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Abstract

Dynamic interacting systems are prevalent in vision
tasks. These interactions are usually difficult to observe
and measure directly, and yet understanding latent interac-
tions is essential for performing inference tasks on dynamic
systems like forecasting. Neural relational inference (NRI)
techniques are thus introduced to explicitly estimate inter-
pretable relations between the entities in the system for tra-
jectory prediction. However, NRI assumes static relations;
thus, dynamic neural relational inference (DNRI) was pro-
posed to handle dynamic relations using LSTM. Unfortu-
nately, the older information will be washed away when the
LSTM updates the latent variable as a whole, which is why
DNRI struggles with modeling long-term dependences and
forecasting long sequences. This motivates us to propose
a memory-augmented dynamic neural relational inference
method, which maintains two associative memory pools:
one for the interactive relations and the other for the in-
dividual entities. The two memory pools help retain use-
ful relation features and node features for the estimation in
the future steps. Our model dynamically estimates the rela-
tions by learning better embeddings and utilizing the long-
range information stored in the memory. With the novel
memory modules and customized structures, our memory-
augmented DNRI can update and access the memory adap-
tively as required. The memory pools also serve as global
latent variables across time to maintain detailed long-term
temporal relations readily available for other components
to use. Experiments on synthetic and real-world datasets
show the effectiveness of the proposed method on modeling
dynamic relations and forecasting complex trajectories.

1. Introduction
Interacting systems are ubiquitous in computer vision,

in which the entities influence and restrict each other. The
characteristics of each entity are highly correlated with oth-
ers in various ways [35, 37, 38, 21]. For example, multi-
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Figure 1. Memory-augmented dynamic neural relational infer-
ence. The prior/encoder term is used to dynamically estimate the
relation type distribution zt for each step, which is used to predict
the future via the decoder. We use dual memory pools and the cor-
responding memory modules to maintain the long-term temporally
global information of the relations and entities.

ple instances in a scene influence each other following cer-
tain physical rules or underlying purposes, and human body
joints are interacting and are influenced by each other in
body movements [21]. Modeling and reasoning the inter-
active relations are crucial for understanding the dynamic
system and can benefit other subsequent tasks, such as be-
havior prediction. The underlying relations can usually be
perceived easily but may not be seen and measured directly
[35, 21]. For example, except for the observable skeleton,
more latent relations among the human body joints cannot
be directly observed. They change dynamically with erratic
movements and external influence. Thus, it is difficult to
obtain the ground truth of the latent interactions, making
dynamic relational inference and prediction challenging.

There has been an amount of work proposed to implic-
itly model and learn the interacting system relying on the
graph neural networks (GNNs) with messaging passing on
the fully connected graph [37, 30, 18, 39, 9, 38] or atten-
tion models [3, 27]. Although the implicit relation mod-
eling can benefit the learning, it does not provide much
interoperability and powerful prior to the interaction sys-
tem. Thus, neural relational inference (NRI) [21] was pro-
posed to explicitly represent and infer the interaction among
the entities in a dynamic system. NRI infers the interac-
tion relations as latent variables and applies them to per-
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form forecasting on a graph defined by the inferred rela-
tions. However, NRI [21] assumes the interactive relations
are static along the observed trajectory, which is not suit-
able for many realistic tasks [12]. Dynamic neural rela-
tional inference (DNRI) [12] was proposed to estimate the
time-step-specific relations dynamically based on a long
short-term memory model (LSTM) [17]. The LSTM is
learned to model the temporal dynamics for relational infer-
ence and trajectory prediction. However, the LSTM based
DNRI lacks the ability to capture long-term dependencies
and cannot handle the long-range dynamics. The DNRI
model stores all the sequential information in a state vari-
able of LSTM, which can only be updated and accessed
as a whole. The state is unstructured, and easy to forget
the history information [13, 29]. The relation inference and
temporal forecasting usually require temporally global in-
formation and long-distance correspondences.

