluating the overall purity of our clusters with respect
to the true labels of the discovery set. We also use Nor-
malized Mutual Information (NMI), which is another com-
monly used clustering metric. At various stages or iterations
of our pipeline, a small fraction of the discovery set samples
remain non-clustered and in order to provide a fair evalua-
tion across different experiments/baselines we attribute all
the non-clustered samples to their nearest clusters and eval-
uate on the full discovery set, unless mentioned otherwise.

4.2. Benchmark Evaluation
As there exists no prior work dealing with open-world

GAN discovery, we provide baselines by modifying recent
works involving GAN attribution [7] and real/fake image
detection [5]. We additionally include the recent approach
of [24] which deals with novel category discovery.

Yu et al. [7] deals with GAN attribution in a closed-
world setup and hence cannot be directly incorporated to

14098

Table 2. Comparison of our method with baselines derived from
[5, 7, 24]. We try two fixed setups for number of clusters k =
20, 500 and finally let our approach discover the suitable number
of clusters k = 209. Compared to the 2 baselines, we obtain the
highest Average Purity and NMI when number of clusters k =
209. Ours [only §3.2] corresponds to a single iteration of network
training and clustering. The fully supervised setup is the upper
bound when all classes are seen.

Method
k = 20 k = 500 k = 209

Avg. Purity NMI Avg. Purity NMI Avg. Purity NMI

Yu et al. [7] 0.656 0.706 0.759 0.518 0.734 0.554
Han et al. [24] 0.680 0.709 - - - -
Wang et al. [5] 0.710 0.759 0.857 0.575 0.840 0.624
Ours [only §3.2] 0.661 0.743 0.814 0.561 0.795 0.609
Ours - - - - 0.861 0.724
Fully supervised 0.928 0.929 0.996 0.658 0.997 0.728

our problem setup. Therefore, we train their network on
our labeled set and obtain features for our discovery set.
We cluster the features using K-Means for 3 different val-
ues of k. k = 20 corresponds to the true number of classes
in our test set while k = 500 corresponds to an overclus-
tered regime. k = 209 represents the number of clusters
our algorithm returns at the end of 4 iterations. We com-
pare across multiple values of k as Average Purity and NMI
are known to be sensitive to number of clusters.

Wang et al. [5] tackles real/fake detection and again can-
not be directly used in our problem setup. Therefore, we
modify their classification head to be multiclass and train
their network on our labeled set using their training and pre-
processing strategies and extract the features for our discov-
ery set. We provide three similar baselines by performing
clustering similar to the baselines generated from [7].

Han et al. [24] discover novel visual categories but re-
quire the discovery set to only contain unseen classes. We
therefore use our anomaly detection approach on their fea-
tures to separate out the seen and unseen classes whose clus-
ter assignments are then predicted separately using their ap-
proach. As they require knowledge of number of unseen
classes for their predictions, we compare with the k = 20
setup which corresponds to the true number of classes.

Finally, we provide a baseline for our approach by per-
forming network training and clustering the feature space
into k = 20, 500, 209 clusters. We also provide an upper-
bound for our approach using a fully supervised case where
the labeled set consists of images from all classes in the dis-
covery set and perform clustering on the generated features.

The results for these comparisons are provided in Ta-
ble 2. Our algorithm achieves the highest Average Purity
and NMI compared to all other baselines for the case of
k = 209. For k = 20, 500, [5] outperforms a single it-
eration of network training and clustering because it does
not involve OOD detection, merge or refine for this com-
parison. However, at the end of 4 iterations, for the case of

Table 3. We analyze the effect of the various stages of our pipeline.
The number of clusters in the merge step decreases with negligi-
ble drop in Avg. Purity and increased NMI. The Refine step further
increases the NMI and Avg. Purity by a big margin for the discov-
ered samples. Note that the numbers corresponding to all samples
in the refine step are included for the sake of fair comparison but
are not actually computed by our approach.

