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Abstract

We consider the problem of Federated Learning (FL)
where numerous decentralized computational nodes collab-
orate with each other to train a centralized machine learn-
ing model without explicitly sharing their local data sam-
ples. Such decentralized training naturally leads to issues
of imbalanced or differing data distributions among the lo-
cal models and challenges in fusing them into a central
model. Existing FL methods deal with these issues by either
sharing local parameters or fusing models via online dis-
tillation. However, such a design leads to multiple rounds
of inter-node communication resulting in substantial band-
width consumption, while also increasing the risk of data
leakage and consequent privacy issues. To address these
problems, we propose a new distillation-based FL frame-
work that can preserve privacy by design, while also con-
suming substantially less network communication resources
when compared to the current methods. Our framework
engages in inter-node communication using only publicly
available and approved datasets, thereby giving explicit pri-
vacy control to the user. To distill knowledge among the
various local models, our framework involves a novel en-
semble distillation algorithm that uses both final prediction
as well as model attention. This algorithm explicitly consid-
ers the diversity among various local nodes while also seek-
ing consensus among them. This results in a comprehensive
technique to distill knowledge from various decentralized
nodes. We demonstrate the various aspects and the asso-
ciated benefits of our FL framework through extensive ex-
periments that produce state-of-the-art results on both clas-
sification and segmentation tasks on natural and medical
images.

1. Introduction
Modern deep learning algorithms rely on massive anno-

tated datasets for many practical applications [63, 21, 18].
In most cases, however, this data is physically located
across multiple disparate locations and regulated by dif-

Figure 1. A schematic illustration of the proposed privacy-
preserving federated learning framework compared to traditional
update or parameter-sharing based federated learning frameworks.
Traditional FL frameworks transfer gradients or parameter updates
produced with private data from local nodes to a server, risking pri-
vacy leakage. Our framework only transfers products of unlabeled
public data.

ferent entities. This results in the challenges of central-
izing the physically dispersed data, with the primary con-
cerns being privacy and network bandwidth issues. Conse-
quently, federated learning (FL) [46, 54, 17] has emerged
as an important topic where a single centralized model is
trained in a distributed, decentralized fashion using model
fusion/distillation techniques.

While some similarities exist, there are many more
unique challenges that make FL substantially different from
distributed learning. First, privacy is a critical considera-
tion, and maintaining it is of utmost importance, particu-
larly for applications such as healthcare [44, 3]. Second,
one needs to be able to train centralized models efficiently
and not get bogged down by network communication is-
sues. Communication bandwidth may be quite pronounced
depending on the task (e.g. image and video applications)
and quantity of data (e.g., model parameters) being shared
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Figure 2. Overview of the proposed FedAD framework.

among local nodes. Finally, given that raw data typically
resides locally, the data collection and preprocessing mech-
anisms may vary substantially among the local nodes, lead-
ing to a situation where common assumptions such as inde-
pendent and identically distributed sampling do not hold.

The current state-of-the-art FL techniques approach the
aforementioned issues by repeatedly sharing local model
parameters or their gradients during the training pro-
cess [34, 47, 12, 24, 58, 49, 19, 30, 8]. However, for many
applications, these parameter-based communication meth-
ods suffer from impractical network bandwidth overhead,
are limited only to models with homogeneous architectures,
and more importantly, have many known security weak-
nesses [4]. While some methods have taken a step towards
data protection in medical imaging [26, 27], there are also
counter arguments in the literature that show local private
data can get exposed as a result of using publicly shared
gradients in the FL technical pipeline [61].

Distillation-based techniques that aggregate locally-
computed logits [16, 22, 4, 28, 62] form the basis for an-
other line of work for building central models from multi-
ple local models, helping eliminate the need for each lo-
cal model to follow the same architecture. While some
recent methods distill with public data to get around data
privacy issues [22, 4], they assume both the public and pri-
vate data are sampled from the same underlying distribu-
tion. This assumption invariably exposes private data to
security risks and attacks. While the recently proposed
FedDF [28] method provides some relaxations (e.g., pub-
lic data can be unlabeled and domain robust, i.e., sampled
from another domain), it still exchanges model parameters
recursively, resulting in privacy vulnerabilities due to model
memorization [61, 4]. Despite the known bottleneck of
communication in FL, all the above methods jointly (online)
optimize the central and local models by synchronizing lo-

cal inferred predictions. This approach requires a high de-
gree of synchronization and communication bandwidth. It
is clear that these co-distillation methods require recursive
communication primarily because these methods ensemble
with dark knowledge, such as averaging to soften labels,
leaving structural knowledge unexplored. In other words,
in addition to distilling the final what (i.e., logits), using
more feature information depicting the why (e.g., attention
maps) should lead to improved performance and efficiency,
which is largely ignored by the current state-of-the-art.