In this paper, we propose memory-augmented dynamic
neural relational inference (MemDNRI). We formulate the
relational prediction as a latent variable model, where la-
tent variables are used to represent the connection type and
strength between the entities, similar to NRI and DNRI. We
train the model to dynamically infer the relations from the
observed sequence (relying on the encoder/prior) and then
forecast the unseen trajectories (with the decoder) [12]. Our
MemDNRI model maintains two external associative mem-
ory pools, i.e., relation memory (RelMem) and entity mem-
ory (EntMem), as temporally global latent variables to store
the long-term information for both the occurring interaction
relations and the individual entities, respectively. More than
only two memory pools, RelMem and EntMem also indi-
cate two memory-augmented sequential models. They con-
tain the cooperatively learned read and write head and the
corresponding controllers for accessing the memory adap-
tively. Considering the characteristics of the tasks (and sub-
tasks), we customize novel memory modules specifically
for RelMem and EntMem for scalability and practicabil-
ity. At each step, MemDNRI (with RelMem and EntMem)
incrementally writes proper knowledge into the memory
pools and reads out the most relevant contents for relation
estimation and trajectory forecasting.

The main contributions of this paper can be summarized
as the following:

• We propose a new memory-augmented neural rela-
tional inference method (MemDNRI) for predicting
the interaction relations and forecasting trajectories on
the graph-structured temporal data. We design MemD-
NRI as a latent variable model augmented by exter-
nal associate memory. Unlike the LSTM based DNRI
[12] forgetting the long-range dynamic pattern easily,
MemDNRI uses memory pools as temporally global
latent variables to capture long-term correspondence
in the dynamic process.

• We formulate the memory augmentation as dual mem-
ory modules (i.e., RelMem and EntMem) for both re-
lation and entity. We design novel structures for the
memory modules with customized storage structures,
addressing strategies, and read and write head to fulfill
the requirements of the tasks (see Sec. 4.1.2).
• The proposed MemDNRI can automatically update

and access the memory with proper contents, which
naturally uses long-term dependencies. Experiments
on multiple synthetic and real datasets show the effec-
tiveness of the proposed method.

2. Related Work
Neural relation inference [21] was proposed to represent

the interactions in the dynamic system explicitly. Due to
without supervision on the interaction, NRI formulates the
problem as a variational autoencoder (VAE) [20, 31], where
the latent variable is used to represent the type of interaction
relations, i.e., the edges in an initial fully-connected graph.
NRI assumes the relations are static along the whole se-
quence, which DNRI [12] breaks this assumption by model-
ing the relation prediction with sequential prediction mod-
els, i.e., LSTMs. The LSTM based DNRI can dynamically
predict specific relations at each step. Some other works
extend NRI by applying different techniques such as the
factorized graphs [41], additional structural priors [24], and
modular meta-learning [2].

Graph neural networks (GNNs) [25, 36, 10] have been
generally applied in NRI works [21, 2, 12] to perform en-
coding and decoding on the structured data, i.e., interac-
tive entities. In NRI and DNRI, a message-passing process
similar to [10] is applied. There have also been many vari-
ants of the GNNs [26, 43] and message passing methods
[37, 38]. GNNs have also been used to model the relational
objects [5, 4] with a static graph. Rossi et al. [32] proposed
a temporal graph network to handle the temporally varying
graph, which uses a memory pool to store the messages of
the nodes and requires edge ground truth for training.

Memory-augmented neural networks (MANNs) have at-
tracted increasing interest for solving different problems
[13, 14, 40, 33, 11, 16, 34]. Graves et al. [13] proposed
Neural Turing Machine (NTM), which uses external mem-
ory to extend the capability of neural networks. NTM
uses content-based and location-based attention and mem-
ory module to learn programs from examples. Santoro et
al. [34] propose a memory-augmented relational recurrent
neural network (RRNN), which uses self-attention to model
the relation between the memory items. In [33], MANN
is used to handle one-shot learning problem. In NTM and
RRNN, memory is reset at the beginning of each sequence,
and the model is trained to learn the ability to process se-
quence data with memory. In some other methods, such as
[11], the memory is learned to store some representative and
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prototypical patterns seen during training.
Many prior works have been studied to learn the dynamic

system specifically for different applications, such as phys-
ical system understanding relying on simulated trajectories
[4, 15, 30], and human motion estimation [1, 23]. They are
mainly based on the known or assumed graph structure and
do not infer the interaction explicitly.