Stage No. of clusters Avg. Purity NMI

Clustering 512 0.793 0.682
Merge 391 0.792 0.689
Refine (Discovered) 111 0.849 0.838
Refine (All) 111 0.772 0.720

Table 4. We evaluate our algorithm over multiple iterations. Avg.
Purity, NMI and % of discovered samples progressively increases.

Iteration
Avg.

Purity NMI
% Samples
Clustered

Sources
Discovered

1 0.772 0.720 72.5 16/20
2 0.853 0.724 88.8 20/20
3 0.861 0.724 92.3 20/20
4 0.861 0.724 93.7 20/20

k = 209, we significantly outperform all baselines in terms
of both Average Purity and NMI. The fully supervised ap-
proach provides an upper bound for all 3 cases. Note that
we do not compare across number of clusters as Average
Purity increases in general with more clusters while NMI
decreases.

4.3. Ablation Study
Our algorithm is fairly robust to the various hyperparam-

eter values used in our stages. Experiments for varying hy-
perparameter values are shown in the supplementary mate-
rial. In this section, we analyze the importance of each stage
and the progress of our pipeline over multiple iterations.

We evaluate the effect of Clustering, Merge, and Refine
stages in the first iteration of our pipeline. The results are
summarized in Table 3. Note that the Average Purity drops
only slightly in the merge step while the number of clusters
drop significantly demonstrating the effectiveness of the 1-
NN merge step explained in Section 3.5. From the merge to
the refine step, Average Purity drops for the full discovery
set as many samples remain undiscovered and we evaluate
the metric over the full discovery set by naı̈vely attributing
them to the nearest cluster. However, the metrics evaluated
on only the discovered samples increase significantly which
shows that SVMs can identify the pure clusters and samples
while rejecting the impure ones.

Next, we evaluate our pipeline over multiple iterations.
We show the results in Table 4. The pipeline discovers
only a small fraction of images and GANs in the first it-
eration while in subsequent iterations, more samples are
added to the clustered set and more GANs are discovered.
Average Purity and NMI both increase or remain constant
over the four iterations which shows the effectiveness of

14099

Table 5. Varying number of GANs per dataset. We obtain the best
metrics with the maximum number of GANs per dataset although
discovering fewer samples compared to the first setup.

of
GANs

Avg.
Purity NMI

% Samples
Clustered

Sources
Discovered

0 0.497 0.559 99.78 8/12
1 0.897 0.772 94.48 11/12
2 0.954 0.789 95.98 11/12

our approach to discover as well as improve clusters. Our
OOD stage obtains an accuracy of 86.97% for seen classes,
99.87% for unseen classes and 92.87% overall. The high
unseen class accuracy is because of setting a lower thresh-
old to reduce false negative errors which do not get cor-
rected in subsequent stages.

4.4. Varying dataset setups
In this section, we provide an analysis by varying the

dataset setups based on number of GANs per real dataset
in the labeled set or on adding new real datasets and GANs
trained on them in the unlabeled set.

4.4.1 Effect of number of GANs per dataset
We answer the question of how many GANs per dataset are
needed in our labeled set to reliably discover new ones in
our discovery set. We have 3 labeled dataset setups: 1) Our
first setup consists of 4 real datasets: CelebA, CelebA-HQ,
ImageNet and LSUN-Bedroom with no GANs; 2) In ad-
dition to the 4 datasets in the first setup, our second setup
has 4 GANs: StarGAN, ProGAN, BigGAN and MMDGAN
trained on the respective datasets; 3) In addition to the pre-
vious setup, we have 4 more GANs per dataset: AttGAN,
StyleGAN, S3GAN and ProGAN.

