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Abstract

Cross-domain object detection and semantic segmenta-
tion have witnessed impressive progress recently. EXxist-
ing approaches mainly consider the domain shift result-
ing from external environments including the changes of
background, illumination or weather, while distinct cam-
era intrinsic parameters appear commonly in different do-
mains and their influence for domain adaptation has been
very rarely explored. In this paper, we observe that the
Field of View (FoV) gap induces noticeable instance ap-
pearance differences between the source and target do-
mains. We further discover that the FoV gap between
two domains impairs domain adaptation performance un-
der both the FoV-increasing (source FoV < target FoV)
and FoV-decreasing cases. Motivated by the observa-
tions, we propose the Position-Invariant Transform (PIT)
to better align images in different domains. We also intro-
duce a reverse PIT for mapping the transformed/aligned
images back to the original image space, and design a
loss re-weighting strategy to accelerate the training pro-
cess. Our method can be easily plugged into existing cross-
domain detection/segmentation frameworks, while bringing
about negligible computational overhead. Extensive ex-
periments demonstrate that our method can soundly boost
the performance on both cross-domain object detection and
segmentation for state-of-the-art techniques. QOur code
is available at https://github.com/sheepooo/
PIT-Position—-Invariant—-Transform.

1. Introduction

Object detection [20, 41, 40] and semantic segmenta-
tion [33, 5, 6, 14] are two fundamental problems in com-
puter vision. The former aims at precisely locating and
identifying the objects in an image and the latter targets to
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Figure 1: Objects (cars) in different positions relative to the
camera have different extent of deformation, which remark-
ably burdens the alignment of intra-class features. This can
be effectively mitigated by our PIT. Top row: images of an
object (in different positions) captured by a virtual camera.
Other rows: real photos from the KITTTI dataset.

classify the semantics of each pixel. Training a general-
ized model with high performance for the two tasks calls
for massive images with elaborate annotations, while it is
laborious to prepare such well-annotated data. Meanwhile,
due to the existence of domain shift [1], a model trained on
a specific dataset often suffers from significant performance
degradation when applied to another domain. A common
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solution is to transfer the knowledge acquired from a la-
beled source domain to an unlabeled target domain, which
is known as Unsupervised Domain Adaptation (UDA) [38].

In general, two typical manners have been explored to
adapt models from the source to the target domain. One
is pixel-level alignment, target-like images are generated to
provide implicit or explicit supervisory signals on target do-
main [44, 25, 61]. The other is feature-level alignment, the
feature distributions of two domains are aligned through
constraining domain discrepancy metrics [34, 48, 62] or
performing feature confusion [18, 52, 39].

In the study of cross-domain detection/segmentation,
previous works [8, 43, 60,2,9,59,25,50, 31, 65] mainly fo-
cus on narrowing the domain shift caused by external envi-
ronments, e.g. the change of background, illumination and
weather, etc. However, very little attention has been paid to
the camera’s intrinsic parameters which often bring notice-
able domain discrepancy due to the use of various cameras.

We observe that one main camera parameter, the Field
of View (FoV)!, induces a distinct dimension of the domain
gap. As a matter of fact, the FoV discrepancy frequently
occurs among datasets or in real-world scenarios. For in-
stance, in autonomous driving, cameras with different FoVs
are often used together, because of the inevitable updating
of cameras in the long period of data collection. FoV differ-
ence derives the variety of instance structural appearances
across the source and target domains, leading to the sample
diversifying within a category. This obviously increases the
burden of domain adaptation models, thus resulting in less
desired performance.

Motivated by the above observation, in this paper we at-
tempt to alleviate the adverse impact of the diverse FoV's be-
tween domains, in order to boost the performance of cross-
domain detection/segmentation.

