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Abstract

Point completion refers to completing the missing ge-
ometries of an object from incomplete observations. Main-
stream methods predict the missing shapes by decoding a
global feature learned from the input point cloud, which of-
ten leads to deficient results in preserving topology consis-
tency and surface details. In this work, we present ME-
PCN, a point completion network that leverages emptiness
in 3D shape space. Given a single depth scan, previous
methods often encode the occupied partial shapes while ig-
noring the empty regions (e.g. holes) in depth maps. In con-
trast, we argue that these ‘emptiness’ clues indicate shape
boundaries that can be used to improve topology represen-
tation and detail granularity on surfaces. Specifically, our
ME-PCN encodes both the occupied point cloud and the
neighboring ‘empty points’. It estimates coarse-grained but
complete and reasonable surface points in the first stage,
followed by a refinement stage to produce fine-grained sur-
face details. Comprehensive experiments verify that our
ME-PCN presents better qualitative and quantitative per-
formance against the state-of-the-art. Besides, we further
prove that our ‘emptiness’ design is lightweight and easy
to embed in existing methods, which shows consistent effec-
tiveness in improving the CD and EMD scores.

1. Introduction
Capturing 3D data for objects around us is as easy as

taking a picture with cell phones thanks to the popularity of
common 3D scanning sensors like LIDAR and depth cam-
eras. Such availability has greatly enriched the practical ap-
plications in vision and robotics communities.

Different from image sensors, data from 3D scanners
usually come incompletely with a much lower resolution,
e.g., depth maps with missing values. To recover com-
plete shapes from the partial inputs, volumetric and view-
based projection methods leverage 3D convolutions to rep-

*Corresponding author

(a) Input (b) Ours (c) MSN (d) GT
Figure 1: Given a partial scan (a), our method encodes the
spatial emptiness (blue points in (a)) neighboring to obser-
vations and predicts complete and topology consistent sur-
faces (b) compared with MSN [10] on the ground-truth (d).

resent shapes into voxel grids. However, those 3D convolu-
tions, suffering from expensive memory and computational
cost, are bottlenecked by the resolution-computation bal-
ance. It becomes even disadvantaged when the inputs are
unordered and sparse. Implicit methods learn a signed dis-
tance function (SDF) to represent shape surfaces and are
capable of reaching any high resolution. However, they
still rely on voxel grids, and an extra computation-intensive
post-processing step is required to extract the final shape
surface. In contrast, the point cloud is a more compact rep-
resentation of 3D shapes. Compared with voxels, it is more
scalable and computation-efficient to express shapes with
different granularity. Several deep neural networks have
been proposed to directly take advantage of point cloud rep-
resentation, such as PCN [31], TopNet [21], MSN [10].

A key concept in existing point completion methods is
an encoder-decoder architecture followed by an optional
refining process, where the completed point cloud is gen-
erated from an encoded global feature. The widely used
encoders for point cloud are PointNet [15] and its variant
PointNet++ [16]. With the encoder-decoder design, current
methods directly predict the complete points from the visi-
ble, occupied input points, while ignoring the unoccupied,
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empty regions in the inputs. In our view, the unoccupied re-
gions are the complement of shape occupancy, thus also in-
dicating the topology of 3D objects. Compared with learn-
ing from observable shapes, learning the emptiness presents
extra significance, especially for complex shapes, such as
non-convex surfaces with holes. In other words, the in-
put scan tells not only the shape occupancy but also ‘where
should not be occupied’. However, current methods predict
shapes in the whole 3D space, which could be insensitive to
subtle topologies. In our method, the emptiness in the input
can inform our network ‘which regions should not be oc-
cupied’, and helps to keep consistent shape topology. Such
emptiness information can be encoded by a mask given a
viewpoint and can be easily obtained by thresholding the
input depth scan or extracted from RGB images.