In order to fairly evaluate the 3 setups, we use a com-
mon discovery set consisting of all the classes in the second
setup. Additionally, we have a set of GANs not present in
all 3 labeled sets, namely, BEGAN, ResNet19 (from Com-
pareGAN [48]), SNGAN and CramerGAN corresponding
to the 4 real datasets. The results are summarized in Ta-
ble 5. Due to most information being present in the labeled
set, the third setup performs best on both Average Purity
and NMI. Despite the second setup having only a single
GAN per dataset, it performs fairly well on the two met-
rics. On the other hand, the first setup, which does not have
any GANs in the labeled set, fails to discover new ones as it
cannot see any GAN-related artifacts in the labeled set and
thus fails to discriminate based on this during discovery.

4.4.2 Discovering new dataset images
In an open-world setting, the discovery set may contain
images from new real datasets not seen in the labeled set
along with GAN generated images corresponding to these
datasets. To see whether the proposed approach can han-
dle these situations we perform experiments covering 3

Table 6. Effect of adding new datasets and GANs trained on new
datasets at test time. (*) provides the corresponding comparison
when the real datasets are present in the labeled set (Sec. 4.4.2)

Test Set Purity NMI
Sources

Discovered
of

Clusters

New Real 0.942 0.813 14/16 103
New Real* 0.989 0.989 15/16 56

New GANs 0.976 0.828 16/16 105
New GANs* 0.95 0.835 15/16 87

New Real + New GANs 0.850 0.730 20/20 141
New Real + New GANs* 0.977 0.856 19/20 128

setups. Each setup uses the default labeled set in Ta-
ble 1 but additional classes in the discovery set as fol-
lows: 1) New real datasets: New real datasets namely DTD
[55], FashionGen [56], and Night and Shoes datasets (from
Pix2Pix [57]); 2) GANs on new real classes: New GANs
trained on the four new real world datasets, namely, Pro-
GAN on DTD, DCGAN [58] on FashionGen, and a separate
Pix2Pix on Night and Shoes datasets; 3) New Real + New
GANs: A combination of GANs and real datasets from the
previous two setups.

In order to provide a benchmark for comparison, we
show the performance when the four real datasets are in the
labeled set (marked with a *). The results are shown in Ta-
ble 6. In the first setup the goal is to discover new dataset
sources. Our approach discovers most of the sources with
high Purity and NMI, although it’s performance is lower
than the benchmark as expected because the labeled set for
the benchmark contains all the classes present in the discov-
ery set. In the second setup, our method discovers all un-
seen GANs even though they are trained on unseen datasets
unlike the benchmark which does slightly worse in terms of
Avg. Purity and number of GANs discovered likely because
of the reduced number of final clusters. The third setup is
more challenging due to the addition of both unseen datasets
and GANs trained on them to the discovery set. However
our approach discovers all unseen sources with reliable Av-
erage Purity and NMI while its corresponding benchmark
does not discover all sources possibly because it restricts
itself to lesser but purer clusters with higher NMI.

4.4.3 Online discovery

Here we extend our approach to an online setup where new
GANs are added to the discovery set in an online fashion
based on the chronological order they were published. Our
setup consists of 9 GANs from 4 real sources in our labeled
set and 4 new GANs in the discovery set. We additionally
introduce 2 sets of 3 GANs each in an online fashion. De-
tails of the datasets are provided in supplementary material.
We show our results in Table 7. We train our setup for 2 iter-
ations with the initial discovery set of 17 sources. It can be

14100

Cluster 2 (CramerGAN-CelebA) Cluster 3 (SNGAN-ImageNet) Cluster 4 (SNGAN-LSUN)Cluster 1 (ResNet19-CelebA-HQ)

Figure 3. Samples from clusters discovered by our approach for unseen GANs with the majority class in parenthesis. It can be noticed that
they are not just focusing on the object structure and semantics rather the underlying source.

Table 7. Evaluation of our algorithm in an online setup. We have
17 sources in our initial discovery set and add 3 sources each at
iteration 3 and 5 causing an initial drop in results. The pipeline
eventually performs better after training on the new samples.

Iteration
Avg.