In this work, we present a new distillation-based feder-
ated learning framework to address the aforementioned is-
sues (Figure 1). First, our framework presents stronger pri-
vacy guarantees of local data by only using model outputs
of unlabeled public data during distillation without any ex-
change of local model parameters or gradients. This, by de-
sign, eliminates the vulnerabilities identified by prior work.
Second, in our framework, local models are fully trained
and then distilled to the central server, in contrast to prior
works [28, 4, 22] that synchronously update local models
through online distillation.

Our key insight is that such well-trained local mod-
els, as opposed to incremental snapshots of “half-baked”
models [28, 4, 22], provide more structural knowledge
about their expertise. This design choice immediately en-
ables top-down class-specific attention maps that capture
the fully-trained local model’s reasoning process (note that
for methods that do online distillation, this would not be
possible since their attention maps would be incomplete
due to incremental training). We ensemble local knowledge
with both predicted logits and these attention maps, captur-
ing each local model’s final output as well as the underly-
ing reasoning process. We also use these attention maps to
capture the knowledge diversity across models and reach a
consensus to effectively coordinate local expertise in the FL
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paradigm. This in-depth ensemble strategy enables our fed-
erated distillation to be completed in an offline fashion in
a single round (which we call one-shot), helping keep local
model training independent and asynchronous. This results
in a FL framework that is substantially more efficient and
flexible when compared to prior art.

To demonstrate efficacy, we conduct extensive experi-
ments on CIFAR10/100 and large-scale chest x-ray datasets.
We also show our framework is flexible to be used in other
tasks by conducting preliminary proof-of-concept experi-
ments on the segmentation tasks, where we demonstrate the
state-of-the-art privacy/performance trade-offs compared to
prior methods.

To summarize, our key contributions are below:

• We propose a one-shot federated learning framework
with one-way distillation to explicitly preserve the pri-
vacy of local data by only distilling model outputs on
unlabeled and domain robust public data.

• Our framework addresses the communication ineffi-
ciencies of prior work by communicating high-level
logits and model-agnostic attention maps.

• We introduce a seminal distillation algorithm that ag-
gregates structural knowledge with explicit balance be-
tween both local model diversity as well as consensus
to deal with the inherent heterogeneity of decentralized
federated learning.

• We show that the proposed framework can be extended
to other applications such as semantic segmentation
with evaluations on Cityscapes and BraTS dataset.

2. Related Work
Our proposed FL framework is related to areas such as

knowledge transfer and the type of FL algorithms and how
they deal with issues such as privacy. Here, we briefly re-
view methods that are relevant to these topics.

Knowledge Transfer. Recent methods can be catego-
rized based on their ensemble strategy and the kind of infor-
mation distilled to the student. Following the work of Hin-
ton et al. [11], there has been much progress in model en-
semble, with a particular focus on the student-teacher learn-
ing paradigm [43]. These techniques aggregate the knowl-
edge of multiple teachers before distilling it to the student
model. This has led to a variety of aggregation schemes,
with gate learning being quite popular in the supervised
setting [43, 1, 53, 48, 59]. In semi-supervised and self-
supervised scenarios, techniques based on relative sample
similarity have been proposed [56, 52]. Going beyond the
use of soft label distillation [11], recent approaches have
explored the transfer of structural knowledge such as inter-
mediate feature representations [41], Gram matrices [55],

maximum mean discrepancy [14], or mutual information
[40]. Finally, there have also been some attempts at com-
bining both structure as well as label ensemble strategies,
with FEED [39] and knowledge flow [29] being notable ex-
amples. In contrast to these techniques, our feature-level
ensemble method is label-free, model agnostic, and can also
be used in heterogeneous knowledge distillation scenarios.

Federated Learning. Most existing FL methods are ei-
ther parameter-based or distillation-based. In parameter-
based FL methods, each local model shares its parame-
ters/gradients with the central server after every round of
local training on its local data, following which the cen-
tral server aggregates them, e.g., by averaging [34]. This
result is then shared by the central server with the local
nodes, which in turn update their corresponding local model
and proceed with the next training round. This process is
then repeated until the stopping criterion is met. A num-
ber of extensions to FedAVG [34, 49, 25, 13] have been
proposed with new aggregation schemes such as momen-
tum [12] or local weighting [25, 13], or new local train-
ing strategies such as the use of proximal term [24] or con-
trol variations[19]. However, such parameter/gradient shar-
ing can certainly be a straightforward way of information
exchange, it is highly susceptible to privacy leakage and
stealth attacks, as also demonstrated elsewhere [61, 4].

