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Abstract

One challenge of object recognition is to generalize to
new domains, to more classes and/or to new modalities.
This necessitates methods to combine and reuse existing
datasets that may belong to different domains, have par-
tial annotations, and/or have different data modalities. This
paper formulates this as a multi-source domain adapta-
tion and label unification problem, and proposes a novel
method for it. Our method consists of a partially-supervised
adaptation stage and a fully-supervised adaptation stage.
In the former, partial knowledge is transferred from multi-
ple source domains to the target domain and fused therein.
Negative transfer between unmatching label spaces is miti-
gated via three new modules: domain attention, uncertainty
maximization and attention-guided adversarial alignment.
In the latter, knowledge is transferred in the unified label
space after a label completion process with pseudo-labels.
Extensive experiments on three different tasks - image clas-
sification, 2D semantic image segmentation, and joint 2D-
3D semantic segmentation - show that our method outper-
forms all competing methods significantly.

1. Introduction

The development of object recognition is carried by two
pillars: large-scale data annotation and deep neural net-
works. With new applications coming out every day, re-
searchers need to constantly develop new methods and cre-
ate new datasets. While we are able to develop novel neu-
ral networks for new tasks, the creation of new datasets
can hardly keep up due to its huge cost. In the liter-
ature, a diverse set of learning paradigms, such as self-
learning [13], semi-supervised learning [17] and transfer
learning [6], have been developed to come to the rescue. We
enrich this repository by developing a method to combine
multiple existing datasets that have been annotated in differ-
ent domains, for smaller-scale tasks (fewer classes), and/or
with fewer data modalities. The importance of the method
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Figure 1: mDALU learns a complete-class and complete-
modality object recognition model for a new, unlabeled tar-
get domain, by using multiple datasets with partial-class an-
notation and partial data modality as source domains.

can be justified by the fact that as time goes, research goals
will become more and more ambitious, so object recogni-
tion models for more classes, new domains, and/or more
data modalities are necessary.

To address this, we propose a multi-source domain adap-
tation and label unification (mDALU) problem. In this set-
ting, there are multiple source domains and an unlabeled
target domain. In each source domain, only samples (im-
ages, pixels, or LiDAR points) belonging to a subset of
classes are labeled; the rest are unlabeled. The subsets of
classes having labels can be different over different source
domains, and can have inconsistent taxonomies, e.g., truck
is labeled as “truck” in one source domain but labeled as
“vehicle” together with other types of vehicles in another.
Further, the data modalities in different source domains can
also be different, e.g., one contains images and the other
contains LiDAR point clouds. The goal is to obtain an ob-
ject recognition model for all classes in the target domain.
Fig. 1 shows an exemplar setting of mDALU. A compari-
son to other domain adaptation settings, in Table 1, shows
that mDALU is very flexible.

This goal is challenging. Firstly, there is the notori-
ous issue of negative transfer. While negative transfer is
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Domain Adaptation Setting Can Handle Multiple
Source Domains?

Can Handle Multiple
Data Modalities?

Can Handle Different Label
Spaces of Source Domains?

Change of Label Space Size
from Source to Target Domain

Can Handle Partial
Annotations?

Can Handle Inconsistent
Taxonomy?

Unsupervised Domain Adaptation [10] No No − Same Size No −
Partial Domain Adaptation [3] No No − Reduced No −

Multi-Source Domain Adaptation [26, 43] Yes No No Same Size No No
Category-Shift Multi-Source Domain Adaptation [39] Yes No Yes Increased No No

Multi-Modal Domain Adaptation [18] Yes Yes No Same Size No No
Multi-Source Open-Set Domain Adaptation [27, 25] Yes No No Same Size + 1∗ Yes No

Multi-Source Domain Adaptation and Label Unification (mDALU) Yes Yes Yes Increased Yes Yes

Table 1: Comparison between our mDALU and other domain adaptation settings (see Sec. 2 for details). It is clear that
mDALU offers a very flexible and general setting. ∗ “1” means an additional “unknown” class in the target domain.

an issue also for standard transfer and multi-task learning,
it is especially severe in our mDALU task due to the in-
fluence of unlabeled classes. To address this, we propose
three novel modules, termed domain attention, uncertainty
maximization and attention-guided adversarial alignment,
to avoid making confident predictions for unlabeled sam-
ples in the source domains, and to enable robust distribu-
tion alignment between the source domains and the target
domain. The method with the aforementioned modules and
attention-guided prediction fusion is able to generate good
results in the unified label space and on the target domain.
In order to further improve the results, we need to fuse the
supervision of all partial datasets to transfer the supervi-
sion in the unified label space. To this aim, we propose a
pseudo-label based supervision fusion module. In particu-
lar, we generate pseudo-labels for the unlabeled samples in
the source domains and all samples in the target domain.
Standard supervised learning is then performed in the uni-
fied label space for the final model.

