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Abstract

This paper proposes Panoptic Narrative Grounding, a
spatially fine and general formulation of the natural lan-
guage visual grounding problem. We establish an ex-
perimental framework for the study of this new task, in-
cluding new ground truth and metrics, and we propose a
strong baseline method to serve as stepping stone for fu-
ture work. We exploit the intrinsic semantic richness in an
image by including panoptic categories, and we approach
visual grounding at a fine-grained level by using segmen-
tations. In terms of ground truth, we propose an algo-
rithm to automatically transfer Localized Narratives anno-
tations to specific regions in the panoptic segmentations of
the MS COCO dataset. To guarantee the quality of our an-
notations, we take advantage of the semantic structure con-
tained in WordNet to exclusively incorporate noun phrases
that are grounded to a meaningfully related panoptic seg-
mentation region. The proposed baseline achieves a perfor-
mance of 55.4 absolute Average Recall points. This result
is a suitable foundation to push the envelope further in the
development of methods for Panoptic Narrative Grounding.

1. Introduction
Vision and language skills play a key role in humans’ un-

derstanding of the world and they are rarely used indepen-
dently. Their interaction is crucial in achieving high-level
tasks such as describing objects, narrating a visual scene,
or answering questions based on visual cues. Inspired
by these capabilities of human intelligence, researchers
have formulated tasks at the intersection of computer vi-
sion and natural language processing, such as image cap-
tioning [5, 18, 25, 40], referring expression comprehension
and segmentation [15, 19, 31, 32], visual question answer-
ing [2], among many others.

Current experimental frameworks approach vision and
language tasks at different granularity levels. Image cap-

Figure 1: Panoptic Narrative Grounding. Given an input
image (left) with an associated caption (right), our goal is
to produce a panoptic segmentation that grounds its visual
objects densely (left).

tioning is among the coarsest, aiming at pairing an im-
age with a textual description of its content. With increas-
ing granularity, there are frameworks that intend to assign
specific regions in the image to short descriptions, such
as referring expression comprehension and segmentation,
and region descriptions in the Visual Genome [19] dataset.
The finest approaches tackle visual grounding at word level,
with bounding boxes in the image linked to noun phrases in
the caption, as in the Flickr30k Entities [49, 35] dataset.

Given the general dichotomy in computer vision tasks
between things (countable objects) and stuff (amorphous
regions of similar texture), these datasets mainly focus on
things categories. However, several works [8, 1, 10, 17]
have highlighted the importance of jointly considering both
things and stuff classes towards real-world applications.
Kirillov et al. [17] defined the panoptic segmentation task
as the unified formulation of semantic segmentation, which
recognizes stuff, and instance segmentation, which detects
and segments things.

Recently, Pont-Tuset et al. [36] proposed Localized Nar-
ratives, a multimodal dataset for visual grounding based on
the natural human task of describing images while simul-
taneously pointing with the mouse at the regions being de-
scribed. Their grounding annotations have the densest sam-
pling of current datasets, in that they visually ground every
word in the caption with mouse trace segments. Moreover,
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this dataset naturally contains panoptic descriptions of the
content of each image, including stuff regions.

Although some of the experimental frameworks above
contain sufficiently dense annotations over language, visual
annotations are still very sparse and rough. This paper pro-
poses Panoptic Narrative Grounding (Figure 1), a spatially
finer and more general task formulation of the natural lan-
guage visual grounding problem in which (i) we propose a
spatially detailed visual grounding that uses segmentations
instead of bounding boxes, and (ii) we include all panoptic
categories to fully exploit the intrinsic semantic richness in
a visual scene. We establish an experimental framework for
the study of this task, including new ground-truth annota-
tions and metrics, and we propose a strong baseline to serve
as stepping stone for future work.