On the other hand, distillation-based methods exchange
model outputs (on local private data) [60, 45] rather than
the parameters, leading to growing concerns on the privacy
of local data. While some methods address this issue by
distilling on public data [16, 22, 4], they often select public
data based on some prior knowledge of private data, leading
to similar security vulnerabilities as above. While the re-
cently proposed FedDF [28] attempts to address this issue,
it is quite inefficient (e.g., high network bandwidth) due to
the iterative exchange of models over hundreds of rounds,
which in turn also leads to more susceptibility to stealth
attacks and hence privacy concerns. The framework most
similar to ours is PATE [38], where all local models can be
trained independently without inter-institutional communi-
cation, and the central model is trained with hard pseudo
labels voted by local models. In contrast, our method pre-
serves privacy by exchanging the soft prediction of domain
robust public data, and further exploiting in-depth feature
level information for high efficient communication.

Privacy Concerns for FL. Parameter-based FL meth-
ods have shown to be highly susceptible to privacy leak-
age [61, 4]. Furthermore, as noted above, some distillation-
based FL methods are also at privacy risk when recursively
model exchanges are involved [28]). Utilizing unlabeled
public data during distillation, while also restricting the lo-
cal nodes’ access to the server model, has been shown to
be more resilient to attacks and guarantee privacy [38, 9].
Therefore, our framework explicitly protects local private
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data by using one-shot communication, and public data
from different domain or distributions.

3. Approach

We first begin with a formal introduction to the problem
before discussing the design of our proposed framework,
called Ensemble Attention Distillation federated learning
(FedAD).

3.1. Problem Definition

Let there be K local/private nodes with each node play-
ing host to labeled (private) dataset Dk = {(xi

k, y
i
k)|i =

1, . . . , |Dk|}, where yk ∈ Ck, Ck is the set of existing
classes in dataset Dk, and Ck ⊂ {1, . . . , C} (C is the over-
all number of classes across all local nodes). The shared
public dataset D0 = {xi

0|i = 1, . . . , |D0|} can be accessed
by any local node and can unlabeled or labeled.

As illustrated in Figure 2, in the first stage of FedAD,
the model at each local node k is trained using the corre-
sponding private data Dk (θk represents these local model
parameters after local training). Since our proposed FedAD
is agnostic to the type of network architecture, each local
neural network can be customized to have its own architec-
ture, helping adapt the model to its local data distribution.

In the second stage, we disconnect local datasets from
the network to minimize security risks and protect privacy.
Instead, the central public dataset D0 is used at each lo-
cal node as part of a one-way knowledge distillation frame-
work from the local models to the central server. The set of
local models and the central model form a teacher-student
knowledge transfer setup where the teacher is a local-model
ensemble (one local model at each local node).

3.2. Logits Ensemble Distillation

During each distillation step t, we sample (randomly) a
subset Kt of models from all local nodes. This subset com-
prises a fraction γ of all local models. The standard distil-
lation pipeline uses the Kullback-Leibler divergence to en-
semble all teachers’ soft labels:

L =
∑
c

p(y = c)log
p(y = c)

q(y = c)
, (1)

where p is the sample’s probability being class c for the
teacher model and q is the corresponding value for the stu-
dent model. Given a sample x0 from the public dataset, let
zck = f(x0, θk, c) be its logits (on class c from local model
at node k) and z̃c = f(x0, θs, c), where c ∈ {1, . . . , C} be
the corresponding central model output. Given these nota-
tions, the standard ensemble strategy ẑc = 1

|Kt|
∑

k∈Kt
zck

uses the average operation on logits from all teachers’ with

a softmax activation as:

p(y = c) =
exp(ẑc/τ)∑
c exp(ẑ

c/τ)
, q(y = c) =

exp(z̃c/τ)∑
c exp(z̃

c/τ)
(2)

It has been shown in prior work [11] that minimizing Eq. 1
with a high temperature parameter τ is the same as to min-
imizing the ℓ2 error between student and teacher logits,
hence establishing a relationship between matching logits
and the cross entropy objective. Without any loss of gener-
ality, let the activation be qc = σ(z̃c) and pc = σ(ẑc).