To showcase the effectiveness of our method, we evalu-
ate it on three different tasks: image classification, 2D se-
mantic image segmentation, and joint 2D-3D semantic seg-
mentation. Synthetic and real data, and images and LiDAR
point clouds are involved. Also, non-overlapping, partially-
overlapping and fully-overlapping label spaces, and consis-
tent and inconsistent taxonomies across source domains are
covered. Experiments show that our method outperforms
all competing methods significantly.

2. Related Work
Multi-Source Domain Adaptation. Transfer learning and
domain adaptation have been extensively studied in the past
years. Several effective strategies have been developed such
as minimizing maximum mean discrepancy [36, 23], mo-
ment matching [40], adversarial domain confusion [10, 35],
entropy regularization [37], and curriculum domain adapta-
tion [9]. While great progress has been achieved, most al-
gorithms focus on the single-source adaptation setting. This
limits the methods from being used when data is collected
from multiple source domains. That is why multi-source
domain adaptation methods are proposed [8, 42, 26, 15, 43].
Yet, these methods all assume the same label space for all
domains. Xu et al. [39] explores the problem of the cate-
gory shift among different source domains, and adopts the

k-way domain discriminator to reduce the effect of category
shift. But the method is mainly proposed for the image clas-
sification task, and cannot deal with the problem of partial
annotation, inconsistent taxonomies and modal differences
among different source domains.
Open-Set/Partial Domain Adaptation. Recent research
explores the category “openness” between the source do-
main and the target domain, which is divided into open-set
domain adaptation and partial domain adaptation. Open-set
domain adaptation [25, 33, 27] assumes that the target do-
main includes new classes that are unseen in the source do-
main, and aims to classify the unseen class samples as “un-
known” class in the target domain. Partial domain adapta-
tion [2, 41, 3, 19] aims to transfer knowledge from existing
large-scale domains (e.g. 1K classes) to unknown small-
scale domains (e.g. 20 classes) for customized applications.
Different than both open-set and partial domain adaptation,
our label space of the target domain is the union of label
spaces of all source domains.
Learning from multiple datasets. Several successful
methods [28, 29, 38, 20] have been proposed to learn a sin-
gle universal network, that can represent different domains
with a minimum of domain-specific parameters. But those
methods do not consider domain adaptation and label space
unification. Recently, Lambert et al. [21] presented a com-
posite dataset that unifies different semantic segmentation
datasets by reconciling the taxonomies, merging and split-
ting classes manually. But they do not address the problem
of domain adaptation, partial annotation and cross-modal
data, and they rely on the manual re-annotation for unifica-
tion. The object detection method by Zhao et al. [44] per-
forms label space unification from multiple datasets with
partial annotations, but it does not consider other problems
that are considered by our method such as domain dis-
crepancies, inconsistent taxonomies and mismatched data
modalities across the datasets.

3. Approach

3.1. Problem Statement

For the problem of mDALU, we are given K source do-
mains S1,S2, ...,SK . The K source domains contain the
samples from K different distributions PS1

, PS2
, ..., PSK

,
which are labeled with C1, C2, ..., CK classes, resp. All
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the source domains can contain both partially labeled and
unlabeled samples. The unlabeled samples can belong to
the labeled classes of other domains. The label spaces
C1, C2, ..., CK can be non-, partially-, or fully-overlapping
with each other. Moreover, both consistent and inconsis-
tent taxonomies among C1, C2, ..., CK are allowed. Then
the union of the label spaces Ci, i = 1, ...,K forms the uni-
fied and complete label space C∪ = C1 ∪ C2 · · · CK , includ-
ing C∪ classes. Besides, the unlabeled target domain T is
given, containing samples from the distribution PT . De-
noting the source samples xsi ∈ Si, i = 1, ...,K and the
target samples xt ∈ T , we have xsi ∼ PSi ,x

t ∼ PT ,
PS1 ̸= PS2 ̸= ... ̸= PSK

̸= PT . The mDALU prob-
lem aims at training the model on the K source domains
Si, i = 1, ...,K, labeled with Ci classes in each, and the
unlabeled target domain T , to improve the performance of
the model on the target domain T in the unified label space
C∪. We use ysi to indicate the ground-truth label map of
xsi . Note that we present most of our approach with the no-
tation of 2D semantic image segmentation. The translation
to image classification and 3D point cloud segmentation is
straightforward – by replacing pixels with images and by
replacing pixels with 3D LiDAR points.

3.2. Our Approach to mDALU problem

As shown in Fig. 2, there are two stages in our approach,
the partially-supervised adaptation stage and the fully su-
pervised adaptation stage. In the partially-supervised adap-
tation stage, the partial supervision is transferred to the
target domain from different source domains, respectively.
Then in the fully-supervised adaptation stage, the supervi-
sion, in complete label space, is fused and self-completed
on the unlabeled samples, and jointly transferred in the
source domains and target domain. In order to realize adap-
tation under partial supervision, we propose three modules:
DAT, UM and A3 for the first stage. Then in the second
stage, we use PSF and further learning. Below we pro-
vide details of all these components. From Sec. 3.2.1 to
Sec. 3.2.5, we first introduce our method for mDALU un-
der consistent taxonomies. In this part, we first describe a
basic version of our method composed of DAT and infer-
ence via attention-guided fusion, which will be followed by
UM and A3 to enhance the adaptation ability. Finally, we
present PSF. Then in Sec. 3.2.6, we extend our proposed
method towards mDALU under inconsistent taxonomies.