Inspired by the above, we introduce ME-PCN, a novel
point completion network informed with mask emptiness.
To encode the emptiness clues on a mask, 3D rays are ra-
diated from the viewpoint towards the empty regions of the
mask. All points along the rays will be encoded as empty
points. In ME-PCN, only empty points that are in the neigh-
borhood of visible points are processed by neural networks
in addition to the input point cloud. Since visible points and
empty points have totally different semantics, two separate
networks are used to encode them into two global features.

For surface completion, directly decoding shapes from
global features can predict plausible structures but usually
results in coarse and over-smoothed surfaces [10, 31]. It
also neglects subtle structures on the boundary between real
and empty points. To this end, a final refining stage is per-
formed after the coarse decoder. Local features are learned
from neighboring empty and visible points for each coarse
point, which augments the coarse input with on-surface de-
tails. The effectiveness of the emptiness inputs is verified
both qualitatively and quantitatively. In summary, the main
contributions of our work are:

• We provide a novel encoding modality for point com-
pletion. Prior arts learn complete shapes only from
visible points, while our method involves emptiness
learning to represent consistent shape topology and
improves surface details.

• We propose ME-PCN to learn the shape emptiness
from depth masks. Given a depth scan, 3D rays radi-
ated from the viewpoint to empty regions on the mask
are encoded to represent the emptiness in 3D shape
space. It informs ME-PCN of the shape boundaries
and improves the completion performance.

• Extensive experiments verify that our emptiness learn-
ing strategy can be easily embedded into modern
point-based shape completion pipelines to improve the
CD and EMD scores, which further makes our method
outperform the state-of-the-art.

2. Related Work
Shape Representation and Reconstruction Given an
object observation (e.g., images, depth maps, point clouds),
shape reconstruction aims to predict a plausible geometry
and recover the shape surfaces. Early works extend the
advantages of 2D convolutions in image perception to 3D,
and adopt 3D convolutions to reconstruct shapes with dis-
cretized voxels [5, 2, 3, 7, 19, 18]. These works pioneered
the 3D shape analysis modality but the expensive 3D convo-
lutions make them bottlenecked by the resolution-efficiency
problem, demanding an extra Octree to improve local de-
tails [17, 20, 23]. On this top, some works represent shapes
with SDFs [11, 1, 9], which theoretically can achieve any
high resolution. However, the SDF methods still rely on
voxel grids and require time-consuming post-processing to
extract mesh surfaces. Besides, both the voxel and SDF
methods can not well express shape boundaries thus leading
to inferior surface details. Some other works directly gener-
ate surface meshes as the output [22, 6]. These methods ap-
proximate the target surfaces by deforming template meshes
(e.g., planes or spheres), where the shape topology is usu-
ally restrained by the original templates. To this end, other
works [14, 12] learn to modify the topology of template
meshes, but it requires massive computations and often re-
sults in open boundaries. Besides, the kernel in the above
methods is an encoder-decoder structure, where shapes are
decoded or deformed from a global feature, decoding from
which would be insensitive to boundary details and pro-
duce over-smoothed results. In our method, we leverage
the emptiness information close to the shape boundary, and
demonstrate its effectiveness in improving surface details.

Shape Completion Different from shape reconstruction,
shape completion focuses on predicting a complete shape
from a partial, observable surface. Similar to reconstruc-
tion methods, many works also adopt an encoder-decoder
structure backboned by 3D CNNs or MLPs [5, 3, 4, 29]
to represent shapes with voxels or points. Since such a
structure cannot produce fine details, [31, 10, 28] adopt a
coarse-to-fine completion strategy to firstly predict coarse
points with MLPs and subsequently generate dense and re-
fined results. Besides, [24, 26] propose skip-connections
or cascaded blocks to revisit shallow-end point features to
complement surface details. [8] provides a multi-resolution
encoder to perceive shape details under different granular-
ity, and deploys a pyramid network to recover complete
points by increasing the resolution. However, the key con-
cept in these methods is how to improve point features to
encode and decode more enriched shape signals. There are
no explicit constraints to keep topology consistency with
the target shape. On this point, [13] provides a skeleton-
bridged method to predict surface points by first learning
shape skeletons. However, the skeletal points of objects
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Figure 2: Architecture of ME-PCN. Given a partial scan, our network learns the spatial occupancy and emptiness from the
observable points Q and 3D empty rays Rray from the object mask. After sampling the neighboring empty rays R∗