Since the FL setting involves extreme heterogeneity, the
standard distillation process discussed above is not directly
suitable. This is because of the inability to tackle a general
scenario where all local models do not share the same set
of target classes. To explicitly consider this in our proposed
framework, during our distillation procedure, we introduce
a new variable, called the importance weight ω, for each
local model so as to capture the corresponding local data
distribution used in the initial training step:

ẑc =
∑
k∈Kt

ωc
kz

ck, ωc
k =

N c
k∑

k∈Kt
N c

k

, (3)

where N c
k =

∑|Dk|
i=1 (y

i
k = c) is the number of c-class sam-

ples used in training the local model at node k.
Following the observation above, we set τ → ∞ and

rewrite the logits learning objective as:

Llogits(z̃, ẑ) =
1

C
∥z̃− ẑ∥, (4)

where z̃ = [z̃1, . . . , z̃C ] and ẑ = [ẑ1, . . . , ẑC ]. Note that the
aforementioned methods can be easily applied pixel-wise,
making it readily applicable for segmentation tasks.

Multi-label Classification: We next show our proposed
method can be easily extended to multi-class classification
(to go with single class above). Here, we denote the pri-
vate data as Dk = {(xi

k, y
i
k)|i = 1, . . . , |Dk|} with yik ∈

{−1, 0, 1}C where -1, 0, and 1 represent unknown, nega-
tive and positive for class c. Finally, the adaptation requires
a few more changes. Instead of softmax, we use the sigmoid
pc = σ(ẑc) and qc = σ(z̃c) as the activation function. Next,
we modify Eq. 3 by defining N c

k =
∑|Dk|

i=1 (y
i
k(c) = 1).

3.3. Attention Ensemble Distillation

Logits distillation discussed above essentially captures
the divergence between the output vectors of teacher and
student models. However, comparing only the output vec-
tors in this fashion only ensures the outputs can match and
does not necessarily mean the underlying structural knowl-
edge, or the model’s reasoning can be transferred. We posit
that such knowledge, e.g., intermediate feature representa-
tions of models, can result in more accurate distillation of
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knowledge, more so in cases such as FL with its high de-
gree of heterogeneity in local data sources. While this can
seem intuitive, there are practical challenges in implement-
ing this method. Specifically, transferring mostly bulky ma-
trices such as intermediate feature representations is quite
resource intensive, e.g., from the perspective of network
bandwidth burden, and furthermore, relies on restrictive re-
quirements such as identical network architecture among
the student and teacher models.

On the other hand, representations such as class-specific
top-down attention maps generated with methods such as
Grad-CAM [42] have been widely used in providing loca-
tion cues for weakly supervised semantic segmentation, and
has been shown to be effective in providing more precise
and efficient guidance to the learning process [23]. Fur-
thermore, recent studies such as [31] extend Grad-CAM
to generic embedding models, making it applicable to any
tasks that use or need a fully-connected feature extractor.
We argue that such top-down model interpretations can
transfer knowledge in a more efficient (instead of full fea-
ture tensors) and effective (instead of just the output vec-
tors) way, without sacrificing communication efficiency or
risking privacy leakage.

Sampling by importance. Let the attention map from
local node k for class c be Ack ∈ RHW , where H,W are
the size of attention maps, and the complete set of atten-
tion maps from all local nodes be A = {Ack|k ∈ Kt, c =
1, . . . , C}. Due to the high degree of heterogeneity among
local nodes, we weight attention maps from each local node
differently based on the sample distribution in its corre-
sponding private dataset. Similar to FedVC [13] that re-
samples local nodes based on the probability proportional
to local data size, we sample the attention maps based on
the class-specific importance weight ωc

k in Eq. 3. That is,
we independently decide on whether to use Ack with the
probability ω̂c

k in each batch.
To ensure at least K̂ samples are selected each time, we

set ω̂c
k = max(1,

ωc
k

Top
K̂
(ωc

k)
), where TopK̂(ωc

k) denotes the

K̂-th maximum value among {ωc
k|k ∈ Kt} . In our experi-

ments, we set K̂ = 2 by default. At each sample step t, we
obtain a set of selected local indexes K̂c

t for class c as:

K̂c
t = sample({ω̂c

k|k ∈ Kt}), (5)

where K̂c
t ⊂ Kt and |K̂c

t | ⩾ K̂. Thus, the selected set
of attention maps with respect to class c is Ac

t = {Ack|k ∈
K̂c

t}. To simplify notions, from this point on, we refer to
Ac

t as Ac = {Ack|k ∈ K̂c}.
Attention bound constraint. While there have been

a few recent efforts in enforcing constraints directly on
gradient-based attention maps [7, 50, 31], they cannot di-
rectly be applied to our scenario with an ensemble of at-
tention maps produced by highly heterogeneous models.