3.2.1 Partially-Supervised Learning

Different segmentation networks Gi, i = 1, ...,K are
adopted for different source domains Si. While their anno-
tations cover partial label spaces Ci, we train each network
Gi in the unified label space C∪ – some classes have no
training data – with a standard cross-entropy loss Lpsu. The
network Gi is composed of a feature extractor Ei and a la-

bel predictor Bi, i.e., Gi = {Ei, Bi}. While we can average
the results of these models directly in the target domain for
predictions in the unified label space, coined multi-branch
(MBR) fusion, this generates poor results. This is because
the predictions of each model Gi for its unlabeled classes
in C∪ \ Ci can be arbitrary numbers that dominate the aver-
ages. We thus propose the domain attention (DAT) module,
which learns the attention map for Gi to signal on which
area its prediction is reliable, for more effective fusion.

The attention map asi in domain Si is defined as:

asi(h,w)

{
= 1, if ysi(h,w) ∈ Ci
= 0, if ysi(h,w) = void,

(1)

where (h,w) are pixel indices and void means no label.
We train an attention network Mi for each source domain
Si. The attention maps are predicted as ãsi = Mi(x

si)
and ãti = Mi(x

t). The attention network Mi is composed
of the feature extractor Ei and a new label predictor BM

i :
Mi = {Ei, B

M
i }. Mi is trained under an MSE loss Latt,

together with Gi in a multi-task setting.

3.2.2 Inference via Attention-Guided Fusion

We feed an image x into semantic segmentation networks
Gi to generate the corresponding probability maps p̂i ∈
[0, 1]H×W×C∪ , and into different attention networks Mi to
generate attention maps âi. Then we fuse the predictions by
averaging p̂i weighted by âi:

f =

∑K
i=1 âi ⊗ p̂i∑C∪

j=1(
∑K

i=1 âi ⊗ p̂i)(j)
, (2)

where (
∑K

i=1 âi ⊗ p̂i)
(j) yields the probability of the jth

class. The predicted class is then obtained via argmax.

3.2.3 Uncertainty Maximization (UM)

Due to the lack of ground truth class supervision, while we
have the attention-guided fusion, the wrong prediction of
unlabeled samples in the source domains can still have neg-
ative effects for our cross-domain prediction fusion. In or-
der to further reduce the negative effects of unlabeled sam-
ples xsi

u in source domains, we propose a module specif-
ically to maximize uncertainties of the predictions on un-
labeled samples in those domains. In particular, Gi(x

si
u )

is expected to equally spread the probability mass to all
classes, i.e., obeying the uniform categorical distribution
U(C∪). The probability density function q(j) of U(C∪)
is formulated as q(j) = 1

C∪
, where j = 1, 2, ..., C∪ is to

represent different classes. The probability distribution of
the network prediction on unlabeled samples Gi(x

si
u ) is de-

noted as p(j) = Gi(x
si
u )(j), where Gi(x

si
u )(j) represents

the probability of the jth class. In order to maximize the
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(a) Partially-Supervised Adaptation

Pseudo-Label

(b) Fully-Supervised Adaptation
Figure 2: Illustration of our approach to mDALU. There are
2 stages, (a) partially supervised adaptation and (b) fully-
supervised adaptation.

uncertainty of the prediction on the unlabeled samples, the
distribution distance between p(j) and q(j) is expected to
be minimized. Following the distribution distance metric in
[5], we adopt the Pearson χ2-divergence for measuring the
distribution distance, which is formulated as,

Dχ2(p||q) =
∫
j

((
p(j)

q(j)
)2 − 1)q(j), (3)

Dχ2(p||q) = C∪

C∪∑
j=1

p(j)2 − 1. (4)

On the basis of Eq. (4), we propose the square loss Lum

for minimizing the Pearson χ2-divergence, i.e., maximizing
the uncertainty of the prediction on the unlabeled samples.
Lum can be written as

Lum =

C∪∑
j=1

(Gi(x
si
u )(j))2. (5)

Through the UM module, we encourage the model to make
uniform categorical probability predictions, 1

C∪
, for unla-

beled samples over the unlabeled classes, to best preserve
the uncertainty to let the ground truth supervision of those
classes from other source domains make the decision in the
further attention-guided fusion and PSF process.