3. Background: Neural Relational Inference
Problem Definition Neural relational inference [21, 12, 2]
aims to infer the interaction relations between the entities
in a dynamic system and then perform trajectory prediction
according to the estimated relations. On the other hand,
since there is no ground truth of the relations, the trajectory
prediction task can be seen as a surrogate task for the re-
lation prediction. Formally, given input trajectories with V
entities from a dynamic system, we let xti denote the fea-
ture vector of the entities i ∈ V,V = {1, ..., V } at time
step t, such as location and velocity. For simplicity, we let
xt = {xt1, ...,xtV } represent the set of features of all en-
tities at time step t. The V entities can be modeled as a
graph G = {V,E}, where the vertices v ∈ V are the enti-
ties and the edges e = (v, v′) ∈ E represent the relations
between the entities. We define a latent variable z with
zij ∈ {1, ...,K} to represent the existences and discrete
edge types between any two entities i ∈ V and j ∈ V, j 6= i.
The model is learned to assign meaning to the relation/edge
latent variable z without explicit supervision.
NRI and DNRI. The general NRI task is to simultaneously
learn to predict the edge type zij for each edge and learn to
predict the trajectory in the future. The task is accomplished
by learning a variational auto-encoder (VAE) [31, 20] that
maximizes the evidence lower bound (ELBO):

L = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||pθ(z)), (1)

where φ and θ are the parameters of the probability dis-
tributions. The VAE formulation consists of three main
components, i.e., encoder qφ(z|x), prior pθ(z), and decoder
pθ(x|z). Both static NRI [21] and DNRI [12] are derived
from Eq. (1) but define the components in different ways.

In NRI [21], the encoder qθ(z|x) is directly formu-
lated as a factorized categorical distribution qθ(z|x) =∏
i 6=j qθ(zij |x). Relying on a fully-connected (FC) GNN,

the model learns embeddings for all edges and produces the
relation type probability for each edge, i.e., each pair of the
entities. Given the p(zij |x) produced by the encoder, the
edge types are sampled from the corresponding concrete
distribution [19, 28]:

zij = softmax((hij + g)/τ), (2)

where hij is the predicted logits for zij , g is a vector
sampled from Gumbel(0, 1) distribution [19], and τ is a

temperature parameter. This sampling strategy makes the
model differentiable. NRI [21] learns to obtain a static pre-
diction of the edge type z for the whole trajectory.

The prior p(z) =
∏
i 6=j p(zij) in NRI is a uniform dis-

tribution over relation types or some given distributions ac-
cording to the assumptions, such as sparsity. To model
the dynamically varying relations, DNRI learns an auto-
regressive model of the prior distribution. At each time
step, the prior is conditioned on the observation and rela-
tion prediction from previous steps. DNRI learns to predict
the dynamic edge type for each step. In [12], LSTMs are
used to formulate the dynamic prior and the encoder.

Given the sampled relation types z, the decoder pθ(x|z)
is then used to predict the future states of the entities x. NRI
assumes the relation types z remaining static across the ob-
served sequence [12]. Thus decoder is represented as the
formulation conditioning on the static z sampled from the
encoder: pθ(x|z) =

∏T
t=1 pθ(x

t+1|x1:t, z). The decoder is
also formulated based on GNN with message passing pro-
cess determined by the predicted edge type variable z. Since
the relation types z are predicted dynamically in DNRI, the
decoder for each step is formulated as an auto-regressive
model pθ(xt+1|x1:t, z1:t).

4. Memory-augmented Dynamic Neural Rela-
tional Inference

To dynamically estimate the latent interactive relation
and predict future states, we propose Memory-augmented
Dynamic Neural Relational Inference (MemDNRI). Unlike
static NRI [21], we predict a specific relation zt for each
time step t, as the setting of DNRI. Thus, the model can
better understand the dynamic system where the relations
change over time. We formulate MemDNRI with the VAE
and ELBO formulation in Eq. (1), which consists of three
main components, i.e., prior, encoder, and decoder [12].

The DNRI method in [12] dynamically estimates the
time-step-specific relations and predicts the future relying
on an LSTM (or a GRU) for capturing the temporal dynam-
ics. However, in the LSTM based DNRI method, only a
single latent variable is used to maintain the system state
and the temporal history information, which can only be
updated and read as a whole [29]. The latent state is easy
to forget the history information [13], limiting the capabil-
ity of the LSTM based DNRI on modeling the long-term
temporal correspondence (see Fig. 4).