Algorithm 1 FedAD on K local nodes with C classes.
Input: Labeled private data {Dk}, unlabeled public data D0,
central model θs, local models {θk}, T distillation steps, batch-
size S, sample fraction γ .
Local Training: Train each local model θk with Dk

for each distillation step t = 1, ..., T do
Kt ← random subset (γ fraction) from K locals
x0← a batch of public data from D0 with size S
for each local k ∈ Kt do

zk, Ak ← f(x0; θk)
end for
ẑ← ensemble {zk|k ∈ Kt} ▷ Eq. 3
for each class c = 1, ..., C do
K̂c

t ← sample a subset from Kt ▷ Eq. 5
Ic,U c← ensemble Ac = {Ack|k ∈ K̂c

t} ▷ Eq. 6
end for
z̃, Ã← f(x0, θs)

Update: θs ← θs − 1
S
∇θsL(z̃, ẑ, Ã, I,U) ▷ Eq. 10

end for

Figure 3. Illustration of Eq. 6. Suppose k ∈ K̂c = {1, 2, 3} with
respect to class c, Ack indicate local attention maps, U c and Ic

indicate union attention maps and intersection attention maps re-
spectively.

Specifically, the training objective based on the ℓ1 or ℓ2
functions in these methods seek to enforce exactly the same
activation strength in each location of the attention map,
which in our case may likely introduce and amplify noise
from local models. To achieve consensus while also main-
taining the diversity that is inherent among the local nodes,
we design a novel attention bound constraint based on the
intersection and union of local attention maps with respect
to the same input data and class output. Given the set of
local attention maps Ac = {Ack|k ∈ K̂c}, we denote
Ic,U c ∈ RHW as the intersection and union among all the
local attention maps Ac with respect to class c, respectively.
Let h,w be the pixel index, we have

Ichw = min
k∈K̂c

Ack
hw, U

c
hw = max

k∈K̂c

Ack
hw, (6)

where Ic denotes a consensus on the high-response region
among all the local attention maps, that has a high probabil-
ity to comprise the object of interest. While U c considers
all of the high-response regions among the local attention
maps, it also preserves diversity of “expertise” among the
local models by means of the union operation. Figure 3
shows an example of such attention maps. Given the at-
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tention map A, let T (·) be a soft-masking operation (with
sigmoid) to have all values lie between 0 and 1 [23]:

T (A) =
1

1 + exp(−ρ(A− b))
. (7)

For simplicity, we denote Ãc as the attention map generated
by central model with respect to class c. Considering the at-
tention intersection Ic as the consensus achieved by all lo-
cals, we enforce the high-response region in Ãc to explicitly
include that of Ic using our proposed attention intersection
loss, defined as:

Linter(Ã, I) = − 1

C

∑
c

∑
hw Ichw · T (Ãc

hw; ρ1, b1)∑
hw Ichw

, (8)

where Ã = [Ã1, . . . , ÃC ], I = [I1, . . . , IC ], ρ1 = 10,
and b1 = 0.6. With the attention union U c including all
the high-response regions among all locals, we enforce the
high-response region in Ãc to be explicitly inside that of
U c using our attention union loss Lunion. The intuition here
we seek each high-response pixel in the Ãc to have support
from at least one local model to take model diversity into
account. The Lunion loss is defined as:

Lunion(Ã,U) = − 1

C

∑
c

∑
hw Ãc

hw · T (U c
hw; ρ2, b2)∑

hw Ãc
hw

,

(9)
where U = [U1, . . . ,UC ], ρ2 = 10, and b2 = 0.3.