ray queried
by Q, an Emptiness Encoder is adopted to learn a global shape feature g′ by encoding the shape occupancy Q and spatial
emptiness R∗

ray separately. We firstly predict a coarse shape Pc to obtain a rough structure. To recover surface details. A
Ray Re-sampling strategy is adopted to obtain two sets of empty rays from Rray and R∗

ray respectively queried by Pc. Two
separate MLPs are used to respectively learn the point features before concatenation to predict the refined points Pr.

are extremely sparse. Any skeletal errors would directly
influence the structure and surface quality. Besides, [28] in-
volves an extra adversarial point rendering by minimizing
the depth map distance with the ground-truth under differ-
ent views. In our work, we provide a lightweight approach
to encode topological information by learning the ‘empty
points’ close to the observed input points. It informs our
network that which regions are unoccupied thus helps to
predict consistent sub-structures.

3. Approach
Our method consumes unordered ray sets of points as

the input. A ray set is denoted as a set of 3D vector pairs
Rray = {(pi, vi)|i = 1, ..., N}, where each start point pi ∈
R3 is a vector of 3D coordinates. vi ∈ R3 is the normalized
vector of its ray direction from the viewpoint to pi.

3.1. Ray Generation from Masks

Our method is illustrated in Figure 2. Given a depth map
with the corresponding viewpoint, we define a 2D ‘empti-

ness mask’ as the following:

masks,t =

{
1, if position s, t is empty,
0, otherwise.

(1)

A mask can be easily obtained by thresholding the depth
map or extracted from the corresponding RGB image. Once
we have the mask, an empty ray set Rray can be calculated
by back-projecting the mask into 3D space:

pi = Back-project(s, t, dfar) (2)
l · vi = pi − Back-project(s, t, dnear) (3)

Back-project is the reverse process of projection, which lifts
a 2D image or depth map back to 3D space. Position (s, t)
is the i-th non-zero elements in mask, which indicates an
empty pixel by Equation 1. l is the normalization factor to
ensure vi is a unit vector. dfar and dnear are the depth val-
ues of the farest plane and the nearest plane, respectively.
Therefore, we let Rray to represent the 3D empty points
back-projected from mask. dfar and dnear are kept con-
sistent among all shapes.
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3.2. Ray Points Sampling

Emptiness only has meanings when there are subjects in
its neighborhood. It means that both the empty rays Rray

and visible points are not isolated. Our network should
learn the local structures from the nearby empty points and
the combinatorial interactions among local structures.

However, in Rray, many rays are actually too far from
the subject and therefore convey little information. In this
section, we provide a sampling strategy to obtain informa-
tive rays from Rray as the input for ME-PCN. Those rays
should be close to shape surfaces to convey local details.
Specifically, given a real point qj ∈ R3 on the shape sur-
face, we sample a subset of rays from Rray in the neigh-
borhood of qj , where we choose K nearest rays for each
qj . On each neighboring ray rk ∈ Rray, we select the
nearest point as an empty point candidate pek ∈ R3. Thus
each real point qj has K candidates of empty points {pek},
k = 1, 2, ...,K. The Euclidean distance ∥Dr,q∥ between a
ray r = (p, v) ∈ Rray and a real point q is defined by:

pe = p− [(p− q) · v] v, (4)
Dr,q = pe − q, (5)

where pe is the nearest point from ray r to real point q.
Dr,q ∈ R3 is the offset vector from q to pe.

After sampling, for each real point q, we combine its K
nearest empty points {pek} ∈ RK,3 with the corresponding
ray direction vectors {vk} ∈ RK,3 and the offset vectors
{Dk} ∈ RK,3. Denote that there are M visible points Q ∈
RM,3, then we input our network with the processed rays

R∗
ray = {{pek}, {Dk}, {vk}} ∈ RM×K×9. (6)

Both pek and Dk indicate the spatial neighborhood to real
point q in Euclidean space. This could provide explicit cues
for our network to capture local structures from nearby rays.