To address the above concerns, we propose using addi-
tional external associative memory to capture the long-term
correspondence. Specifically, we maintain dual external
memory pools with corresponding head and controllers for
both the relational inference (with the prior and encoder)
and the trajectory prediction (with the decoder), as illus-
trated in Figure 1. The two memory modules maintain the
memory pools storing the knowledge of the relations/edges
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Figure 2. Diagram of the proposed MemDNRI. MemDNRI consists of three main components: prior, encoder and decoder. At each time
step t, the input x is feed into a GNN to obtain edge embeddings on an FC graph. The edge embeddings are then passed to the proposed
RelMem module to get the relation embedding, which only takes the history information for dynamic relation estimation. The RelMem
module maintains an associative memory Mrel to store the knowledge of the relation seen in the sequence, which learns the corresponding
controller, and read and write heads for automatically updating and accessing the memory pool. The edge type can be sampled from the
probabilitic distribution from prior and/or encoder. The estimated edges are used in the GNN in the EntMem based decoder. EntMem
maintains a memory pool for the entities and uses it with the GRU based controller. Different to previous MANN, we specifically design
novel memory modules for RelMem and EntMem, respectively.

(RelMem) and the entities states (EntMem), respectively.

4.1. Prior Modeling with Relational Memory

To handle the dynamically varying relation, we learn an
auto-regressive model of the prior probabilities of the rela-
tion type variable z as [12]:

pφ(z|x) =
∏T

t=1
pφ(z

t|x1:t, z1:t−1), (3)

where the relation prior at each step t is conditioned on the
previous relations z1:t−1 and the observed inputs x1:t. We
implement the prior with a GNN and a memory module,
i.e., the relation memory Module (RelMem).

4.1.1 Edge Feature Embedding with GNN

As shown in Figure 2, the input of the feature is firstly feed
into a GNN to produce the embedding for each edge of an
FC graph:

hti,1 = femb(x
t
i), (4)

v→e : htij,1 = fe,1([h
t
i,1,h

t
j,1]), i 6= j (5)

e→v : htj,2 = fv,1(
∑
i6=j h

t
ij,1), (6)

v→e : htij,emb = fe,2([h
t
i,2,h

t
j,2]). (7)

Eq. (4) - (7) represent the message passing processes on an
FC graph [21]. The f(·)’s are multilayer perceptron (MLP)
for producing embeddings on the entities or edges. htij,emb
is the output feature embedding on each edge, which is an
initial representation of the relation between two entities i
and j. For convenience, we represent htij,emb as a row vec-
tor in the shape of 1 × C and let htemb ∈ RE×C be the

embedding features for all the edges at time step t. We then
feed the embedding into the memory module defined in the
following to produce prediction of the relation types.

4.1.2 Relation Memory Module

Here, the memory module is not only a memory pool. It is a
sequential model that handles the sequential inputs with an
external memory pool that can be read and written at each
step when required. The memory pool is for maintaining
the information in a sequence, which is reset (i.e., initialized
as random values) at the beginning of each sequence. In the
prior model, the memory module is used to handle each pair
of entities’ relation embedding. We thus call it a relation
memory module (RelMem). The proposed memory module
consists of a memory pool, a controller, and a pair of read
and write heads, similar to the NTM [13].

The RelMem takes the graph edge embeddings of each
pair of nodes from Eq. (7) and modeling the varying of the
relations with the memory augmentation:

htprior, s
t
rel,M

t
rel = RelMem(htemb, s

t−1
rel ,M

t−1
rel ), (8)

where htprior is the relation prior embedding of all the edges,
strel and Mt

rel denote the state variables of RelMem and the
memory pool at each time step t, respectively. Mrel is ini-
tialized as empty at t = 0 and is gradually updated at each
step via the write head. Given htprior at each step, the prior
probability in Eq. (3) output can be obtained via:

pφ(z
t
ij |x1:t) = softmax(fprior(h

t
ij,prior)), (9)

where the logits fprior(h
t
ij,prior) can be used to perform rela-

tion type sampling in Eq. (2). The details of the RelMem
will be introduced in the following.
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Memory controller. The memory controller can be seen as
the “entry” of the memory module in Eq. (8). It is defined
as an LSTM:

qtij,rel = LSTMrel

(
[htij,emb, r

t−1
ij,rel], q

t−1
ij,rel

)
, (10)

where htij,emb is the input edge embedding from the GNN,
rt−1ij,rel is the memory readout from the last step, and qtij,rel
denotes the hidden state of the LSTM. qtij,rel will be used as
the query for accessing the memory.
Memory pool. We define the relation memory pool as a
matrix Mrel ∈ RNrel×Mrel , which is shared by all the edges
(i.e., all the entity pairs (i, j)’s) for scalability.
Memory reading. Given the memory pool and the address-
ing weights wt

ij,rel for reading, we can read out from the
memory via:

rtij,rel = wt
ij,relM

t−1
rel (11)