3.2.4 Attention-Guided Adversarial Alignment (A3)

It has been proven in the literature that adversarial align-
ment is effective for domain adaptation. We extend the idea
to mDALU. For adversarial alignment, one discriminator

Di is used for each source domain, to align the distribution
between the source domain Si and the target domain T . In
general unsupervised domain adaptation, the discriminator
training loss Ld and the adversarial loss Ladv [34] for the
source domain Si and the target domain T is defined as

L(i)
adv(x

t) = − log(Di(Gi(x
t))) (6)

L(i)
d (xsi

i ,xt) = − log(Di(Gi(x
si)))

− log(1−Di(Gi(x
t))). (7)

Yet, in our mDALU problem, there is no ground truth
label guidance available for the unlabeled classes. A di-
rect alignment between the source domain and the target
domain will cause negative transfer, i.e., the transfer of in-
correct knowledge from the unlabeled parts in the source
domains to the target domain. Here, we again use our at-
tention map asi to alleviate this problem by proposing an
attention-guided adversarial loss:

L(i)
a3 (x

t) = − log(Di(Gi(x
t)⊗Mi(x

t))), (8)

L(i)
d (xsi

i ,xt) = − log(Di(Gi(x
si)⊗Mi(x

si)))

− log(1−Di(Gi(x
t)⊗Mi(x

t))), (9)

where ⊗ represents element-wise multiplication.
Then the overall loss for our method at the first stage is:

Lall = Lpsu + Latt + Lum + λ

K∑
i=1

L(i)
a3 , (10)

where λ is the hyper-parameter to balance out the attention-
guided adversarial loss against other losses. The whole opti-
mization objective for our first partially-supervised domain
adaptation stage can be formulated as:

min
Gi

max
Di

Lall. (11)

3.2.5 Pseudo-Label Based Supervision Fusion (PSF)

In the first partially-supervised adaptation stage, knowledge
in different label spaces Ci is transferred from different
source domains to the target domain. In the second fully-
supervised adaptation stage, we aim at learning and trans-
ferring knowledge in the complete and unified label space
C∪ between all domains jointly. In order to realize that,
we complete the label spaces for all the related domains
S1,S2, ...,SK , T with pseudo-labels, i.e., fuse the supervi-
sion from different label spaces Ci to get the complete and
unified supervision C∪. Here we present our pseudo-label
based supervision fusion (PSF) method.

In order to complete the label space in the source domain
Si, we feed each of the source image samples xsi into every
semantic model Gk, k = 1, ...,K, to generate ‘partial’ se-
mantic probability maps p̂si

k ∈ [0, 1]H×W×C∪ and to every
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attention network Mk, k = 1, ...,K for the attention map
âsik ∈ [0, 1]H×W . The fused prediction fsi is obtained via
Eq.( 2). We denote the predicted label map as ȳsi , generated
by using an argmax operation over fsi . The ‘pseudo-label’
map ŷsi for the source domain Si is defined as:

ŷsi(h,w) =


ysi(h,w), if ysi(h,w) ̸= void

ȳsi(h,w)if ysi(h,w) = void

and fsi(h,w, ȳsi(h,w)) > δ

void, otherwise

(12)

where δ is a threshold determining whether to select the pre-
dicted pseudo-label.

On the target domain T , since no ground truth labels are
available, we obtain pseudo labels directly from the pre-
dicted label map ȳt (obtained from f t via an argmax):

ŷt(h,w) = ȳt(h,w) if f t(h,w, ȳt(h,w)) > δ. (13)

By using the generated fused pseudo-label ŷsi , ŷt, i =
1, ...,K, we complete the label space from Ci to C∪ for
the source domain Si, and from ∅ to C∪ for the target do-
main T . We then train the network G for all the related do-
mains S1,S2, ...,SK , T with all the datasets in the unified
label space. In total, the loss Lfsa for our second ‘fully-
supervised’ adaptation stage is:

Lfsa =

K∑
i=1

Lsi
ce + Lt

ce, (14)

where Lce is the standard cross-entropy loss.

3.2.6 Inconsistent Taxonomies

The above method is able to deal with the mDALU problem
under consistent taxonomies, i.e., the different classes in all
source domains are exclusive with each other. Yet, there
might be inconsistent taxonomies between different source
domains, causing a performance drop for the inconsistent
taxonomies classes. Here, we introduce the extension of
our above method, to handle the inconsistent taxonomies
problem. Denoting the classes in the label spaces Ci as coi ,
we have Ci = {coi , o = 1, 2, ..., Ci}. Then the inconsistent
taxonomies among different source domains can be defined
as, ∃cqp ∈ Cp, cnm ∈ Cm, p,m = 1, ...,K, p ̸= m, q =
1, ..., Cp, n = 1, ..., Cm, we have cqp ̸= cnm, and cqp ∩ cnm ̸=
∅. The inconsistent taxonomies classes between different
source domains Sp and Sm are denoted as cqp ∈ Cp and
cnm ∈ Cm. For example, the truck is labeled as “truck” class
cqp in one dataset Sp, while it is labeled as “vehicle” class
cnm together with other vehicles in another dataset Sm. An-
other typical example is motorcycles being labeled as “cy-
cle” class cqp together with other cycles in one dataset Sp,
but being labeled as “vehicle” class cnm together with other

vehicles in another dataset Sm. In the unified label space
of the target domain, the conflict part cqp ∩ cnm is assigned
to either cqp or cnm exclusively. Without loss of generality
and for reasons of clarity, it is assumed that the cqp ∩ cnm
is assigned to cqp. Then in order to solve the conflict of cqp
and cnm, in the attention-guided fusion, we introduce the ad-
ditional class-wise weight map wi ∈ RH×W×C∪ , and Eq.
(2) is extended to Eq. (16),