Considering that collecting pixel-wise annotations has a
significant cost, we design a method to transfer the Local-
ized Narrative annotations to regions into the panoptic seg-
mentation annotations provided by the MS COCO [5, 25]
dataset. We select a specific region for each noun phrase
considering the trace segment associated to it. Since hu-
mans use different styles to pointing objects (circling, scrib-
bling, and underlining) we evaluate the quality of the an-
notation by determining if noun phrases are grounded to a
meaningfully related panoptic segmentation region. To do
so, we leverage the underlying semantic information in the
WordNet ontology [34]. To handle trace segments being not
fully synchronized with the object description, we consider
all the regions in the image ranked by relative distance to the
visual grounding and assign the closest region with a strong
meaning relationship. Finally, for plural noun phrases, we
select all regions that (i) are within the tightest bounding
box around the mouse trace and (ii) are from the same cat-
egory as the main selected region. In terms of evaluation,
in contrast to the traditional metric use in phrase-grounding
task, we introduce a stricter metric that calculates recall at
different Intersection over Union (IoU) thresholds between
the target and the predicted mask. Thus, measuring both
recognition accuracy and segmentation quality.

We propose a strong baseline that builds upon a state-of-
the-art method, Cross-Modality Relevance [52] (CMR), de-
veloped for reasoning tasks on language and vision. Specif-
ically, this method is designed to perform two classification
tasks: Visual Questions Answering [2] and Natural Lan-
guage for Visual Reasoning [43, 44]. We generalize the
model to perform Panoptic Narrative Grounding. Thus,
our baseline is the first natural language visual grounding
method able to align multiple noun phrases with panoptic
region segmentations within the image.

Our main contributions can be summarized as follows:
(1) We propose Panoptic Narrative Grounding, a new for-

mulation of the natural language visual grounding prob-
lem which, by using panoptic segmentation regions as

visual grounding, is spatially denser and more general
in semantic terms.

(2) We establish an experimental framework for the study
of this problem, with annotations coming from the
transfer of Localized Narrative annotations to panoptic
segmentations in the MS COCO dataset.

(3) We introduce the first visual grounding method that
matches segmentation regions to specific noun phrases
in the caption, which serves as a strong baseline for the
task of Panoptic Narrative Grounding.

To ensure the reproducibility of our results and to pro-
mote further research on Panoptic Narrative Grounding, we
make all the resources of this paper publicly available in our
project web page1: our benchmark dataset annotations for
the train and validation splits in MS COCO, an implemen-
tation of the evaluation metrics, and the pretrained models
and source code for our baseline.

2. Related Work
2.1. Vision and Language Datasets

The first datasets at the intersection of vision and lan-
guage match images to descriptions without any form of vi-
sual grounding [5, 18, 25, 40]. MS COCO Captions [5, 25]
comprises 123,287 images for training, validation, and test-
ing; with five human-annotated captions for each one. Sev-
eral works, however, have suggested that models developed
for this task do not base their decisions on the visual infor-
mation contained in the image, but rather on easier-to-learn
language priors [39].

Referring Expressions Comprehension (REC) and Re-
ferring Expression Segmentation (RES) are tasks intended
to detect and segment, respectively, a target object in-
stance described by a natural language expression. There
exist three datasets for these tasks, built on top of the
MS COCO dataset: RefCOCO [15], RefCOCO+ [15], and
RefCOCOg [32]. RefCOCO+’s descriptions, in contrast to
those on RefCOCO, focus on appearance attributes rather
than locations of the referent object. RefCOCOg was col-
lected in a non-interactive setup and contains longer de-
scriptions including both appearance and location attributes
of the target instances. These datasets, while having pixel-
level annotations, do not ground language at the word-level,
and their annotations’ semantics boil down mostly to salient
objects in images.

Visual Genome [19] is a general-purpose dataset meant
to connect vision and language while not being restricted to
a specific task. It contains 108,077 images with 50 region
descriptions and 35 objects per image on average. Each
short description is localized within the image with a bound-
ing box, making it possible to study visual grounding at the
phrase level. There is no an explicit relationship between

1https://github.com/BCV-Uniandes/PNG

1365



the objects localized within an image and the visual enti-
ties included in the textual descriptions. Having multiple
regions descriptions allows to have a more complete under-
standing of a scene, covering things and stuff categories.

Flickr30k Entities [35] extends the original Flickr30k
dataset [49] with manually annotated bounding boxes
grounding each noun phrase in the caption. Despite its gran-
ularity over language, this dataset does not provide pixel-
wise annotations and focus predominantly on things.