Memory writing considering the addressing conflicts.
Apart from the query key, the write head also generates
erase vector etij,rel ∈ [0, 1]1×Mrel and add vector atij,rel ∈
R1×Mrel for each edge (i, j). For each htij,emb, we can get
updating items for the memory as

Etij,rel = wtT
ij,rele

t
ij,rel, and At

ij,rel = wtT
ij,rela

t
ij,rel, (12)

which reflect the updating information from each elements
(i, j) for the memory. Relying on Etij,rel and At

ij,rel, the
memory can be updated via:

Mt
rel = (1−Etij,rel)�Mt−1

rel +At
ij,rel, (13)

where � denotes elementwise product operation. Note that
read and write heads do not share addressing weights.

However, the memory pool Mrel is shared by all the
edges, and we need to write multiple elements (correspond-
ing to multiple edges (i, j)’s) into the memory at one step,
which may cause conflicts since the write head is not aware
other edges while producing writing addressing weights
wtT
ij,rel for each edge simultaneously. The addressing con-

flicts often cause gradient exploding, making training dif-
ficult. Considering that the memory is mainly for captur-
ing the temporal correspondence, we can consider giving
each edge an individual memory. However, the edge num-
ber of an FC graph E = V × (V − 1) could be very large,
making computation impractical. To handle the addressing
conflicts, we introduce to normalize the addressing weights
wt

rel by considering the “hitting rate” of each memory slots:

wt
ij,rel = wt

ij,rel �
wt
ij,rel∑

i6=j w
t
ij,rel

, (14)

where � denotes the element-wise product and the division
is also element-wise. wt

ij,rel/
∑
i 6=j w

t
ij,rel is used to repre-

sent the “hitting rate” of each memory slot at same time.

Asymmetrical memory addressing. Given a query qtij,rel,
the read head and write head will generate keys ktij,rel ∈
R1×Mrel for addressing the memory for reading and writing
operation, respectively. Given a key kij,rel, we firstly can
obtain the memory addressing weights wij,rel ∈ R1×Nrel re-
lying on the content-based attention:

wij,rel(i
′) =

exp(d(kij,rel,mi′))∑Nrel
j′=1 exp(d(kij,rel,mj′))

, (15)

where wij,rel(i
′) denotes the i′-th elements in wij,rel and

d(·, ·) is cosine similarity.
Different from many MANNs [13, 14] applying the same

addressing strategy for reading and writing, we propose to
use asymmetrical addressing for the two heads. Except
for the content addressing in Eq. (15), we also learn the
location-based addressing operations [13] for the write head
to facilitate it shifting between the memory slots, letting it
make better use of the memory slots during the step-by-step
writing. On the other hand, we only apply the content-based
addressing for the read head and ignore the location since
the state at one step may be correlated to any previous step.
Obtaining prior embedding. At each time step, RelMem
performs reading and writing on the memory Mrel once. Af-
ter getting rtij,rel, we obtain the prior embedding by merg-
ing the readout and the LSTM controller output: htij,prior =

frel-merge
([
rtij,rel, q

t
ij,rel

])
, where [·, ·] is a concatenation op-

eration and frel-merge(·) is an MLP.

4.2. Encoder

Encoder approximates the distribution of the rela-
tions at each time step by looking at the information
from the whole sequence (not limited to the history in-
formation). Following DNRI [12], a reverse LSTM
[22, 8] is used to capture the future state of sequence,
which takes the initial edge embedding htij,emb as in-
put: qφ(ztij |x1:t) = softmax(fenc([h

t
ij,enc,h

t
ij,prior])), where

htij,enc = LSTMenc
(
htij,emb, h

t−1
ij,enc

)
. The encoder is only

used to guide the learning during training. During testing,
only the prior is used to predict relation types for each edge
dynamically. For simplicity, we do not use memory module
in the modeling of the encoder.