We discuss the influence of the FoV gap in two general
cases. (1) In FoV-increasing adaptation (the FoV of the tar-
get domain is larger than that of the source domain), the
target domain instances with large incident angles cannot
be well aligned to the source domain for the lack of similar-
appearance counterparts. (2) In FoV-decreasing adaptation
(target FoV smaller than source FoV), the sparsity of the
source domain instances within a specific range of incident
angle also hampers domain alignment. Existing UDA meth-
ods usually try to bridge the whole domain gap and opti-
mize the model without specifically taking account of the
FoV factor, thus preventing the model from fully learning
domain-invariant features.

To address the above problem, we propose the Position-
Invariant Transform (PIT) to straightforwardly narrow the
FoV gap between the source and target domains (Fig. 1).

IField of View (FoV): in photography, the angle between two rays
passing through the perspective center (rear nodal point) of a camera lens
to the two opposite sides of the format.

Specifically, the pixels lying in the original imaging space
are mapped to another two-dimensional space shaped as a
spherical surface, such that the appearances of the instances
in various positions are aligned to a great extent. Also,
we introduce a reverse PIT for mapping the transformed
images back to the original image space. In addition, we
design an efficient loss re-weighting strategy to speed up
the training procedure. Our modules induce little computa-
tional overhead while boosting performance, and they can
be easily served as plug-and-play modules to any existing
cross-domain detection/segmentation frameworks.
Our contributions can be summarized as follows:

* We statistically analyze the negative influence of FoV
difference between the source and target domains on
UDA models, in which both the increasing and de-
creasing of FoV between domains impair the domain
alignment.

* We propose the Position-Invariant Transform (PIT) to
align instance structural appearances in different po-
sitions in each category, and reverse PIT to map the
transformed images to the original image space. We
also introduce a loss re-weighting strategy to speed up
the training procedure.

* The effectiveness of PIT is verified on both cross-
domain detection and segmentation tasks. Equipped
with our modules, state-of-the-art UDA methods show
soundly better performance than before.

2. Related Work

Unsupervised Domain Adaptation (UDA). UDA aims to
adapt the model trained on a labeled source domain to an
unlabeled target domain by reducing the distribution gap
between two domains. A group of recent approaches fo-
cused on minimizing the domain discrepancy [34, 48, 62]
metric (e.g. Maximum Mean Discrepancy [53]), adversar-
ial learning [18, 52, 39] or prototype-based alignment [58,
, 60]. Despite the successes achieved in classification-
based tasks [34, 18, 48, 52, 44, 61], these methods work
well on simple classification datasets (e.g. MNIST [30] and
SVHN [37]), but can hardly be applied to more challenging
tasks, e.g. object detection and semantic segmentation.
Domain Adaptive Detection/Segmentation. Not until re-
cently has the community paid attention to domain shift
problem in object detection or semantic segmentation. This
line of research has been investigated by a large num-
ber of researchers, and great efforts have been made to
explore a variety of algorithms and architectures to re-

duce the domain gap in pixel-level [25, 3, 31, 29, 21],
feature-level [35, 69, 2, 8, 66], instance-level [8, 59, 4]
and output-level [50, 51, 36, 63], which have shown suc-
cesses on both object detection [8, 67, 2, 43, 4, 60, 59]
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Figure 2: (a) [llustration of the position-related deformation and the position-invariance of PIT. (b) The 3D spatial relationship
of images before and after PIT. (¢) The transformation between two coordinate systems. O: the optical center of a camera;
F': the focal point; 'Oy’: the plane of lens (y axis is perpendicular to z'Oz); xFy: the imaging plane which is parallel to

2'Oy’; uFv: the spherical surface to map the image, where

and semantic segmentation [25, 50, 36, 31, 57, 51, 55, 65].
The current mainstream approaches of these two tasks in-
clude adversarial learning [67, 23, 43, 50, 36, 55, 51], self-
training [69, 68, 28] and self-ensembling [2, 9, 13, 64, 65].