Purity NMI
% Samples
Clustered

Sources
Discovered

1 0.846 0.826 89.39 15/17
2 0.916 0.798 92.42 16/17
3 0.805 0.771 95.74 18/20
4 0.805 0.744 96.87 19/20
5 0.731 0.716 95.68 22/23
6 0.802 0.705 95.36 22/23

seen that Average Purity increases in the second step and it
also discovers an additional GAN source. When new GANs
are introduced in iterations 3 and 5, the performance drops
as the network is not trained on the new classes. However,
after a single iteration the Average Purity increases signifi-
cantly and NMI drops only slightly even though number of
clusters increase. At the end of 6 iterations, we discover all
the GAN sources added on the fly, except one. This shows
that our approach works in an online setting, continuously
discovering new GANs iteratively.

4.5. Real/Fake detection
We now apply our method to the common problem of

real/fake detection. We use the binary classification model
from [5], but trained on our labeled set and use majority
voting to mark a cluster and all its constituent images as
real or fake. We compare this with using the model directly
on all samples and compare the performance in Table 8
for our original setup and for the three setups defined in
Sec. 4.4.2. We observe that in most settings, we outper-
form the standard predictions which are evaluated sample-
wise. We attribute it to the fact that the clustering is able
to correct model’s mistakes as it groups samples according
to the source. As cluster assignments are less accurate due
to increased difficulty of the final setup, our performance is
lower but nevertheless, competitive with [5].

4.6. Qualitative analysis of clusters
We visually inspect a few clusters generated by our

method to see whether they focus on the semantic informa-
tion or the GAN source. To this end we visualize random
images from some of the highly pure clusters correspond-

Table 8. We evaluate the real/fake detection accuracy (%) using
the clustering obtained from our network.

Approach Original New Real New GANs
New Real +
New GANs

Wang et al. [5] 92.56% 87.35% 98.42% 89.09%
Ours 98.62% 89.84% 99.10% 83.33%

ing to unseen GANs trained on ImageNet, LSUN-Bedroom,
CelebA and CelebA-HQ. As evident from Fig. 3 the clus-
ter in the case of SNGAN-ImageNet does not seem to be
object-specific, while the cluster for SNGAN-LSUN does
not focus on specific room decor, lighting conditions, layout
etc. Similarly, clusters corresponding to the face datasets
seem to be focusing on the GAN source rather than specific
facial attributes like expression, orientation, age etc. In ad-
dition to visualizing these clusters, we also add a qualitative
analysis of the merge step in the supplementary material
showing sub-clusters that are merged by our pipeline.

5. Conclusion
We proposed a new problem of open-world GAN discov-

ery and attribution. We presented an iterative approach to
discover and attribute images from multiple GAN sources
in a discovery set. Our framework discovers and groups
GANs not seen during training by implicitly focusing on
GAN-based fingerprints. We show ablation studies for the
different components of our pipeline. We also show the gen-
eralization of our approach to various dataset setups and its
extension to an online setting. As there have been no works
addressing this problem, we compare with several baselines
based on state-of-the-art related works and provide a strong
benchmark for this task. Even though our approach works
in an online setup, network training is an expensive step for
each iteration. One potential direction for future work is to
utilize approaches from continual learning literature [59] for
faster training, to learn in a never-ending setup discovering
new GANs on-the-fly. We hope, given the general formula-
tion of the stages, our framework is utilized for other similar
tasks as well. To facilitate such exploration of different sce-
narios we plan to release the toolset we have developed for
our work to bolster future research in this area.

Acknowledgements. This project was partially funded
by DARPA SemaFor (HR001119S0085), DARPA SAIL-ON
(W911NF2020009), and an independent gift from Facebook AI.