Localized Narratives [36] is a large-scale dataset
that provides annotations for the whole MS COCO,
Flickr30k [50], and ADE20K [53] datasets, and 671K im-
ages from Open Images [20]. Its annotations consist of syn-
chronized voice recordings, text transcriptions, and mouse
traces made by human annotators. They describe the im-
age’s contents and the mouse traces visually ground each
word in the narrative, which makes them the densest an-
notations over language available to date. Grounding goes
beyond nouns and includes visual relationship indicators,
verbs, etc. Annotators were asked to make descriptions that
comprise as much content of the image as possible, which
generally entails a high semantic coverage of the scene. The
visual grounding using mouse trace segments, however, is
spatially very coarse.

Table 1 summarizes the characteristics of existing
datasets at the intersection of vision and language and com-
pares them in terms of: (i) language granularity, (ii) vi-
sual granularity, and (iii) semantic generality. Our bench-
mark dataset is designed to fill the gaps between all previ-
ous datasets: (i) It maintains the finest granularity over lan-
guage by grounding specific words in the narrative, as the
latest developed natural language grounding datasets. (ii)
It provides fine-grained visual grounding annotations us-
ing segmentations, as in referring expression segmentation
datasets. This allows studying the problem with a stricter
experimental framework in which the location on the ob-
jects is not approximate as in the object detection task. (iii)
Our annotations include panoptic categories [17] instead of
just focusing on things categories, which gives way to a
global analysis of the scene which is relevant for reasoning
about the world around us.

2.2. Natural Language Visual Grounding Methods

The methods developed for the coarsest natural lan-
guage visual grounding tasks on language, specifically for
the REC and RES tasks, can be grouped into two gen-
eral approaches: top-down and bottom-up. The former
paradigm [6, 27, 51] starts from region proposals extracted
by a general method of object detection or segmentation.
From this set of objects, the method selects the one that
is described to a greater extent by the natural language ex-
pression. The strengths of this paradigm are that they can
take advantage of what general object detection and seg-

Dataset
Language

Granularity
Visual

Granularity
Semantic
Generality

MS COCO Captions [5, 25] Caption ✕ ✕

Conceptual Captions [40] Caption ✕ ✕

Stanford Visual Par. [18] Caption ✕ ✕

ReferIt [15, 32] Short phrase Segmentation Things
Google Refexp [31] Short phrase Segmentation Things
Visual Genome [19] Short phrase Bounding box Things + Stuff

Flickr30k Entities [49, 35] Noun phrase Bounding box Mainly Things
Localized Narratives [36] Each word Traces Things + Stuff

Panoptic Narrative Grounding (Ours) Noun phrase Segmentation Things + Stuff

Table 1: Panoptic Narrative Grounding compared with ma-
jor captioning and natural language grounding datasets.

mentation methods have learned from the existing large-
scale datasets for these general tasks, rather than directly
learning how to detect objects within an image. However,
since these methods do not update the region proposals, the
upper bound of these methods is significantly impacted by
the performance of the base method. In contrast, the lat-
ter approaches produce the referred object segmentation by
grouping pixels [4, 11, 12, 13, 14, 23, 24, 26, 29, 30, 33, 37,
38, 41, 47, 48]. These methods use single networks, which
leverage high and low-level features to refine segmentation
masks along levels of their architectures. However, comply-
ing with a larger search space than its top-down counterpart,
leads to higher rates of false positive segmentations.

Some existing methods approach phrase grounding
through a combination of base networks for visual and lin-
guistic information. To this end, Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN) are
used [11, 33], and their features leveraged to achieve word-
to-image interactions. Other works apply Transformer at-
tention [45] to generate contextualized representations of
both modalities. The latter architectures are also used in
cross-modality analyses to aggregate and align visual cues
and linguistic meanings [21, 22, 28, 42, 52].

3. Panoptic Narrative Grounding Benchmark
This section describes our proposed benchmark. We

describe how we generate the ground-truth annotations
(Sec. 3.1) and report some statistics (Sec. 3.2). Finally,
we explain the proposed metrics to evaluate results on our
benchmark (Sec. 3.3).