3.3. Emptiness Encoding

We illustrate the architecture in Figure 2. Our approach
takes a partial point cloud Q and sampled rays R∗

ray as in-
puts and encodes them into a global feature vector (GFV)
with emptiness semantics, which will be used to predict
complete point cloud with a coarse-to-fine strategy.

In the encoding stage, since visible points Q and empty
points in R∗

ray have totally different semantics with non-
identical scale, we use two separate networks to encode
them into two global feature vectors, respectively.

The encoder part consists of two Feature Encoding (FE)
layers to respectively process visible points Q and sampled
rays R∗

ray. The first FE layer consumes the coordinates of
visible points Q as the input. A shared multi-layer percep-
tron (MLP) consisting of two linear layers with ReLU ac-
tivation is used to transform points {qi|qi ∈ Q} into point
features {fi} ∈ RM,df . The second FE layer takes the

sampled rays R∗
ray as the input and produces point features

{gi} ∈ RN,df , similar to the first FE layer.
The two FE layers output two feature matrices F =

{fi}, G = {gi}. A point-wise max-pooling is respectively
performed on F,G to obtain df -dimensional global features
f and g. Lastly, f and g are concatenated together to form
a single global feature vector g′ = [f, g] ∈ R2df .

3.4. Coarse-to-Fine Decoding by Ray Resampling

From the global feature g′, we can directly decode the
complete point cloud that captures the overall shape fol-
lowing [31, 10]. However, as discussed in Section 2, de-
coding shapes merely from a global feature would neglect
local details and result in over-smoothed structures. To
this end, a refining stage that operates on generated coarse
points is usually preferred. In this part, we build our de-
coder with a coarse-to-fine strategy. A coarse decoder from
[10] is adopted to firstly predict a coarse-grained but struc-
ture completed points Pc ∈ RNc×3. Nc is the number of
coarse points. However, unlike [31, 24] where the local fea-
tures are complemented by skip-connecting the shallow-end
layer responses, we provide an explicit approach to revisit
the emptiness information and decode fine-grained surface
points. Our design is based on insights: 1) coarse points de-
coded from a global feature are still not accurate to preserve
a consistent boundary compared to the ground-truth due to
its roughness; 2) the point information in R∗

ray conveys the
surface clues that can improve shape detail recovery.

For the first part, we inform our decoder with the empti-
ness information (i.e., ‘emptiness mask’ in Equation 1). It
tells our decoder ‘whether the coarse points are in empty
regions’. For the second part, we inform our decoder with
the shape information. It tells our decoder ’what the real
surface looks like’. To realize these, given the coarse points
set Pc, we respectively resample two sets of empty rays
Rd

ray1 and Rd
ray2 as the input for the surface refining de-

coder, which is illustrated in Figure 3.

Figure 3: Resampling rays queried by coarse points Pc

into Rd
ray1 (left) and Rd

ray2 (right). Blue points denote the
sampled rays from empty rays Rray (left) or R∗

ray (right).
Green points represent the rays sampled from visible points.
Blue points imply whether coarse points are in empty re-
gions. Green points reveal the position of visible points.
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Sampling Rd
ray1: We sample Rd

ray1 with the same
method of sampling R∗

ray (see Section 3.2). The only dif-
ference is that the visible points Q in Section 3.2 is replaced
with the coarse points Pc. Then the sampled empty rays
Rd

ray1 ∈ RNc×K×9 will tell whether a coarse point in Pc

is in an ‘empty’ region.