14101

References
[1] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan

Liu. Fake news detection on social media: A data min-
ing perspective. ACM SIGKDD explorations newsletter,
19(1):22–36, 2017. 1

[2] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics: A large-scale video dataset for forgery detection in hu-
man faces. arXiv preprint arXiv:1803.09179, 2018. 1, 2

[3] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1–11, 2019. 1, 2

[4] Francesco Marra, Diego Gragnaniello, Davide Cozzolino,
and Luisa Verdoliva. Detection of gan-generated fake images
over social networks. In 2018 IEEE Conference on Multi-
media Information Processing and Retrieval (MIPR), pages
384–389. IEEE, 2018. 1, 2

[5] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are sur-
prisingly easy to spot... for now. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
volume 7, 2020. 1, 2, 5, 6, 8

[6] Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting
and simulating artifacts in gan fake images. In 2019 IEEE In-
ternational Workshop on Information Forensics and Security
(WIFS), pages 1–6. IEEE, 2019. 1

[7] Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake
images to gans: Learning and analyzing gan fingerprints. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 7556–7566, 2019. 1, 2, 5, 6

[8] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi. Do
gans leave artificial fingerprints? In 2019 IEEE Confer-
ence on Multimedia Information Processing and Retrieval
(MIPR), pages 506–511, 2019. 1, 2

[9] Michael Albright and Scott McCloskey. Source generator
attribution via inversion. 1

[10] Jay Yagnik, Dennis Strelow, David A Ross, and Ruei-sung
Lin. The power of comparative reasoning. In 2011 Inter-
national Conference on Computer Vision, pages 2431–2438.
IEEE, 2011. 2, 3

[11] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhanc-
ing the reliability of out-of-distribution image detection in
neural networks. arXiv preprint arXiv:1706.02690, 2017. 2

[12] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. In Advances in Neural In-
formation Processing Systems, pages 7167–7177, 2018. 2

[13] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira.
Generalized odin: Detecting out-of-distribution image with-
out learning from out-of-distribution data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10951–10960, 2020. 2

[14] Walter J Scheirer, Anderson de Rezende Rocha, Archana
Sapkota, and Terrance E Boult. Toward open set recogni-
tion. IEEE transactions on pattern analysis and machine
intelligence, 35(7):1757–1772, 2012. 2

[15] Lalit P Jain, Walter J Scheirer, and Terrance E Boult. Multi-

class open set recognition using probability of inclusion. In
European Conference on Computer Vision, pages 393–409.
Springer, 2014. 2

[16] Poojan Oza and Vishal M Patel. C2ae: Class conditioned
auto-encoder for open-set recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2307–2316, 2019. 2

[17] Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Ter-
rance E Boult. The extreme value machine. IEEE
transactions on pattern analysis and machine intelligence,
40(3):762–768, 2017. 2

[18] Terrance E Boult, Steve Cruz, Akshay Raj Dhamija, M Gun-
ther, James Henrydoss, and Walter J Scheirer. Learning and
the unknown: Surveying steps toward open world recogni-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9801–9807, 2019. 2

[19] Abhijit Bendale and Terrance Boult. Towards open world
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1893–1902,
2015. 2

[20] Hu Xu, Bing Liu, Lei Shu, and P Yu. Open-world learning
and application to product classification. In The World Wide
Web Conference, pages 3413–3419, 2019. 2

[21] Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning to
cluster in order to transfer across domains and tasks. arXiv
preprint arXiv:1711.10125, 2017. 2

[22] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning
to discover novel visual categories via deep transfer cluster-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 8401–8409, 2019. 2

[23] Zifeng Wang, Batool Salehi, Andrey Gritsenko, Kaushik
Chowdhury, Stratis Ioannidis, and Jennifer Dy. Open-
world class discovery with kernel networks. arXiv preprint
arXiv:2012.06957, 2020. 2

[24] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, An-
drea Vedaldi, and Andrew Zisserman. Automatically discov-
ering and learning new visual categories with ranking statis-
tics. arXiv preprint arXiv:2002.05714, 2020. 2, 5, 6