wi(h,w, j) =


= v, if argmax p̂i(h,w) = q′, and i = p,

and argmax p̂m(h,w) = n′, and j = q′

= 1, otherwise
(15)

f =

∑K
i=1 âi ⊗ p̂i ⊗wi∑C∪

j=1(
∑K

i=1 âi ⊗ p̂i ⊗wi)(j)
, (16)

where v > 1 in Eq. (15) is a hyper-parameter, set to 5.0.
v is used to increase the weight of class cqp of the corre-
sponding prediction p̂p in Eq. (16), to convert cqp ∩ cnm to
cqp in the prediction fusion. q′, n′ are the class indices of cqp
and cnm in the unified label space C∪. Correspondingly, un-
der inconsistent taxonomies, besides the unlabeled samples
in the source domains being completed with the predicted
pseudo-label as in Eq. (12), the conflict part cqp∩cnm, which
is labeled as cnm originally in Sm, is relabeled with the pre-
dicted pseudo-label ȳsi(h,w), i.e.,

ŷsm(h,w) = q′, if fsm(h,w, q) > δ

and ȳsm(h,w) = q′ and ysm(h,w) = n′.

(17)

4. Experiments
We evaluate the effectiveness of our method mDALU

under different settings. We build benchmarks for image
classification, 2D semantic image segmentation, and 2D-3D
cross-modal semantic segmentation.

4.1. Image Classification

Setup. In the classification benchmark, we adopt the
digits classification images from three different datasets,
MNIST [22], Synthetic Digits [10], and SVHN [24], coined
“MT”, “SYN” and “SVHN”, resp. Each time, one of them
is taken as the target domain, the other two as source do-
mains. There are 10 classes, from ’0’ to ’9’, in the target
domain. In our main setting, we adopt the most difficult
setup to evaluate different methods, where the label spaces
of different source domains are non-overlapping. Only half
the classes are labeled in each of the source domains. The
partially-overlapping situation is also explored. For fair
comparison, we adopt the same network architecture used
in [26] for all methods. The classification performance is
evaluated on all 10 classes in the target domain.
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Method MT SYN SVHN Avg
Source 76.76 ± 0.63 61.77 ± 1.05 43.42±1.89 60.65±1.19

DANN[10] 77.30 ± 2.57 60.31 ± 0.99 41.65±2.34 59.75±1.97
DANN ∗ 71.29 ± 0.48 55.94 ± 0.51 35.60 ± 1.63 54.28 ± 0.87

DCTN [39] 68.10±0.2 62.72±0.30 48.11±0.57 59.64±0.36
DCTN ∗ 72.01 ± 1.22 63.33 ± 0.20 49.34 ± 1.28 61.59 ± 0.90

M3SDA [26] 76.56±0.71 61.25±2.33 43.13±3.55 60.31±2.20
M3SDA ∗ 72.50 ± 2.64 55.92 ± 1.04 36.24 ± 1.70 54.89 ± 1.79
AENT[44] 73.24±1.76 68.66±1.32 52.80 ± 0.92 64.90 ± 1.33

Ours w/o PSF 81.23±0.92 78.97±0.45 65.20±0.58 75.13±0.65
DCTN w/ PL [39] 73.40±0.85 65.63±0.43 52.12±0.07 63.72 ± 0.45
AENT[44] w/ PL 78.56±1.23 70.25 ± 0.39 59.24 ± 1.01 69.35 ± 0.88

Ours 86.18±0.45 81.91±0.33 68.92±0.81 79.00 ± 0.53

Table 2: Quantitative comparison of image classification.
“MT”, “SYN”, and “SVHN” represent the target domain.
“PL” represents to add the pseudo-label training module,
which is specifically adjusted according to their own paper’s
design. ∗ represents to remove the unlabeled samples in the
training data. We implement AENT for classification by
utilizing the ambiguity cross entropy loss proposed in [44].

Comparison with SOTA. Table 2 compares our method
with other SOTA methods which include 1) unsuper-
vised domain adaptation method DANN [10], 2) category-
shift unsupervised domain adaptation method DCTN [39],
3) multi-source unsupervised domain adaptation method
M3SDA [26], and 4) label unification method AENT [44].
It can be seen that without the pseudo label (PL) genera-
tion part, other domain adaptation based methods, DANN,
DCTN, and M3SDA show the negative transfer effect, or
perform similarly to the baseline trained with source data
only. This is because each source domain can only pro-
vide guidance for a partial label space, and the adaptation
in the partial label space guides the prediction on the target
domain to the biased label space when training with data
from different source domains. This renders the prediction
on the target domain contradictory and the model hard to
adapt to the complete label space. In contrast, the label-
unification based method AENT obtained a performance
gain of 4.25%, from 60.65% to 64.90%, compared with the
source-only baseline. This is because it uses an ambigu-
ity cross entropy loss, to avoid the prediction of the source
domain data being restricted in a partial label space.