Sampling Rd
ray2: For Rd

ray2, we adopt the same sam-
pling method and use coarse points Pc as the query to col-
lect neighboring rays into Rd

ray2. The difference is that, we
no longer sample rays from Rray but from the union of its
subset R∗

ray and the ray set RQ
ray (generated from visible

points Q). R∗
ray presents the boundary rays in Rray (see

Section 3.2). With the definition in Equation 6, the rays
generated from Q are defined by:

RQ
ray = {(qi, 0⃗, vi)|i = 1, ...,M} (7)

l · vi = qi − Back-project(s, t, dnear), (8)

where qi is the 3D coordinates of a real point in Q. (s, t)
is its projection on the depth map. vi is the unit directional
vector from camera viewpoint to qi. Since qi is a real point,
so the offset between ray (qi, vi) and a real point is 0⃗ (see
Equation 5). l is a factor to ensure vi is a unit vector. Note
that to satisfy the assumption: all points on rays are empty
points. We only consider those rays {(qi, 0⃗, vi)} ⊂ RQ

ray

whose depth values at {(s, t)} is larger than the correspond-
ing depths of coarse points Pc on the image plane.

Note that we sample Rd
ray2 from {R∗

ray,RQ
ray}. Fol-

lowing Section 3.2, for each point pc ∈ Pc we sample
K nearest rays and concatenate the empty points {pc,ek },
offset vectors {Dc

k} with the corresponding empty ray in-
formtion {rc} ⊂ R∗

ray ∪ RQ
ray. Therefore, Rd

ray2 =

{{pc,ek }, {Dc
k}, {rc}} ∈ RNc×K×15

Decoding Refined Shape: Rays in Rd
ray1 represent

empty space neighboring to coarse points, while Rd
ray2

informs the coarse points with the real shape boundary.
Two FE layers are respectively used to encode Rd

ray1 and
Rd

ray2. For Rd
ray1, a shared MLP consisting of two linear

layers with ReLU activation are used to transform points
in Rd

ray1 ∈ RNc×K×9 into a grouped point feature vec-
tor {fd

i } ∈ RNc×dg . The second FE layer consumes
Rd

ray2 and produce a grouped point feature vector {gdi } ∈
RNc×dg , similar to the first FE layer. The grouping opera-
tion is shown as ({fd

i } is taken as an example):

fd
i =

K∑
k=1

dg∑
d=1

w(k, d)r(i, k, d), r ∈ Rd
ray1, (9)

where {w} are the weights calculated following [27]. We
concatenate {fd

i } and {gdi } to regress the coordinates of
complete surface points as the refined output Pr.

3.5. Loss Function

We design our loss function via the Earth Mover’s Dis-
tance (EMD) and the regularizer Lexpansion from [10]:

L =EMD(Pc,Pgt) + λ1 · Lexpansion

+ λ2 · EMD(Pr,Pgt).
(10)

The EMD measures the distance from the coarse prediction
Pc (or the refined prediction Pr) to the ground-truth surface
points Pgt. The regularizer ensures point patches in Pc fit
in local areas and not overlap too much. λ1, λ2 are two
weights of importance that balance different losses.

4. Experiment and Evaluation
Network Specifications. Our network architecture is illus-
trated in Figure 2, where the coarse decoder is adopted fol-
lowing [10]. The parameters and layer information in Sec-
tion 3 are detailed in the supp. material.
Dataset. We evaluate our methods on a subset of the
ShapeNet dataset. 14 categories that contain a large number
of models are selected where 29,795 CAD models are in-
cluded. We report our evaluation on six categories: faucet,
cabinet, table, chair, vase and lamp. The others are in-
cluded in the supp. material. The complete point clouds
are created by uniformly sampling ngt = 8192 points on
the mesh surfaces and the partial point clouds are generated
by back-projecting 2.5D depth images into 3D. All CAD
models are normalized into [−1, 1]3 and located at the ori-
gin. For each category, we sample 9,000 pairs of partial
and complete point clouds from different models using ran-
dom viewpoint, resulting in 9,000×14 pairs of point clouds,
where 10% of them for testing, and the rest are for training.
Benchmark. To validate our performance, we exten-
sively compare our method with the state-of-the-art includ-
ing PCN [31], PF-Net [8], P2P-Net [30], SoftPoolNet[25],
CRN [24], GR-Net [29], MSN [10] and SK-PCN [13]. All
methods are inputted with 5,000 points. Two resolutions
of output points (2048 and 8192) are compared considering
some methods support upsampling while the others do not.
Besides, we also embed our emptiness learning into PCN
(i.e. PCN+ray) and MSN (i.e. MSN+ray) to verify its ef-
fectiveness to different backbones. The network details of
PCN+ray are illustrated in the supp. material.
Model Training. We trained all models on 2×NVIDIA
GeForce RTX 2080 Ti GPUs for 25 epochs with a batch
size of 16. The initial learning rate is 10−3 and is decayed
by 0.1 per 10 epochs. Adam is used as the optimizer.