[25] Thomas Dean, Mark A Ruzon, Mark Segal, Jonathon Shlens,
Sudheendra Vijayanarasimhan, and Jay Yagnik. Fast, accu-
rate detection of 100,000 object classes on a single machine.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1814–1821, 2013. 2

[26] Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Effi-
cient parameter-free clustering using first neighbor relations.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8934–8943, 2019. 2

[27] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadi-
yaram, and Dhruv Mahajan. Clusterfit: Improving gen-
eralization of visual representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6509–6518, 2020. 2

[28] Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, and Wei
Liu. Deep spectral clustering using dual autoencoder net-
work. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4066–4075, 2019. 2

[29] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in neural
information processing systems, pages 849–856, 2002. 2

14102

[30] Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-
tics and computing, 17(4):395–416, 2007. 2

[31] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5147–5156, 2016. 2

[32] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, pages 478–487, 2016. 2

[33] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Im-
proved deep embedded clustering with local structure preser-
vation. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages
1753–1759, 2017. 2

[34] Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven CH
Hoi, and Zenglin Xu. Semi-supervised deep embedded clus-
tering. Neurocomputing, 325:121–130, 2019. 2

[35] Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan,
Chen Change Loy, and Dahua Lin. Learning to cluster faces
on an affinity graph. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2298–
2306, 2019. 2

[36] Francesco Marra, Cristiano Saltori, Giulia Boato, and Luisa
Verdoliva. Incremental learning for the detection and classifi-
cation of gan-generated images. In 2019 IEEE International
Workshop on Information Forensics and Security (WIFS),
pages 1–6. IEEE, 2019. 2

[37] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros.
Ensemble of exemplar-svms for object detection and beyond.
In ICCV, 2011. 4

[38] Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta,
and Alexei A. Efros. ”data-driven visual similarity for cross-
domain image matching”. ”ACM Transaction of Graph-
ics (TOG) (Proceedings of ACM SIGGRAPH ASIA)”, 30(6),
2011. 4

[39] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015. 5

[40] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8789–8797,
2018. 5

[41] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. Attgan: Facial attribute editing by only
changing what you want. IEEE Transactions on Image Pro-
cessing, 28(11):5464–5478, 2019. 5

[42] David Berthelot, Thomas Schumm, and Luke Metz. Be-
gan: Boundary equilibrium generative adversarial networks.
arXiv preprint arXiv:1703.10717, 2017. 5

[43] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 5

[44] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
5

[45] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,
and Barnabás Póczos. Mmd gan: Towards deeper under-
standing of moment matching network. In Advances in
Neural Information Processing Systems, pages 2203–2213,
2017. 5

[46] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mo-
hamed, Balaji Lakshminarayanan, Stephan Hoyer, and Rémi
Munos. The cramer distance as a solution to biased wasser-
stein gradients. arXiv preprint arXiv:1705.10743, 2017. 5

[47] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401–4410, 2019. 5

[48] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michal-
ski, and Sylvain Gelly. A large-scale study on regularization
and normalization in gans. In International Conference on
Machine Learning, pages 3581–3590. PMLR, 2019. 5, 7

[49] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[50] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 5

[51] Mario Lucic, Michael Tschannen, Marvin Ritter, Xiao-
hua Zhai, Olivier Bachem, and Sylvain Gelly. High-
fidelity image generation with fewer labels. arXiv preprint
arXiv:1903.02271, 2019. 5

[52] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 5

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[54] David Arthur and Sergei Vassilvitskii. k-means++: The
advantages of careful seeding. Technical report, Stanford,
2006. 5

[55] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014. 7

[56] Negar Rostamzadeh, Seyedarian Hosseini, Thomas Boquet,
Wojciech Stokowiec, Ying Zhang, Christian Jauvin, and
Chris Pal. Fashion-gen: The generative fashion dataset and
challenge. arXiv preprint arXiv:1806.08317, 2018. 7

[57] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 7

[58] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 7

[59] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017. 8

14103