3.1. Ground-Truth Annotations

We transfer the Localized Narrative [36] annotations
to MS COCO panoptic segmentations by synchronizing
timed captions and trace points. We consider a set of ut-
terances U = {u1, . . . , un} in the caption and a set of
trace points T = {t1, . . . , tm} for each Localized Narrative,
where ui and tj are the timestamped verbal and spatial units
that, respectively, compose a caption and a mouse trace.

Synchronization occurs by selecting the trace segments
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Figure 2: Ground-Truth Annotations Results. Examples of different Panoptic Narrative Grounding ground truth resulting
from the proposed annotation transfer algorithm (c). We show the input image (a) and Localized Narrative traces (b) and
caption with the matched panoptic segmentation regions (d). Color gradient in the trace, panoptic segmentation and caption
indicates time over the language. The segmentation regions are visualized with the color of their corresponding noun phrases,
according to the last associated spoken word. More qualitative results can be found in the Supplementary Material.

that are drawn over an image between the start and end
times of an utterance, or a subset of contiguous utterances,
containing a noun phrase (uin). Each uin is hence associ-
ated with a subset of trace points T ′ = {ta, . . . , tb} (where
ta and tb are within the timestamp of ui). T ′ provides a
spatial reference for each utterance through their point co-
ordinates. We average these coordinates to obtain a single
point p in the image plane, which we refer to as the Cen-
ter of Mass (CoM). In the Supplementary Material, we ex-
emplify how this strategy of summarizing the annotator’s
grounding is beneficial for irregular and circling patterns in
the Localized Narrative annotations.

To identify noun phrases, we perform a chunking parsing
using the Natural Language Toolkit (NLTK) for Python [3],
and select sequences of consecutive nouns that may or may
not have a previous adjective or a cardinal digit. These noun
phrases are considered a single grounding unit.

Let S = {s1, . . . , sk} be the regions from the MS COCO
panoptic segmentation of the same image, with correspond-
ing thing or stuff category labels C = {c1, . . . , ck}. We
select the region si ∈ S which contains the location of the
CoM p of the mouse trace and establishes it as a candidate
for the ground truth of the noun phrase uin. This matching,
however, is not guaranteed to be correct, as Localized Nar-
rative mouse traces might not fall exactly on the grounded

object. We, therefore, filter these matches by comparing the
noun phrase in the caption (uin) to the MS COCO object
category associated with si (ci), to which should agree. In-
tuitively, if the annotator said uin =“red vehicle”, we want
to consider the matching correct if e.g. ci =“vehicle” or
ci =“car”; but we want to discard it if ci =“tree”, since it
might mean that the annotator was pointing to a tree next to
a vehicle when they pronounced the word “vehicle”. Fur-
thermore, if the caption refers to the same object in the vi-
sual scene multiple times, our benchmark will associate it
with all the related noun phrases. Figure 2 shows some ex-
amples of our visual grounding annotations.

To evaluate whether the caption utterance(s) uin, or its
composing noun(s), correspond to the matched panoptic
category ci, we consider the following criteria: (1) exact
matches (uin is strictly equal to ci), (2) synonyms (uin is a
synonym of ci), (3) hierarchical relationship (uin is either
a hypernym or hyponym of ci), and (4) meronyms (uin is
a meronym of ci). We evaluate (1) by simple string com-
parison, and (2), (3) and (4) accessing WordNet [34] using
NLTK [3]. Additionally, (5) we manually relate specific
words to certain MS COCO categories that are omitted by
the WordNet ontology. Examples of these words include
clothing pieces, body parts and female figures, as members
of the MS COCO “person” category. We consider (1) as
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"...few colorful kites..." "There are many people..."

Figure 3: Examples of grounded plural noun phrases.
We match multiple regions (red) beyond the seed region
(purple). Increasing the spatial scope of our annotations
agrees with the multi-instance nature of plural noun phrases
and better captures the annotators’ intention of referring to
several instances. Best viewed in color.

the highest rank in matching, given the similarity between
words in this level, followed by (2), (3), (4) and (5). Tag
clouds are reported in the Supplementary Material as exam-
ples of criteria (2) - (4).