In our first partially-supervised adaptation stage, the per-
formance is further improved to 75.13%, which proves the
effectiveness of our DAT, UM and A3 module for prevent-
ing the negative transfer effect. After the second fully-
supervised adaptation stage, by adding the PSF module, our
model strongly outperforms DCTN [39] and AENT [44],
both with pseudo-label training, by 15.28% and 9.65%,
resp. This proves the effectiveness of our entire method for
domain adaptation, label space completion and supervision
fusion. The ablation results in Table 3 show that each part
of our model contributes to its performance.

Partially Overlapping. In Fig. 3, it is shown that the
testing accuracy on the target domain increases, as more
and more common classes in the source domains are avail-
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Figure 3: Accuracy in
the target domain as a
function of the number
of overlapping classes
between the source do-
mains.

MBR UM A3 PSF MT SYN SVHN Avg
76.76 ± 0.63 61.77 ± 1.05 43.42±1.89 60.65±1.19

✓ 72.21±1.89 62.41±0.58 50.24±1.23 61.62±1.23
✓ ✓ 84.74±0.54 76.12±0.85 58.39±0.57 73.08± 0.65
✓ ✓ ✓∗ 81.38±0.79 78.20±1.3 65.12±0.64 74.90 ± 0.91
✓ ✓ ✓ 81.23±0.92 78.97±0.45 65.20±0.58 75.13 ± 0.65
✓ ✓ ✓ ✓ 86.18±0.45 81.91±0.33 68.92±0.81 79.00 ± 0.53

Table 3: Ablation study under the image classification set-
ting. MBR: multi-branch network, i.e., adopts different net-
works Gi for different source domains. ∗ indicates there
is no adversarial part in the A3 module, i.e., only the DAT
module. The best results are denoted in bold.

Method MT SYN SVHN Avg
Source 82.10±1.50 73.37± 0.67 57.50±1.93 70.99 ± 1.37

DANN[10] 80.13±1.60 72.97±0.49 55.00±0.73 69.37 ± 0.94
DCTN[39] 78.56±0.47 72.33 ± 0.04 60.86±0.21 70.58 ± 0.24

M3SDA[26] 81.52 ± 1.55 72.91 ± 0.68 54.26±0.66 69.56 ± 0.96
AENT[44] 79.12 ± 1.07 81.99 ± 0.87 69.07 ± 1.93 76.73 ± 1.29

Ours w/o PSF 85.39 ± 1.32 85.33± 1.21 76.48±1.31 82.40 ± 1.28

Table 4: Quantitative comparison of image classification,
under the partial overlap setting with 4 common classes.

able. In Table 4, we compare the model performance of
our method with other SOTA methods when the source do-
mains are partially overlapping, with 4 common classes.
It is shown that our method still strongly outperforms the
adaptation-based methods, DANN, DCTN, M3SDA, and
the label unification based method, AENT, 82.40% v.s.
69.37%, 70.58%, 69.56%, 76.73%. It further verifies the
effectiveness of our model in the partial overlap situation.

4.2. 2D Semantic Image Segmentation

Setup. In the single mode semantic segmentation set-
ting, we adopt the synthetic-to-real image semantic segmen-
tation setup. The synthetic image datasets GTA5 [30] and
the SYNTHIA [32] are taken as the source domains, while
the real image dataset Cityscapes [7] is used as the target
domain. Information of 19 classes needs to be transferred
to the Cityscapes dataset. In our main setting, the label
spaces of SYNTHIA and GTA5 are non-overlapping. In
the SYNTHIA dataset, the label of 7 classes are available,
incl. road, sidewalk, building, vegetation, sky, person and
car. In GTA5, the labels of 12 classes are available, be-
ing wall, fence, pole, light, sign, terrain, rider, truck, bus,
train, motorcycle and bicycle. Furthermore, we also ex-
plore the performance of our model when the images of the
two source domains are fully labeled. Moreover, we ver-
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Method NT T
Source 17.7 24.0

AdaptSegNet[34] 7.7 30.8
MinEnt[37] 27.1 30.1
Advent[37] 11.8 30.3

Ours w/o PSF 36.3 38.1
Ours (ADV) 40.1 41.5
Ours (PSF) 37.3 42.4

Ours (ADV+PSF) 40.6 42.8

(a)

MBR UM A3 PSF ADV NT T
17.7 24.0

✓ 20.9 21.4
✓ ✓ 27.6 36.8
✓ ✓ ✓∗ 29.1 37.0
✓ ✓ ✓ 36.3 38.1
✓ ✓ ✓ 35.4 40.9
✓ ✓ ✓ 31.4 41.5
✓ ✓ ✓ ✓ 40.1 41.5
✓ ✓ ✓ ✓ 37.3 42.4
✓ ✓ ✓ ✓ ✓ 40.6 42.8