Our method optimizes the learning of the central model
so that Ãc is encouraged to activate in the pixels which are
activated in Ic, and penalized for activating in the pixels not
activated in U c. The attention bound constraint combines
the two constraints balancing the local consensus and diver-
sity. This is a relaxed constraint as it is capable of tolerating
up to |K̂c

t | − 1 incorrect/biased attention maps, and main-
taining high robustness to outliers, which is particularly im-
portant to tackle with heterogeneity in the FL setting. The
overall loss for optimization is

L = Llogits(z̃, ẑ) + Linter(Ã, I) + Lunion(Ã,U). (10)

Segmentation. Crucially, our framework by no means
is limited to just classification problems. The distillation
algorithm of our proposed FedAD framework can be used
to aggregate knowledge for other kinds of tasks as well,
e.g., segmentation. In this case, we aggregate predicted
masks zck in Eq. 5 and N c

k is counted pixel-wisely. Thus
the logits in Eq. 4 can be written as z̃ = [z̃1, . . . , z̃C ] and
ẑ = [ẑ1, . . . , ẑC ]. The other modification is we obtain the
class-specific attention map of local model through activa-
tion: Ack = σ(zck), where σ can be softmax or sigmoid.
More details are in supplementary materials.

The overall process is explained in Algorithm 1.

Accuracy(%) Shared CIFAR-10 CIFAR-100
Param. α = 1 α = 0.1 α = 1 α = 0.1

FedAvg [34] Y 78.57
±0.22

68.37
±0.50

42.54
±0.51

36.72
±1.50

FedProx [24] Y 76.32
±1.95

68.65
±0.77

42.94
±1.23

35.74
±1.00

FedAvgM [12] Y 77.79
±1.22

68.63
±0.79

42.83
±0.36

36.29
±1.98

FedDF [28] Y 80.69
±0.43

71.36
±1.07

47.43
±0.45

39.33
±0.03

FedMD [22] N 80.37
±0.37

69.23
±1.31

45.83
±0.58

39.86
±0.78

Standalone N 61.11
±24.90

28.99
±27.24

27.49
±14.76

16.31
±15.75

FedAD N 82.48
±0.21

73.11
±1.25

50.34
±0.33

48.43
±1.01

Table 1. Results on CIFAR-10 and CIFAR-100 with ResNet-8
when γ=0.4 and K=20, comparing our FedAD with several ex-
isting parameter-based [34, 24, 12, 28] and distillation-based [22]
FL methods. Standalone: mean/std accuracy of all local models.

FedDF [28] FedAD (Ours)
γ = 0.4 γ = 0.4 γ = 0.8 γ = 1

Accuracy (%) ↑ α = 1 80.69 82.48 83.16 83.68
α = 0.1 71.36 73.11 73.29 73.40

Bandwidth (GB) ↓ 29.4 10.1 22.1 27.6
Table 2. FL communication efficiency on CIFAR-10. In FedDF,
both logits and parameters are of type float64, whereas attention
maps are of type float16.

aggregation scheme [28, 13] Eq. 3 Eq. 3 Eq. 3
logits distillation τ = ∞ τ = 3 τ = ∞ τ = ∞

attention distillation ✗ ✗ ✗ ✓

Accuracy(%)↑ 65.73 67.81 72.67 73.11

Table 3. Ablation study on CIFAR-10 with ResNet-8, γ=0.4,
K=20, and α=0.1. We compare our aggregation scheme (Eq. 3)
with the existing aggregation schemes [28, 13], and different tem-
peratures for logits distillation, we only list the result with typical
value τ=3 [11].

4. Experiments

We conduct a number of experiments on natural images/
medical images for both classification/segmentation tasks.
Additionally, we experiment on text classification tasks and
provide the results in the supplementary.

4.1. Classification

In constructing local training sets, we use heterogeneous
data splits using a Dirichlet distribution as in prior works
[12]. The value of α controls the degree of non-IID-ness: a
plus infinite α indicates identical local data distribution, and
a smaller α indicates higher non-IID-ness. While distilling
knowledge with task-relevant data from the same domain
is ideal, FedAD is compatible with using public data from
different domains. Here, we thus consider a more general
heterogeneous setting where the public data come from dif-
ferent domains. Note we save augmentation seeds locally
and transmit the predictions of each seed during distillation
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Epoch 1 Epoch 5 Epoch 7 Epoch 10

Ensemble 
A�en�on

Local A�en�ons

Central A�en�on

Figure 4. One example showing how ensemble attention can effec-
tively guide the central model focus on the right region.

Methods Distill Test mAUC(%)↑ Distill Test mAUC(%)↑

FedMD[22] C3 C 71.23 X3 X 77.66
C3+X3 C 70.97 C3+X3 X 77.02

FedAD
C3 alone C 75.08 ± 4.44 X3 alone X 73.67 ± 7.31

C3 C 75.17 X3 X 82.62
C3+X3 C 75.55 C3+X3 X 82.65

Centralized
Cc C 79.73 Xc X 82.58

Cc+Xc C 80.47 Cc+Xc X 80.91

Table 4. Results on CXR14 and CheXpert when private data is in-
side/cross domain. We split each dataset with Kd = 3, α = 1,γ =
1. ‘C’ refers to CXR14, ‘X’ refers to CheXpert, and {C,X}n de-
notes n local nodes with data from the dataset, where an additional
alone denotes mean/std of all local models. {C,X}c denotes cen-
tralized training all local data.

for classification tasks.