4.3. Decoder with Entity Memory

The decoder is used to predict the trajectory given
the observed entities and sampled relation types. Sim-
ilar to the prior model in Eq. (3), the decoder can
also be written as an auto-regressive model: pθ(x|z) =∏T
t=1 pθ(x

t+1|x1:t, z1:t). We implement the decoder as a
memory-augmented module with the GNN message pass-
ing [21, 12] to process the hidden variable and a GRU [6]
as the controller, with the same configuration in [21, 12].
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Since the task of the decoder is to perform prediction on
the entities, we maintain the memory pool to store the in-
formation of the entities observed in the sequence. Thus
the memory module in the decoder is referred to as entity
memory, i.e., EntMem. We define Ment to denote the mem-
ory pool for the EntMem. As shown in Figure 2, at each
time step t, EntMem takes the entity features xt as input
and predict the entity distribution for the next step:

µt+1,ht+1
ent ,M

t+1
ent = EntMem(xt,htent,M

t
ent, z

t), (16)

pθ(x
t+1|x1:t, z1:t) = N(µt+1, σ2I), (17)

where htent denotes the state of the GRU controller in Ent-
Mem, and the decoder probability is modeled as a Gaus-
sian distribution and µt denotes the mean variable of the
decoder probability. EntMem reads and updates (writes to)
the memory Ment at each step. At each step, EntMem per-
forms GNN based message passing for the hidden variables
on the entities/nodes. EntMem module and the correspond-
ing memory pool are designed according to the characteris-
tics of the task of the decoder, which is different from the
RelMem in prior modeling.

4.3.1 Message Passing for Entity Feature Embedding

The hidden states per entity are firstly passed into a GNN to
produce entity feature embeddings according to the graph
structure and the edge type zt predicted from the prior
model:

v→e : htij,ent =
∑

k

ztij,kf̃e,k([h
t
i,ent,h

t
j,ent]), (18)

e→v : mt
j =

∑
i 6=j h

t
ij,ent, (19)

where the edge type mt
j is message from the entity’s neigh-

bor and will be used as the entity feature embedding, ztij
is represented as a vectorized distribution, zij,k denotes the
probability of assigning the k-th edge type to the edge (i, j).
Eq. (18) and (19) show one round of the two-step message
passing in the GNN, which can be repeated several times to
perform more rounds of message passing.

4.3.2 Entity Memory Module with GRU

After obtaining the messages mt for all the entities, we feed
them into a GRU with the input features xt and the memory
readout rt−1ent from the previous step:

ht+1
j,ent = GRU([mt

j , [x
t
j , r

t
j,ent]],h

t
j,ent), (20)

where [·, ·] denotes the concatenation operator, xtj and rtj,ent
are concatenated together as the input for the GRU. We take
the hidden state ht+1

j,ent as the query qt+1
j,ent to access the entity

memory Ment.

Entity-wise memory pool and memory accessing. Differ-
ent to the relation memory, we define the memory pool for
the entities as a 3D tensor Ment ∈ RV×Nent×Ment . Consid-
ering that the entity number is not too large to cause much
computation burden, we assign each entity a memory pool
to directly avoid addressing conflicts that may happen while
writing the memory, as discussed in Sec. 4.1.2. Such entity-
wise memory pool design also enables us to use small Nent
to achieve better modeling ability. We also apply the asym-
metrical addressing strategy for EntMem. Thus the mem-
ory addressing, reading, and writing are designed to have
the similar operation used in RelMem but are implemented
as an entity-wise version, which means the i-th entity will
access the i-th slice of the memory tensor, Ment,(i,:,:).
Obtaining the decoding/prediction embedding. Given
qt+1

ent for all the entities, the read head can obtain the
readout rt+1

ent . For each entity, we obtain the predic-
tion via µt+1

i = fdec-pred(h
t+1
i,dec) + xti, where ht+1

i,dec =

fent-merge
(
[rt+1
i,ent,h

t+1
i,ent]

)
, and fent-merge(·) and fdec-pred(·) are

implemented as MLP.