We find two special cases that require additional mea-
sures when transferring annotations. First, there is a possi-
bility of time shifts [36]: an annotator moving their mouse
slightly before or after describing objects. To address this
issue, we consider neighboring segmentation regions of the
selected one via p (the CoM of the mouse traces), as poten-
tial matches to each noun phrase uin. If no matching oc-
curs with the center region, we proceed to select the closest
candidate that matches uin, with any of the semantic rela-
tionships defined above, as the grounding annotation for the
noun phrase. We consider the minimum distance between
segmentation regions as a measure of their closeness (fol-
lowing a single-linkage concept). An example of vicinity
region analysis can be found in the Supplementary Mate-
rial.

Second, we consider the implications of plural noun
phrases within narratives. These phrases are inherently re-
lated to various instances of an object, which are all glob-
ally pointed at during the utterance(s). This motivates the
mapping of a plural noun phrase to S′ ⊆ S, which contains
several regions with a common category, as opposed to a
single segmentation si. The common category is defined
using p and the vicinity region analysis, from which we se-
lect a seed region. We then augment this set with all the
regions of the same category that are contained in the tight-
est bounding box around the mouse trace T ′. All regions in
S′ are considered the grounding of the plural noun phrase
uin. Figure 3 shows examples of plural groundings.

3.2. Dataset Statistics

Our complete annotation transfer methodology matches
an average of 5.1 noun phrases per narrative and 726,445
noun phrases in the whole Localized Narratives annota-

tions for MS COCO dataset. Localized Narratives con-
tain an average of 11.3 noun phrases per narrative. This
accounts for 45.1% of noun phrases coverage, which we
ground through panoptic segmentation annotations. In the
visual domain, this translates to a total of 741,697 seg-
ments matched, from which 659,298 are unique. Thus, our
benchmark covers 47.5% of all the segments annotated in
MS COCO panoptic with at least one noun phrase match.
In turn, this coverage accounts for 58.5% of all pixels in
123,287 MS COCO images and 65.4% relative to all anno-
tated pixels in MS COCO panoptic annotations.

The proposed Panoptic Narrative Grounding dataset
ground both things and stuff categories. Specifically, 57.0%
of the noun phrases grounded are things and 43.0% are
stuff. 64.7% of matches between grounded noun phrases
and MS COCO panoptic categories are exact matches be-
tween the category name and a noun in the phrase. Thus,
using synonyms, manual matching, and hierarchical and
menoronyms relationships significantly extend the ground-
ing scope (35.3%) and allow us to better capture the diver-
sity in natural language expressions in Localized Narratives.
Lastly, 29.3% of the matched noun phrases correspond to
plurals and 44.6% of matches are due to the vicinity re-
gion analysis. Consequently, each of the proposed match-
ing steps plays an important role in improving the visual
grounding annotations. A detailed report of these statistics
can be found in the Supplementary Material. Moreover, we
carry out a final manual curation to verify the integrity of
our annotations in the 1% of the annotations.

3.3. Metrics

In contrast to the recall metric, traditionally used for
phrase grounding, we propose to calculate the Average Re-
call. This metric evaluates the performance of the method
in the Panoptic Narrative Grounding task by considering
different Intersection over Union (IoU) thresholds between
the panoptic segmentation proposal and the ground-truth for
each noun phrase. Hence, the quality of the segmentations
affects the method’s performance since the IoU metric de-
termines whether a detection is considered a true positive
or not. We obtain a curve that at very low IoU values has
recall close to one and at higher IoU values recall drops.
The final metric, named Average Recall, is the area under
the curve described above. For plural noun phrases, we do
not explicitly match the ground-truth instances and the pre-
diction proposals to calculate the Average Recall. Instead,
we aggregate all instances of the ground-truth annotation
into a single segmentation and compute the IoU with re-
spect to the segmentation composed by all the prediction
proposals. With this strategy, we avoid errors or variations
in the matching process between annotations and predic-
tions while assessing the overall segmentation quality.
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there are vehicles, building and
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and a sky with clouds.