4.1.1 CIFAR-10/100 Classfication

We first consider CIFAR-10/100 [20]. For a fair compar-
ison, we follow the same setup as in FedDF [28], using
CIFAR-10 and CIFAR-100 as private datasets, and CIFAR-
100 and a downsampled version of ImageNet (32 × 32)
as the corresponding public datasets for CIFAR-10 and
CIFAR-100 respectively. We use test datasets on the central
server and report the average accuracy over three different
random seeds. Implementation details are provided in the
supplementary material.

The comparison in Table 1 shows that our method out-
performs current state-of-the-art methods by a large mar-
gin, particularly for the higher non-IID-ness scenario. Next,
we compare the accuracy and communication efficiency
at different sample fractions γ = {0.4, 0.8, 1.0} with the
current state-of-the-art method [28] in Table 2, where our
method achieves higher accuracy on CIFAR-10 while con-
suming significantly lower communication bandwidth. We
observed that the distillation result is not sensitive to data
precision, which has also been shown in prior work [43],
and hence used float16 for attention maps. In Table 3, we
show the results of ablation studies to validate the efficacy
of our proposed ensemble and distillation strategy.

4.1.2 Chest X-Ray Images Classification

With privacy being a particularly important topic for real-
world medical applications, we believe our proposed FL
framework will be a good fit to facilitate privacy-preserving
learning across various hospital sites. To this end, we eval-
uate our method on cross-domain, cross-site learning with
private data, which is relatively under-explored in the con-
temporary FL methods.

We use NIH chestX-ray14 (NIH CXR14) [51] and
CheXpert [15] as two domains where private data come
from. To ensemble their labels, we disregard ambiguous
categories such as Effusion, Pleural Effusion, and Pleural
Other, and other samples labeled “Support Device”, leaving
86,524 images in NIH CXR14 and 64,346 images in CheX-
pert for training across 14 classes. Of these, NIH CXR14
has annotations for 12 classes and CheXpert for 8 classes,
with 6 of these classes overlapping across both datasets. For
public data, we use 26,684 x-ray images in the RSNA Pneu-
monia Detection Challenge public data 1 without using their
labels. For K local nodes, each private dataset is distributed
to Kd = K/2 local nodes. Implementation details and ab-
lation studies are in supplementary material.

Figure 4 illustrates the effectiveness of bound attention
constraint during ensemble distillation. In Table 4, we com-
pare FedAD to FedMD[22] on multi-label chest-x-ray im-
age classification under the same settings, where one can
note our FedAD outperforms FedMD by a significant mar-
gin on both test datasets. While distilling and testing on
the data from the same, cross domain with FedAD obtains
the best result for CheXpert dataset, distilling from one do-
main gives comparable performance. Note that our pro-
posed FedAD uses additional unlabeled public data during
distillation when compared to the centralized training set-
ting. Under this cross-domain setting, the trained model is
capable of classifying all 14 classes, whereas training with
a single domain can only classify 12 and 8 classes, respec-
tively due to the annotation limitations as noted above.

4.2. Extension to Segmentation

We evaluate our method on segmentation on the
Cityscapes dataset and 3D Brain Tumor Segmentation
(BraTS) dataset. Note each local model predicts one time
on the public data, thus the communication cost is indepen-
dent of the distillation iterations.

4.2.1 Cityscapes Segmentation

For natural images, we use Cityscapes dataset [5] for se-
mantic segmentation of urban street scenes with 50 cities.
In constructing local training sets, we split 2975 training
images into three subsets based on the countries the images

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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Method mIoU (%) ↑ Pixel Accuracy(%)↑
Standalone(mean ± std) 64.11 ± 10.58 93.74 ± 1.79

Centralized 75.65 95.87

PATE [38] 64.48 93.99
τ=1 τ=∞ w/ att.

FedAD
✓ ✗ 58.56 92.91

✓ ✗ 71.86 94.94
✓ ✓ 72.97 95.07

Table 5. Segmentation results on Cityscapes. We calculate IoU be-
tween the ground truth mask and the predicted segmentation mask
for each class, and report mean IoU of all classes.