Despite the great progress, these works mainly focused on
adapting different external environmental conditions, e.g.
background, illumination and weather. While the gap of
camera intrinsic parameters between distinct domains has
been ignored. In this work, we show the effectiveness of
our method by easily integrating it into adversarial learning
and self-ensembling on these two tasks.

CNNs with Geometric Transformations. Researchers
investigated CNNs with the abilities of geometric trans-
formation or deformation gains over the past years. Spa-
tial transformer networks [26] predicted the transformation
parameters to reduce the influence of affine transforma-
tions. Active convolution [27] designed a transformable
convolution kernel to get a more general shape of recep-
tive field. Deformable convolution network [ 1 1] further im-
proved the former by predicting the receptive field location,
and [47] used spherical CNN to translate a planar CNN to
process 360° imagery directly in its equirectangular projec-
tion. Largely different from these methods which mainly fo-
cused on designing new network architectures, our method
pays more attention to the attribution of the data itself (i.e.
position-related deformation caused by camera imaging) to
enhance the feature alignment in UDA models.

3. Method

In Unsupervised Domain Adaptation (UDA), a source
domain S = {(z%,y°)}Ys with Ns labeled samples and
a target domain 7 = {mz—}j\z , with N7 unlabeled samples
are available, where x‘f follows source distribution Ps, and
xJT obeys target distribution P7-. The objective of UDA is to

the coordinate axes « and v are arcs.

train a model generalizing well in the target domain, using
the above data from both domains.

3.1. Motivation

In the real world, images are often captured by cameras
with distinct intrinsic parameters, which leads to the cross-
camera domain gap. We observe that the structure of objects
deform noticeably as their positions change, and the FoV
parameter mainly impacts the deformation extent (Fig. 1).

The FoV parameter restricts the angle of the area that can
be observed by a camera, i.e. the maximum incident angle
of observable objects. Fig. 2 (a) illustrates how the variance
of the incident angle affects the structural appearance of an
object. [, m, and n are structure-alike objects which lie in
different positions with the same distance to the optical cen-
ter O. When projected onto the imaging plane, the length of
their images I, m/, and n’ are obviously different. Specif-
ically, with the increase of an object’s deviation from the
center of a scene (i.e. the expansion of the incident angle),
its camera imaging becomes longer, which makes the object
structure vary in different positions of an image.

Because of the restriction on the range of incident angles
by FoV, the structural appearance of objects within the same
category can be noticeably distinct between the source and
target domains, as shown in Fig. 1 where different degrees
of imaging deformation may occur in two domains. This
kind of deformation is totally different from the lens distor-
tion [54]. The latter is a deviation from rectilinear projec-
tion and can be fixed by camera calibration, and the cali-
brated image is the ideal projection on the imaging plane.

Considering the significance of learning structure-
invariant feature representations in scene understanding [26,

], the structural difference between the objects from two
domains can trap a UDA model into a dilemma in which
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Figure 3: Heat maps of foreground occurrences for each («, 8) in AP space. (a)(c) Statistics from the whole KITTI [19]
training set and a subset involving 1,000 images, which stand for large-scale and small-scale datasets in the real world,

respectively. (b) Statistics from the Cityscapes training set.

that kind of difference cannot be handled well. To better
elucidate the existence and underlying effect of the FoV gap
between the two domains, we statistically analyze the inci-
dent angle distribution in various datasets. Specifically, we
define o and 8 (« is shown in Fig. 2 (c), § is the counter-
part in yF'z plane) as a point’s incident angles towards the
optical center along the horizontal and vertical axis, respec-
tively. Notice that the imaging deformation of an object is
closely related to « and 3, and the deformation extent con-
tinuously increases along these two angles’ absolute values.
Therefore, we span the o axis and [ axis to form a two-
dimensional space, named as Angular-Position space (AP
space), in which the absolute value of each point’s coordi-
nate measures the horizontal and vertical deformation ex-
tent of the object lying in the corresponding position. We
then count the number of foreground occurrences for each
(a, B) integer values on KITTI [19] and Cityscapes [10]
datasets, and these statistics are displayed as heat maps in
Fig. 3. It can be observed that the objects of KITTI dataset
distribute in a wider range of incident angles than those of
Cityscapes dataset, which leads to two opposite directions
of cross-FoV adaptation (see below).