Panoptic segmentation
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Figure 4: Panoptic Narrative Grounding Baseline. Our model takes an image and a corresponding caption as input (a),
followed by a top-down approach by extracting panoptic segmentation proposals with a backbone segmenter. We then use
single-modality transformers to independently process the segmentation proposals and the tokens from the caption (b) and
jointly process the information with a cross-modality transformer (c). Finally, we calculate an affinity matrix between visual
and textual information and select the more relevant panoptic segmentation proposal for each noun phrase (d).

4. Baseline for Panoptic Narrative Grounding

We build upon the Cross-Modality Relevance
(CMR) [52] model developed for reasoning tasks on
language and vision. This method has competitive results
in two classification tasks at the intersection of vision and
language: Visual Question Answering [2] and Natural
Language for Visual Reasoning [43, 44]. CMR model
introduces entity relevance representation that explicitly
expressed the relevance of textual entities with respect to
visual entities. The model uses this affinity matrix as an
intermediate representation for the final tasks. Their results
suggest using the word alignment with regions in the image
results in an increase in performance for the final task. We
adapt the model and optimize the architecture for our task.

Figure 4 depicts an overview of our baseline method.
Given an image and its caption (a), we extract features from
each of the panoptic segmentation region proposals and pro-
cess each proposal and word with single modality trans-
formers. (b). We then concatenate the outputs from the
visual modality transformer and the textual modality trans-
former and use it as input to the cross-modality transformer
that updates the representations of each entity considering
not only those of the same modality but also those of the
other modality (c). Afterwards, we calculate the affinity
matrix from the matrix multiplication between the represen-
tations of each word and region proposal. Finally, we make
an average pooling over the language dimension of all the
words included in each noun phrase. This affinity matrix
explicitly indicates which is the most relevant panoptic seg-
mentation region for each noun phrase in the caption (d).

Implementation details: We use a Panoptic Feature Pyra-

mid Network [17] (FPN) with a ResNet-101 [9] backbone
pre-trained on MS COCO [5, 25] with 3× schedule us-
ing the official implementation [46]. Parameters in Panop-
tic FPN are fixed. For stuff proposals, features corre-
spond to the ones extracted from the semantic segmentation
branch after combining the features extracted from each
FPN level and before the final upsampling. For things cat-
egories, they are the mask features in the instance segmen-
tation branch. The visual single modality transformer has
3 attention layers. We use the pre-trained BERT “base”
model [7] to generate the single-modality representation.
The cross-modality transformer has 5 attention layers. Dur-
ing training, we performed a multi-label classification task
to include several regions when the noun phrase is plu-
ral. Additionally, for plurals in the final prediction we con-
sider all the panoptic segmentation region proposal with a
match score greater than 0.1. We train our method on an
NVIDIA Quadro RTX 8000 GPU for 25 epochs with an
initial learning rate of 0.000,01, 60 images per batch and
use an Adam [16] optimizer with standard parameters.

5. Experiments

Experimental setup: We use our Panoptic Narrative
Grounding benchmark with the standard training and vali-
dation splits of the MS COCO dataset. We only include the
images for which our annotation transfer process assigns at
least one noun phrase of the Localized Narrative caption to a
panoptic segmentation region. The final splits have 133,103
localized narratives for train and 8533 for validation.

Quantitative results: Table 2 and Figure 5a show the quan-
titative results of our method using the proposed Average
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Figure 5: Average Recall Curve for our baseline method performance (a) compared to the oracle, and dissagregated into (b)
things and stuff categories, and (c) singulars and plurals noun phrases.

Method Average Recall

things + stuff things stuff

Oracle 64.4 67.3 60.4
Ours 55.4 56.2 54.3

MCN[30] - 48.2 -

(a) Things and stuff categories.

Method Average Recall

singulars + plurals singulars plurals

Oracle 64.4 64.8 60.7
Ours 55.4 56.2 48.8

(b) Singulars and plurals noun phrases.

Table 2: Results of our method for Panoptic Narrative Grounding task compared to the oracle performance, disaggregated
into (a) things and stuff categories, and (b) singulars and plurals noun phrases.