4.4. Training and Inference

During training, we learn the parameters for the en-
coder, prior and decoder, including the parameters of the
GNNs and the memory modules. Note that the memory
pools are not learned, which are initialized as “empty”
(with random values) at the beginning of each sequence
and then updated via the writing head while processing
the sequences. The memory heads are trained to con-
duct the memory manipulations according to the current
states and observations. The ground truth states are pro-
vided to the decoder as input during training. our model
is trained relying according to the ELBO in Eq. (1). The
reconstruction term Eqφ(z|x)[log pθ(x|z)] is estimated as

−
∑
j

∑T
t=2

||xtj−µ
t
j ||

2

2σ2 +const. The KL divergence is com-
puted as in [12].

In the testing phase, we use the prior to predict the rela-
tion types between the entities and then use the decoder to
perform prediction of the trajectory states. At the beginning
of each sequence, the memory pools and initial states for
both RelMem and EntMem are all reset as random values.

4.5. Implementation Details

The MLPs for feature embedding and message passing
are all two-layer MLPs with 256 hidden units and output
dimensions, and the ELU activation. The LSTMs used in
the encoder and prior models are all single-layer LSTMs
with 64 hidden units.

In both memory modules, we use single linear embed-
ding to produce the addressing keys from the query vectors.
In RelMem, all the edges share the same memory. We set
the memory size as Nrel = 128 and Mrel = 16, which is
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a balance between the representation capability and com-
putation resources. In EntMem, since the entities have the
specific memory pools, the memory size parameters are set
as Nent = 32 and Ment = 16. The contents stored in the
memory can be seen as a compressed encoding of the ob-
servation and history. Models are trained using Adam with
the learning rate as 5× 10−4.

5. Experiments
We conduct experiments on both synthetic and realistic

data. In the experiments, we mainly compare with the previ-
ous state-of-the-art NRI and DNRI, which are also the most
related work to us. For continence, we use the same param-
eter configuration, as introduced above, for all experiments.

5.1. Synthetic Physics Simulation

We first evaluate the models with a physical simulation
system from [12], i.e., moving particles with dynamic rela-
tions. In the system, each trajectory consists of three par-
ticles. Two of them move with a constant velocity in some
direction. And the third (green in Figure 3) is initialized
with a random velocity but is pushed away by others when
they are too close (with a distance smaller than a threshold).
In this system, part of the relations between the particles
dynamically changes depending on the distances.

Since the ground truth relation types are available in the
synthetic dataset, we can directly evaluate the relation type
accuracy. Table 1 shows the relation prediction accuracy
and the trajectory prediction mean squared error (MSE) and
the comparison with NRI [21] and DNRI [12]. Figure 3 vi-
sualizes one example of the prediction results. The results
show that MemDNRI can achieve a significant improve-
ment on both the relation estimation and the prediction.

Table 1. Results on physics data [12] with more dynamic relations
Pred. MSE (×10−4) Relation est. (2 types)

Step #1 #15 #25 Prec. Rec. F1 Acc.
NRI 0.199 15.0 39.3 0.21 0.50 0.29 0.90

DNRI 0.177 3.48 5.36 0.76 0.46 0.57 0.97
MemDNRI 0.126 2.98 4.56 0.91 0.54 0.68 0.98

How the memory augments the long-term sequential
modeling. To show how the memory works, we analyze
how the write operations correlate to the read operations
in the following steps by taking RelMem learned on the
physics data as the example. Given any two steps t and
t′ with t′ > t, we define the read-write correlation score
as s(t,t′) =

∑
ij,i′j′ w

t
ij,ww

t′T
i′j′,r, which approximately de-

notes how the write operation at t influences the read out
at t′. Figure 4(a) shows that the write operation at one step
(i.e., each curve starting at one step) can enduringly corre-
late to the following steps via the memory and may play an
important role after many steps. According to Figure 4(a),
we can obtain the most (and 2nd) correlated write for each
step as shown in Figure 4(b). At early steps, the read oper-
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Figure 3. Visualization the results from dynamic physics simula-
tion data [12]. The solid points denote the ground truth, and the
dashed points indicate the predicted location.
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Figure 4. Visualizing how the memory maintains and deliveries
the sequential correspondence. (a) Each curve visualizes the read-
write correlation of a writing operation and the read in the follow-
ing steps, which shows how each writing operation influences the
following read. (b) The curves show the most and second corre-
lated write step for each read step. We denote the first prediction
step as #1, and the observed burn-in steps are negative.

ations are highly correlated to the latest writing operations
since most memory slots are “empty”. We can see, at the
end of the prediction, when the particle has been pushed
away to a situation very similar to the beginning stage, the
memory pool helps the model to estimate the relations us-
ing the long-range correspondence, i.e., recalling the corre-
lated features seen at very early steps. The analyses show
the memory can capture interpretable and meaningful long-
term correspondence.