(b)
Table 5: (a) Quantitative comparison of single mode seman-
tic segmentation, SYNTHIA+GTA5→ Cityscapes. The
mIoU results are reported for 19 classes. (b) Ablation study
for single mode segmentation. ∗ indicates there is no ad-
versarial part in the A3 module, i.e., only the DAT module.
“ADV+PSF” means to combine “ADV” and “PSF” by com-
pleting the label space and generating pseudo-labels in the
source and target domains, then adversarial alignment in the
output space is adopted during the second stage training.

ify the effectiveness of our model when the taxonomies of
different source domains are inconsistent. In those inconsis-
tency experiments, for GTA5, the labels wall, fence, pole,
light, sign, terrain, truck, bus, train, person (incl. person
and rider), cycle (incl. bicycle and motorcycle) are avail-
able. In SYNTHIA, the labels road, sidewalk, building,
vegetation, sky, person, rider, car, public facilities (incl.
wall, fence, pole), motorcycle and bicycle are available.
In order to further evaluate the performance of all meth-
ods when combined with the pixel-level domain adaptation
methods [45, 16], we conduct experiments in two settings;
1) source domain images are not translated with CycleGAN
[45], named as “NT”; 2) source domain images are trans-
lated with CycleGAN, named as “T”. Also, in order to ver-
ify model performance combined with output-level adapta-
tion method [34], we conduct additional experiments which
include “ADV” in the fully-supervised adaptation stage.
“ADV” generates the complete source domain label as in
PSF, and then trains the semantic segmentation model via
adversarial adaptation between pseudo-complete source do-
main and unlabeled target domain in the output-level space.
For fair comparison, all the methods use the DeepLabv2-
ResNet101 [4, 14] semantic segmentation network.

Comparison with SOTA. In Table 5a, we show a
quantitative comparison for semantic segmentation between
our method and other SOTA methods. It is shown that
our method without adding PSF strongly outperforms the
adaptation-based AdaptSegNet[34], the self-supervision-
based MinEnt[37], and the method combining adaptation
and self-supervision Advent [37]. Our method achieves
36.3% and 38.1% in the ”NT” and ”T” settings, resp. Sim-
ilar to the image classification results, without using the
translated source images, the adaptation-based methods suf-
fer from negative transfer and the performance is lower
than the source-only baseline. By using the translated
source images in “T”, different source domain images are

Method Base mIoU∗ mIoU
Source

R
es

N
et

-1
01 42.8 39.1

AdaptSegNet[34] 45.2 40.8
Minentropy[37] 46.4 42.2

Advent[37] 46.7 42.9
Ours w/o PSF 46.8 43.1

Source[43]

V
G

G
-1

6 37.3 –
MADAN[43] 41.4 –
Ours w/o PSF 41.9 38.0

Table 6: Single mode segmentation results, under fully-
labeled setting and “T”. mIoU∗ is the mean IoU of 16
classes in SYNTHIA, while mIoU is that of all 19 classes.

(a) Image (b) Ground Truth (c) Source Only (d) MinEnt (e) Ours

Figure 4: Qualitative results of 2D semantic segmentation.

all Citysapes-like images. The different source domains can
be seen as a larger unified source domain, which can pro-
vide guidance for the complete label space to some extent.
So all adaptation-based or self-supervision based methods
perform much better in the “T” situation, compared with the
non-adapted baseline. Yet, even in the “T” situation, our
method still provides an advantage by further completing
the label space, through our partially supervised adaptation.
This proves the effectiveness of our method in preventing
negative transfer and in completing the label space. By fur-
ther adding the second “fully-supervised” adaptation stage,
the model achieves a new SOTA performance in both the
“T” and the “NT” settings. An ablation study, see Table 5b,
confirms all parts of our method add to its performance, and
the output space alignment “ADV” is helpful as well. Fig. 4
shows qualitative results on Cityscapes.

Fully labeled. In the fully labeled setting, i.e., the source
domain images are labeled with all considered classes - 16
classes in SYNTHIA and 19 classes in GTA5 - Table 6
shows that our model still outperforms other unsupervised
domain adaptive semantic segmentation methods, 43.1%
vs. 40.8%, 42.2%, and 42.9%. Our model also outperforms
the SOTA method for multi-source domain adaptive seman-
tic segmentation MADAN [43], 41.9% vs. 41.4%.

Inconsistent Taxonomies. Table 7 shows that our
method is advantageous when taxonomies are inconsistent,
40.0% vs. 28.1%, 31.9%, 32.2%. In the partially super-
vised adaptation stage, as in Sec. 3.2.6, by adding higher
weights to “person”, “rider”, “motorcycle” and “bicycle”
for SYNTHIA and “wall”, “fence” and “pole” for GTA5,
our method can achieve a higher performance than infer-
ence without weighting, 37.2% vs. 35.3%. After the fully
supervised adaptation stage, the performance can be further
improved to 40.0%. The detailed performance for inconsis-
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Method w
al

l

fe
nc

e

po
le

pe
rs

on

ri
de

r

m
ot

or
cy

cl
e

bi
cy

cl
e

mIoU
Source 2.6 12.0 12.3 40.6 0.5 0.1 28.6 19.8

AdaptSegNet[34] 7.1 2.6 4.0 33.2 6.9 1.8 37.6 28.1
Minentropy[37] 6.7 18.1 23.0 28.8 6.6 1.0 42.3 31.9