4.1. Comparison with Existing Methods

We list the qualitative results in Figure 4. For quantita-
tive evaluation, since some methods (PCN [31], CRN [24],
GR-Net [29], and MSN [10]) support upsampling to recover
higher resolution of outputs, we compare our methods with
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Figure 4: Comparisons of different methods on point cloud completion. Note that 8,192 points are exported from each
method for comparison, except SoftPoolNet (4,096 points) due to its network specification.

them under the resolution of 8,192. In these methods, PCN
completes the partial point cloud by using a stacked version
of PointNet layers [15] to construct an auto-encoder. CRN
combines local details of partial input with the global shape
feature to synthesize detailed object shapes with a coarse-
to-fine strategy. Similarly, MSN also recovers shapes from
coarse-to-fine and involves a joint loss function to ensure
even point distribution. GRNet is the recent approach that
applies 3D convolutions to process shapes on volumetric
grids. We report the comparisons using EMD [10] and CD
scores [4] in Table 1 and Table 2 respectively.

For the other methods that do not support upsampling
(including PF-Net [8], P2P-Net[30], SoftPoolNet[25]), we
downsample the output of all the methods to the resolution

of 2,048 to enable a fair comparison. SoftPoolNet employs
a similar encoder as PCN [31] but aggregates soft pooling
layers as the activation function instead of max-pooling.
PF-Net designs a multi-resolution pyramid decoder to re-
cover the missing geometries on different scales. P2P-Net
generates compact completion results by learning the bidi-
rectional deformation between the input partial point cloud
and the complete point cloud, but it struggles to recover the
detailed structure, especially on invisible areas. The quan-
titative scores on EMD and CD are respectively listed in
Table 3 and Table 4.

As shown in Table 1-4, our method outperforms existing
methods on both EMD and CD scores. Our method uses
EMD as a loss function and archives the lowest EMD score
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methods faucet cabinet table chair vase lamp average
PCN 16.49 9.34 11.34 10.94 12.43 16.10 12.77

PCN+Ray 13.63 8.25 10.79 9.74 11.10 14.30 11.30
CRN 13.43 9.85 7.93 8.67 12.49 11.38 10.63

GRNet 10.36 7.75 7.50 7.74 11.21 10.74 9.22
MSN 7.71 6.70 6.52 6.57 6.89 7.55 6.99
Ours 6.31 6.14 5.33 5.12 5.93 6.76 5.93

Table 1: Evaluation on EMD (×102) with Res.=8,192

methods faucet cabinet table chair vase lamp average
PCN 4.17 4.67 3.82 4.01 6.31 3.73 4.45

PCN+Ray 2.80 4.55 3.57 3.81 5.80 3.12 3.94
CRN 3.67 4.49 3.44 3.81 5.49 3.19 4.01

GRNet 3.28 4.66 3.73 3.94 5.53 3.52 4.11
MSN 4.02 5.75 4.61 4.81 5.71 4.34 4.87
Ours 2.62 4.72 3.76 3.62 4.54 3.02 3.71

Table 2: Evaluation on CD (×102) with Res.=8,192

methods faucet cabinet table chair vase lamp average
PCN 16.81 10.47 12.22 11.81 13.25 16.67 13.54

PCN+Ray 16.13 10.18 11.68 10.61 11.13 14.90 12.44
PF-Net 16.11 10.04 9.97 10.61 11.50 14.07 12.05
P2P-Net 16.09 11.64 10.73 12.29 16.36 13.52 13.44