Recall evaluation metric (Sec. 3.3). Our method’s relative
performance is 86.0% with a drop of only 9.0 absolute Av-
erage Recall points with respect to the oracle performance
given by the base panoptic segmentation method (55.4 vs.
64.4). We calculate this oracle by choosing as prediction
the panoptic segmentation proposal with the highest IoU
with the ground-truth annotation. Therefore, the oracle ver-
sion of our method assumes a perfect match between seg-
ments and noun phrases, and only measures segmentation
errors. These results suggest that our proposed baseline is
very strong and a good starting point to promote research
in Panoptic Narrative Grounding. However, our proposed
baseline method is limited by the quality of the proposals’
segmentations and the recall of the base panoptic segmen-
tation method.

Furthermore, to compare our baseline for Panoptic Nar-
rative Grounding with respect to a visual grounding state-
of-the-art method, Multi-task Collaborative Network [30]
(MCN). We generalize our task and make a natural exten-
sion of RES task. For this purpose, we split the captions
into phrases and include as ground truth all segmentation re-
gions that match a noun phrase within each sentence. Since
this method was developed in the scope of RES task, we

just include things categories. This state-of-the-art method
for RES follows and bottom-up approach and leverages the
complementary relationship between REC and RES tasks
by using their properties to benefit the other task. MCN
achieves a performance of 48.2 Average Recall. This re-
sult is comparable with the performance of our disaggre-
gated method in only things, which shows that our baseline
method better address the problem of natural language vi-
sual grounding. We hypothesize that approaching this task
from a fine-grained formulation allows the model to easily
abstract information using the semantics of each word.

By disaggregating the performance of our baseline
method into things and stuff (Tab. 2a, Fig. 5b), it is possible
to observe that, even though our method’s performance for
stuff categories is higher, the drop with respect to the oracle
performance for things categories is 5.0 absolute Average
Recall points greater. We hypothesize that this is due to (i)
greater variations in position and appearance in things cate-
gories. These results suggest that aligning noun phrases and
panoptic region proposals gets more difficult as the intra-
class visual variability increases. Also, (ii) there can be
multiple instances in an image of the same object category
in the case of things, as opposed to stuff categories, so the
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Figure 6: Qualitative results for Panoptic Narrative Grounding. Example predictions of our baseline in the validation
split of our benchmark. The inputs are the image (a) and the caption without highlighted noun phrases (b). The outputs are
a set of noun phrases in the caption (b), each with a corresponding region in the predicted segmentation (c). (d) shows the
ground-truth panoptic segmentations. More qualitative results can be found in the Supplementary Material.

model fails to disambiguate between the instances of that
category and select the one to which the noun phrase refers
in the caption’s context.

We also disaggregate the performance on singular and
plural noun phrases (Tab. 2b, Fig. 5c). The drop in perfor-
mance for plural noun phrases indicates that our model does
not retrieve all the instances of the object to which language
refers. We attribute this limitation to the trace not exhaus-
tively intersecting all the instances in many cases, which
spreads to our annotations and ends up affecting the results.

Figure 6 shows some qualitative results of our baseline
method compared to the ground-truth panoptic segmenta-
tions of our benchmark. More qualitative results can be
found in the Supplementary Material.

6. Conclusions

In this work, we present Panoptic Narrative Grounding,
a new formulation for the natural language visual ground-

ing problem that aims at producing a panoptic segmentation
that grounds densely each noun phrase in the caption. This
version of the problem (i) maintains the finest granularity
over language by visually grounding noun phrases, while
(ii) including a spatially detailed visual grounding with seg-
mentations, and (iii) incorporating all panoptic categories to
leverage the intrinsic semantic information in visual scenes.
We establish a strong experimental framework for the study
of this task, including new annotations and evaluation met-
rics. We design an algorithm to transfer Localized Nar-
ratives’ visual grounding to specific regions in the panop-
tic segmentations of the MS COCO dataset. Furthermore,
we propose a strong baseline method to serve as stepping
stone for future work. The formulation of Panoptic Narra-
tive Grounding, its benchmark and experimental framework
will push the envelope further in the development of fine
and general natural language visual grounding methods. In
turn, advances in this task will impact solutions for other
problems on the intersection of vision and language.
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