5.2. Motion Capture Data

We then study the motion capture data from the CMU
motion capture databases [7]. Following [21, 12], we focus
on the experiments on two subjects, #35 and #118. #35 con-
sists of walking trajectories, in which the human skeletons
and joints move slowly and stably. The relation inference
and prediction are easier. #118 consists of trials where the
subject stands stationary and then jumps forward quickly.
Prediction on #118 is more challenging, and thus, mov-
ing trajectories are usually determined by subtle movements
in temporally global structures, requiring a stronger ability
to capture long-term dependency. Following the standard
setting in [21], we train the model using the sequences of
length 50 and evaluate the sequences of length 99 by giving
the first 49 frames. In our experiments, we train and evalu-
ate the model on the two datasets using the same protocol.

Figure 5 shows the results on #35 and #118 of different
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Figure 5. MSE for trajectory prediction on the motion capture data. The curves show an average of the results from 3 different initialization.
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Figure 6. Motion prediction example from NRI [21], DNRI [12],
and MemDNRI. Left 4 columns: step #10, #25, #40, and #47 from
motion #35 (2 rel.); Right 3 columns: step #10, #20, #30, and #40
from motion #118 (4 rel.). Red: ground truth; Blue: the prediction.

methods with 2 or 4 edge types. The results are the aver-
age of the 3 times trial with different random initializations.
We compare the proposed MemDNRI with the state-of-the-
art NRI [21], and DNRI [12]. We also compare our full
model with RelMem (in the prior modeling) and the Ent-
Mem (with the decoder) and other model variants that only
have RelMem or EntMem.

Figure 5(a) and 5(b) shows the results on #118. Instead
of evaluating with the sliding window and averaging way
in [13], we directly evaluate the model to do the prediction
after seeing the burn-in steps. MemDNRI brings signifi-
cant improvement on #118 and performs more stable than
previous DNRI and NRI with the increasing of the step
numbers (e.g., step #40). Due to there are more irregular
movements in #118, the proposed MemDNRI can capture
the long-term global dependency more easily for handling
the complex prediction. Figure 6 shows that MemDNRI can
predict good results even at very late frames (frame 48) in
#118, since the memory augmentation helps to utilize more
global and history information to predict the challenging fu-
ture stats. Figure 5(c) and 5(d) show the prediction MSE
on #35. All the methods perform better with 4 edge types.
The improvements from MemDNRI are milder than that on
#115, since #35 is stable and easy to forecast. Neverthe-
less, we can still observe the improvement from MemDNRI

visually in Figure 6.
Ablation study. In Figure 5, we show the results of sev-
eral variants of the proposed full model, i.e., the MemDNRI
with only the RelMem or the MemDNRI with only the Ent-
Mem, in which the plain prior LSTM or GRU based decoder
are used to replace the model with memory augmentation.
We can see both of these two modules contribute to the re-
sults. As shown in the result curves, the memory module
on the decoder, i.e., EntMem, seems to influence the future
prediction slightly more than RelMem.

5.3. Basketball Data
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Figure 7. MSE of the prediction
on the basketball player dataset
[42]. The curves show an aver-
age of the results from 3 differ-
ent initialization.

We conduct experi-
ments on the basket-
ball player trajectory data
[42]. Each trajectory
contains the 2D positions
of 5 offensive team play-
ers, which is processed
into 49 frames spanning
8 seconds of play. All
models are trained to pre-
dict 19 steps by observ-
ing the first 30 frames.
Figure 7 shows the MSE
of the trajectory predic-
tion. The memory-augmented models obtain obvious im-
provements on the prediction results.

More results, visualizations, and the details of the
method are let in the supplementary material.

6. Conclusion
This paper proposed a memory-augmented method for

dynamic neural relation inference and prediction (MemD-
NRI), which predicts the relation types between the interac-
tive entities and then uses the predicted relation to forecast
the future. We proposed two memory modules to main-
tain the long-term information for the interaction relation
(RelMem) and the entities (EntMem) for relation prediction
and forecasting. The designs of the two memory modules
are explicitly tailored according to the different purposes.
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