SoftPoolNet 15.03 14.30 11.28 14.05 17.63 15.89 14.70
CRN 14.00 11.00 9.09 9.70 13.32 12.09 11.53

GRNet 11.30 9.16 8.61 8.82 12.27 11.28 10.24
MSN 8.52 8.19 7.82 7.82 8.36 8.51 8.20
Ours 6.89 7.48 6.63 6.63 7.16 7.48 7.05

Table 3: Evaluation on EMD (×102) with Res.=2,048

methods faucet cabinet table chair vase lamp average
PCN 5.62 7.28 5.95 6.14 8.71 5.15 6.48

PCN+Ray 4.35 7.14 5.19 5.98 7.19 4.61 5.74
PF-Net 8.96 8.15 6.94 7.48 10.10 7.56 8.20

P2P-Net 4.47 7.21 5.49 5.92 7.62 4.41 5.85
SoftPoolNet 5.54 7.85 6.41 6.59 8.27 5.56 6.70

CRN 5.14 7.13 5.59 5.94 7.96 4.63 6.06
GRNet 4.72 7.21 5.77 6.00 7.90 4.92 6.08
MSN 5.25 8.06 6.50 6.70 7.92 5.66 6.68
Ours 3.90 7.01 5.65 5.61 6.68 4.26 5.51

Table 4: Evaluation on CD (×102) with Res.=2,048

in all object categories. Besides, we can observe some cat-
egories present large scores among all methods, which in-
dicates their inherent structure complexity such as faucet,
vase, chair, and lamp. While our method shows superi-
ority especially in those categories on both EMD and CD
scores. The qualitative results in Figure 4 demonstrate that
PointNet-based methods like PCN, SoftPool, and MSN fail
to reconstruct subtle structures and tend to generate blurred
details. This is due to the limitation of PointNet architec-
ture. GRNet uses volumetric convolution and therefore can
encode the emptiness semantic implicitly, result in better

details. However, GRNet is still limited by high computa-
tional cost. With the help of ray features encoded in points,
our method can encode and reconstruct complex structures
precisely and efficiently.

SK-PCN [13] predicts detailed structure by learning the
skeletal points first. It decouples the shape completion into
structure estimation and surface reconstruction. Limited by
the availability of skeleton points for training, we only eval-
uate SK-PCN and ours on two categories: chair and table,
where each of them has 818 and 991 models, respectively.
The results are listed in Table 5.

Category SK-PCN Ours
Chair 8.46 / 4.75 4.01 / 3.09
Table 8.98 / 4.37 5.53 / 3.94

Average 8.72 / 4.56 4.77 / 3.51

Table 5: Comparison with SK-PCN (EMD / CD ×102)

4.2. Effectiveness of Emptiness Encoding

To verify the effectiveness of embedding emptiness in-
formation in feature encoding, we compare the coarse out-
put from MSN [10] (vanilla MSN) with the one embedded
with ray features as in Section 3.3 (vanilla MSN+ray). The
output resolution of the two methods is set to 8,192 points.
We report the quantitative results in Table 6 on both EMD
and CD scores. Besides, we also augment PCN [31] into
PCN+ray. The results are listed in Table 1-4. Figure 5
shows a qualitative comparison. Both the qualitative and
quantitative results suggest that, encoding emptiness feature
improves the representation ability of the encoder, which
further boosts the performance in shape decoding even us-
ing a coarse decoder (from a global feature). The reason
could be that the emptiness feature indicates a clear shape
contour. There could be fewer output points within empty
areas from MSN+ray compared with using vanilla MSN.

(a) Input (b) v. MSN+ray (c) v. MSN (d) GT

Figure 5: Coarse results comparison with vanilla MSN+ray.