Advent[37] 6.2 11.5 11.4 32.8 12.2 0.9 41.2 32.2
Ours w/o PSF 12.3 15.2 21.2 48.4 3.3 1.3 42.4 35.3

Ours w/o PSF ∗ 14.1 15.3 30.6 48.1 17.9 13.0 42.1 37.2
Ours (PSF) 13.3 17.9 30.6 53.7 18.2 19.8 43.2 40.0

Table 7: Quantitative comparison of single mode segmen-
tation, with inconsistent taxonomies, in the “T” setting.
∗During inference, an additional weights map is adopted
in case of inconsistent taxonomies as in Sec. 3.2.6. The
detailed performance on inconsistent taxonomies classes is
also shown. The mIoU is reported for 19 classes.

tent taxonomies classes in Table 7 underlines the effective-
ness of our method for the inconsistent taxonomies.

4.3. Cross-Modal Semantic Segmentation

Setup. In the cross-modal semantic segmentation set-
ting, the 2D RGB images from Cityscapes [7], and the 3D
LiDAR point clouds from Nuscenes [1] are treated as two
different source domains, while the paired but unlabeled 2D
RGB images and 3D point clouds from A2D2 [11] are used
as the target domain. There are 10 classes in total that need
to be transferred to the target domain. In Cityscapes, the
label for 6 classes are given, covering road, sidewalk, build-
ing, pole, sign and nature. In Nuscenes the labels for 4
classes are given, incl. person, car, truck and bike. The
2D RGB images and 3D point clouds in the target domain
are registered via a projection matrix between the 2D pixel
and 3D points. Following [18], we adopt U-Net-ResNet34
[31, 14] as the 2D semantic segmentation network, and
SparseConvNet [12] for 3D semantic segmentation. Due to
the challenge of aligning features for the 3D point clouds,
the A3 module is not included in the cross-modal setting.

Comparison with the SOTA. As shown in Table 8, sim-
ilar to the image classification and the single mode semantic
segmentation results, the SOTA cross-modal unsupervised
adaptation method xMUDA [18] shows an obvious nega-
tive transfer effect, resulting in a performance drop for the
2D model, 3D model and the fused one. Furthermore, we
designed reasonable baseline methods for comparison: 1)
ES + MinEnt: the prediction from 2D and 3D networks
are averaged in the target domain through the 2D and 3D
point correspondence during training, and the fused predic-
tion probability is optimized using the minimum entropy
loss [37]. 2) ES + KL: the KL-divergence [18] is utilized to
align between the 2D/3D prediction and the fused predic-
tions for the corresponding points in the target domain, resp.
3) xMUDA + AKL: the KL-divergence alignment between
2D and 3D in the target domain is weighted adaptively, to
reduce the wrong guidance from the unlabeled parts. 4)

Cityscapes + Nuscenes → A2D2 2D 3D Fuse
Source 37.5 2.0 42.5

xMUDA[18] 16.3 1.7 9.1
ES + MinEnt[37] 22.3 1.5 20.8

ES + KL[18] 21.7 1.5 19.7
xMUDA + AKL 27.5 2.3 21.1

xMUDA + AKL + COMP 32.1 2.9 37.7
Ours w/o PSF 38.1 2.4 49.9

Ours 54.9 37.1 55.7

Table 8: Quantitative comparison of cross modal segmenta-
tion, Nuscenes+Cityscapes→ A2D2. ”Fuse” represents the
average fusion of the prediction probability from 2D mod-
els and 3D models; the final class prediction is the maxi-
mum of the fused probability. “ES” means 2D and 3D aver-
age fusion ensemble. “KL” means KL-divergence align-
ment. “AKL” means adaptive KL-divergence alignment.
“COMP” means complementary condition constraint for
the point. The mIoU is reported over 10 classes on A2D2.

(a) A2D2 (b) Ground Truth (c) 2D (Ours) (d) 3D (Ours)

Figure 5: Qualitative results of the cross-modal setting.

xMUDA + AKL + COMP: following baseline 3), another
constraint, that the weights related to 2D and 3D need to
be complementary, is added. It is shown that our method
prevents negative transfer without the PSF component, out-
performing the non-adapted baseline. Then by adding the
PSF module, the 2D and 3D single-model performance is
strongly improved, achieving 54.9% and 37.1%, resp. In
Fig. 5, we show qualitative results in the target domain. The
good performance proves the effectiveness of our method
for the mDALU with partial modalities. This opens up the
avenue to combine datasets collected with different sensors
and offers the possibility of cheaply evaluating new combi-
nations of sensors without annotating their data.

5. Conclusion

In this paper, we proposed the multi-source domain
adaptation and label unification with partial datasets prob-
lem, called mDALU. Then we proposed a novel multi-
stage approach for mDALU, including partially and fully
supervised adaptation stages. Our approach is demonstrated
through extensive experiments on different benchmarks.
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