FoV-increasing Adaptation. In this case, the target domain
possesses a wider FoV distribution than the source domain,
e.g. adapting from Cityscapes (Fig. 3(b)) to KITTI (Fig.
3(a)), which means that the objects in target domain own a
greater range of deformation extents. Consequently, some
target objects fall in the regions without source objects in
the AP space, and they cannot be well aligned to the source
domain for the lack of proper supervision from similar-
appearance counterparts, which impairs the performance of
UDA models. The proposed PIT module (Sec. 3.2) effec-
tively mitigates this defect via its position-invariance.

FoV-decreasing Adaptation. In this case, the target do-
main has a narrower FoV distribution, e.g. adapting from
KITTI (Fig. 3(a)(c)) to Cityscapes (Fig. 3(b)), such that the
distributional range of target objects are covered by that of
source objects. It is true that when the source objects are
dense enough everywhere (Fig. 3(a)) in the AP space, do-

main alignment can be well performed by a UDA method.
However, when the source domain has low data density
(Fig. 3(c)), a target object can hardly find its source counter-
parts with a similar structural appearance which it can align
with; meanwhile the source samples are not fully utilized.
Under this situation, the proposed PIT approach (Sec 3.2) is
able to gather source objects in the AP space and thus eases
the alignment.

3.2. Position-Invariant Transform

The object deviating more from the principal axis of the
lens would be stretched to a greater extent in the camera
imaging process, which manifests the imaging deformation
phenomenon in Fig. 1.

In order to alleviate this kind of deformation, we propose
the Position-Invariant Transform (PIT). Fig. 2(a) shows
the principle of PIT. The location of a point’s image is the
intersection of its incident light passing through the optical
center O and the imaging surface, so the imaging of a scene
would be altered by changing the imaging surface. In this
method, the incident light from an object passing through O
is received with a spherical surface instead of a plane, i.e.
the uF'v surface with sphere center O shown in Fig. 2(b). In
such a spherical space, images can largely retain the relative
size of original objects. For the same-size objects [, m and n
in Fig. 2(a), they are mapped to I”’, m’” and n’’ with the same
length on the wF'v surface. This example illustrates that the
imaging on a spherical surface is invariant to the object’s
angular position, i.e. satisfying position-invariance.

After manifesting the benefits of a spherical surface over
2D imaging plane, a projection from spherical image back
to a new plane image is needed to match the image with
the input form of network. Thus, such projection should
have two properties, which cannot be satisfied by the exist-
ing projection approaches (e.g. equirectangular, Mercator,
etc.): (1) the image space after transformation should obey
position-invariance, in order to align instances in the pixel
level; (2) the horizontal (vertical) line should remain hor-
izontal (vertical) after transformation, so as to ensure the
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Figure 4: Overview of our method.

validity of bounding box labels. Taking both properties into
consideration, we formulate a new projection which is de-
fined as (referring to Fig. 2(c) for intuitive notions):

X(U) = f tan#), ()
Y(V) = f x tan%), @
MU[V] = MX @)Y (V)], 3

where (X, Y) is the coordinate in the original image space
(i.e. the x F'y coordinate system with origin F), and (U, V)
is the coordinate in the image space after PIT (i.e. the uF'v
coordinate system with origin F'). M [X][Y] and M'[U][V]
denote the pixel values of the corresponding points before
and after transformation. f is the focal length which can be
estimated using the FoV parameter or precisely calculated
by camera calibration.

As shown in Fig. 1, the size of an image becomes smaller
after PIT, and the regions further from the center of a scene
are compressed with a higher ratio. Furthermore, the verti-
cal/horizontal lines are preserved after PIT.