4.3. Encoding Emptiness with 2D Convolution

Apart from using 3D rays to encode emptiness, we also
adopt 2D CNNs to perceive the empty regions on the depth
map. In our experiments, the depth map in Figure 2 is con-
catenated with the emptiness mask in Equation 1 to con-
struct a 4-channel image I . Then we build a ME-PCN-
2DConv network by replacing MLPs in the global encoder
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Category vanilla MSN vanilla MSN+Ray
Faucet 8.61 / 5.03 6.59 / 3.63
Cabinet 7.17 / 6.07 6.13 / 5.24
Table 8.59 / 5.75 6.10 / 4.66
Chair 7.51 / 5.59 5.84 / 4.50
Vase 8.67 / 6.75 6.63 / 5.62
Lamp 8.59 / 5.42 7.84 / 4.38

Average 8.19 / 5.77 6.52 / 4.67

Table 6: MSN + emptiness encoding (EMD / CD ×102)

Category ME-PCN-2DConv Ours
Faucet 7.46 / 3.31 6.31 / 2.62
Cabinet 6.26 / 5.00 6.14 / 4.72
Table 5.70 / 4.14 5.33 / 3.76
Chair 5.91 / 4.13 5.12 / 3.62
Vase 6.97 / 5.35 5.93 / 4.54
Lamp 6.74 / 3.54 6.76 / 3.02

Average 6.51 / 4.25 5.93 / 3.71

Table 7: 2D emptiness encoding (EMD / CD ×102)

with three 2D convolution layers + Max-pooling, which
outputs the global feature with the same dimension (2048-
D) for the following shape decoding.

(a) Input (b) Ours (c) w. 2DConv (d) GT

Figure 6: Using 2D convolutions for emptiness encoding.

For coarse-to-fine decoding, we project predicted coarse
points back to a 2D image plane. For each coarse point,
we obtain its point feature by querying the 2D feature map
learned by another 2D CNN from image I . The 2D CNN
is constructed in a similar way as above, and obtains a
64-channel feature map from I . We compare ME-PCN-
2DConv with our ME-PCN. The qualitative and quantita-
tive results are listed in Figure 6 and Table 7. They show
that ME-PCN presents better results. Besides, MEM-PCN-
2DConv consumes more net parameters and costs 2-5 times
of GPU memory led by the 2D convolutions, which demon-
strates the efficiency of representing emptiness using rays.

4.4. Robustness of Emptiness Encoding

The emptiness masks in our method are generated from
depth maps. However, in the real world, such a mask can be

inaccurate considering the noises in depth scans. To verify
our robustness to noisy masks, we simulate the masks from
real-world depth/RGB data, and add strong Gaussian noise
(see Figure 7) to the boundaries of masks. We fine-tune our
model on chair and table categories using the noisy mask
for 2000 iterations. Test results show that the EMD score on
chair / table increase from 5.12 / 5.33 to 5.26 / 5.56 respec-
tively. CD score on chair/table increase from 3.62 / 3.76
to 3.67 / 3.92 respectively. The performance-degradation is
less than 3%, which verifies the robustness of our method.

(a) Before (b) After

Figure 7: Adding noise to simulate the mask from real
world data: a) mask of chair back without noise; b) mask
with strong noise on boundaries;

5. Conclusion

We provide a novel feature encoding modality for point
completion, namely ME-PCN. It leverages the 3D empti-
ness in shape space to make neural networks sensitive to
shape boundaries. In our method, we complete surface
points by learning from both the shape occupancy and
emptiness. A ray-based emptiness encoding strategy is pro-
posed to perceive the emptiness clues on shape boundaries.
It enables our method to recover enriched surface details
while keeping consistent local topology. Verified by the ab-
lation studies, our emptiness encoding is effective, more-
over, robust and efficient. Extensive experiments demon-
strate that our method achieves much better shape comple-
tion quality and largely outperforms the state-of-the-art on
EMD and CD metrics. Though there is still some gap be-
tween our predictions and the GT, e.g., it may fail to capture
small and complex topology, like decorations on the table
stand, our method works well in general cases. We hope
our work can serve as a universal improvement strategy for
point completion and draw attention to the information in
the ‘emptiness’, even in the larger community.
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