Standalone(mean ± std) 73.38 ± 3.44 Centralized 82.13

Li et al. [26] FedMD [22] FedAD
Average Dice (%) ↑ 84.33 75.71 77.85
Bandwidth (GB)↓ 64.37 2154.84 13.36

Privacy (NO Shared Param.) ✗ ✓ ✓

Flexibility online online on/offline
One-shot ✗ ✗ ✓

Table 6. Segmentation results on BraTS. We compare average Dice
score over three types of tumor regions, communication band-
width, privacy guarantee, and other attributes such as flexibility.

are collected from, e.g., Germany, France and Switzerland.
We use 1,525 unlabeled test images as public data. Note
the cities where the public images are collected from are
different from with either of that of the private data. We
test 19 classes on the validation dataset of cityscapes which
contains 500 images.

We adopt PSPNet [57] with ResNet101 [10], with the
backbone pretrained on ImageNet [6]. We use mini-batch
SGD with the learning rate initialized as 0.01 and decreased
to 0 in 100,000 iterations, and the same data augmentation
as [32]. In Table 5, we compare with the other offline decen-
tralized learning method PATE [38], which is also privacy-
guaranteed (no shared weights/gradients). With the same
locally trained models, our FedAD demonstrates superior
performance on both mIoU and pixel accuracy. For abla-
tion study, Table 5 also compares with the commonly used
[32, 33] τ = 1 case, showing the efficacy of our distillation
method for knowledge aggregation.

4.2.2 Brain Tumor Segmentation

For medical images, we use the BraTS 2018 dataset [35, 2]
that contains multi-parametric preoperative 3D MRI scans
of 285 subjects with brain tumors. Each subject was
scanned under the T1-weighted, T1-weighted with contrast
enhancement, T2-weighted, and T2 fluid-attenuated inver-
sion recovery (T2-FLAIR) modalities. Following the ex-
perimental protocol in prior work [26], we use 242 sub-
jects for the training set and 43 subjects for held-out test
set. The training set is stratified into three subsets according
to the institution the data is originated (“2013”, “CBICA”,
“TCIA”) and assigned each to federated local client. We

use half of the unlabeled validation set of the BraTS 2020
dataset [35, 2] as the public data comprising 62 subjects in-
dependent of either private dataset.

While the aforementioned distillation method is de-
signed for general tasks which use cross entropy objective,
we optimize with dice loss [36] for brain tumor segmenta-
tion. We thus modify Eq. 4 with soft dice to constrain the
predicted mask ẑc to match the aggregated masks z̃c. Let
pc = σ(ẑc) be the predicted probabilities of 3D voxel being
class c, qc = σ(z̃c) be the 3D soft pseudo labels, we have:

Llogits = − 1

C

∑
c

2 ·
∑

pc · qc∑
(pc)2 +

∑
(qc)2 + ϵ

, (11)

where the summation on pc, qc are voxel-wise, and ϵ is a
small constant to avoid numerical instability. Note in Eq. 8
and Eq. 9 the summation in numerator and denominator are
modified to be voxel-wise as well for this 3D case.

We use the same network backbone as [26]. The train-
ing strategy is the same as [37]. We train each local
model individually with 20,000 iterations, with local-to-
central distillation taking 5,000 iterations. The weight de-
cay is 5e-4 and 0 for local training and distillation, respec-
tively. Table 6 compares the segmentation performance and
other utilities with parameter-based [26] and distillation-
based [22] federated methods. We can note that our method
achieves the state-of-the-art privacy/performance trade-offs
compared with other existing methods.

5. Conclusions

In this work, we propose a one-shot federated learning
framework, called FedAD, that can in principle preserve lo-
cal data privacy using only unlabeled and domain robust
public data and be efficient in the utilization of available
network bandwidth resources when compared to compet-
ing prior art. Another key challenge in federated learning is
its inherent heterogeneity, which can manifest itself in vari-
ous ways: different differing domain distributions, different
local model architectures, or simply the diversity in knowl-
edge across all local models. To comprehensively address
these issues, our framework also includes a novel knowl-
edge distillation algorithm that is based on ensemble distil-
lation of prediction logits as well as structural knowledge by
means of model attention. Extensive experiments on classi-
fication and segmentation tasks with both natural image and
medical image datasets demonstrated the efficacy of FedAD
while also not risking privacy leakage. Furthermore, with
experiments and analyses using cross-domain and hetero-
geneous data distributions, we also demonstrated FedAD’s
applicability in real-world cross-institutional learning with
medical imaging data.
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