3.3. Cross-FoV Domain Adaptation

Integration. The proposed PIT method can be utilized as
a plug-and-play module to existing cross-domain detection
and segmentation frameworks. As shown in Fig. 4, both the
images from the source and target domains are first fed into
the PIT module to be transformed into the position-invariant
ones, which serve as the inputs to the task network. In the
training phase, the labels from source domain are also trans-
formed by PIT to provide supervision. As for inference, the
prediction result of the task network is mapped back to the
original image space by the reverse PIT module which out-
puts the final prediction.

Reverse PIT and loss re-weighting strategy. Since the
evaluation is conducted with the un-transformed ground
truth, it is plausible to provide supervision with the original
labels, as shown by the black dash lines in Fig. 4. However,
different from the PIT process which only needs to execute
once for each input image in the datasets, the reverse PIT
module would be employed in each iteration and cause ex-
tra computational cost. In order to accelerate the training,
we design a pixel-wise loss re-weighting strategy to sub-
stitute the reverse PIT module during the training process.
A pixel in the transformed image corresponds to a region
in the original image, and each pixel in the original im-
age weighs equally in evaluation. Therefore, a transformed
pixel’s weight should be the area of its mapping region, de-
pending on the pixel’s position. With this weight, the trans-
formed supervision is equivalent to the reverse PIT in terms
of loss computation. The weighting matrix is formulated as:

wr(U,V) = (X(|U|+1)—X(\U|))><(Y<|V|+1)—Y(IV(|£
where wp, is the weight assigned to pixel located in (U, V)
in the transformed image.

Using the weights derived above, we re-weigh the pixel-
wise losses, including the task-specific loss Ly, (e.g. the
supervised loss L., in [9]) and the domain adaptation loss
Ly, (e.g. the consistency loss Loy, in [9]):

L = Liask ® Wr + ALdqa @ Wk, ®)

where ) is the weight to balance the two losses.

With this loss re-weighting strategy, we can use the
transformed labels to optimize the model, as shown by the
green line in Fig. 4, which speeds up the training procedure.

4. Experiments

We conduct extensive experiments on object detection
and semantic segmentation tasks. The results show that our
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approach can soundly boost the performance on cross-FoV
adaptation by easily plugging it into any UDA frameworks.

4.1. Experimental Setup

Datasets. We utilize three public datasets provided with
FoV parameters in our experiments: Cityscapes [ 0], KITTI
[19] and Virtual KITTI [17]. In here, we add a two-
dimensional array after the name of each dataset, to indi-
cate the approximate horizontal and vertical FoV parame-
ters (FoVx, FoVy) of the camera for scene capturing.

* Cityscapes [10] (50°, 26°) is a dataset of street scenes
in several cities. It owns 2,975 images for training and
500 for validation, and both of them have dense pixel-
level labels. We get the bounding box labels for object
detection task by calculating the tightest rectangles of
instance annotations as [8] did. It uses 4 types of cam-
eras with different FoVs (49.5° < FoVzx < 51.7°,
25.5° < FoVy < 26.2°), and we process each image
with its own recorded FoV.

o KITTI [19] (90°, 34°) is a real-world dataset contain-
ing 7,481 images with bounding boxes and another 200
images with pixel-level labels. In the detection task,
we split the the training set and the validation set man-
ually. In the segmentation task, it is used as the target
domain only due to the lack of pixel-level annotations.

 Virtual KITTI [17] (80°, 29°) is a synthetic dataset
which clones the scenes from the KITTI with 21,260
images. It provides pixel-level instance labels, and the
bounding boxes are obtained as those in Cityscapes.

Baselines and Comparison Methods. Following the ex-
perimental design in [59], we select SWDA [43], SCL [45],
GPA [60] as our baseline methods for cross-domain detec-
tion, and Self-Ensembling [9], CowMix[16], CutMix[!5],
DACS [49] for cross-domain segmentation.

We re-implement these methods for fair comparisons,
and our re-implementations attain higher accuracies than
the reported ones. When comparing with other state-of-the-
art methods, we use the results from the original papers.
Implementation Details. In object detection experiments,
VGGI16 [46] model pre-trained on ImageNet [12] is used
as the backbone of all the selected methods. The hyper-
parameters are set according to the original papers. The
average precision (AP) is used as evaluation metric.

In semantic segmentation experiments, the DeepLab-
v2 [5] with ResNet101 [22] pretrained on ImageNet [12]
and on MSCOCO [32] is used as our backbone. Hyper-
parameters are set following [50, 9].

4.2. The Existence of FoV Gap

In order to prove the existence of FoV gap, we crop
the images (Fig. 5) to generate new datasets with certain

Table 1: Source-only detection results (car AP, %) traind
on KITTI-50°and tested on different degrees (FoVx) of
cropped KITTL

Fovx | 50° 70° 80° 90°
FR[4]] | 87.49% 86.80% 86.31%  84.92%
FR +PIT | 87.81% 87.37% 86.88% 86.43%

.‘ ‘-

Figure 5: Cropping image with certain F'oVx. FoVx was
reduced from LAF B to ZCF D after cropping.

FoVx. Then we train a Faster-RCNN [41] model (but
NOT a UDA method) on KITTI-50°, and test it directly on
KITTI-70°/80°/90°to examine the compactness of features.

Tab. 1 shows the detection results of these source-only
experiments. Without PIT, the performance gets worse as
the FoV gap gets bigger, while PIT effectively suppresses
the performance drop. It demonstrates that the PIT module
plays an important role in bridging the FoV gap.

4.3. Domain Adaptation for Object Detection
4.3.1 FoV-increasing Adaptation

Cityscapes (50°, 26°) — KITTI (90°,34°). It’s a cross-
camera adaptation, in which FoV gap is one of the main
components of the domain gap. Table 3 shows the AP re-
sults of the car class. With our proposed PIT method, all the
methods performed much better than their vanilla versions.
The highest gain reaches 5.27%, which is a remarkable im-
provement in object detection.

Virtual KITTI (80°,29°) — KITTI (90°,34°). It's a
synthetic-to-real adaptation in which FoV gap is a minor
factor of domain gap. The results are shown in Table 4.

In order to look into the factors which influence the ef-
fectiveness of our method, we design controlled experi-
ments. We crop the images (see Fig. 5) with certain FoVz
and use them as the source or target domain.

In Table 2, experiments in the upper part have the same
source F'oV x and incremental target F'oV z (i.e., incremen-
tal FoV gap), and those in the bottom part of Table 2 have
a constant target F'oV z with different source F'oVz. With
the fixed F'oVx in one domain, the larger FoVx gaps re-
sult in worse performance in the baseline, while our method
gains higher improvement. These results verify that our pro-
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Table 2: Detection results of Virtual KITTI — KITTI (cropped with specified FoV z.)

Target FoVx: 50°

| Target FoVx: 70° | Target FoVx: 90°

Source ‘ ‘

FoVu | Method | car AP(%) | Gain(%) | car AP(%) | Gain(%) | car AP(%) | Gain(%)
| SCL (Axiv20) [45] | 69.81 68.04 65.71
40 SCL + PIT 70.56 0.75 69.08 1.04 69.04 3.33

Target ‘ ‘

Source FoVz: 40°

‘ Source FoVz: 60° ‘ Source FoVx: 80°

FoVa | Method | car AP(%) | Gain(%) | car AP(%) | Gain(%) | car AP(%) | Gain(%)
| SCL(Amxiv20) [431 | 65.71 67.74 70.50
90° | scL +PIT 69.04 3.33 70.20 2.46 71.91 141

Table 3: Detection results of Cityscapes — KITTIL.

Methods | car AP(%) | Gain(%)
DAFRCN*(CVPR’18) [¢] 64.10 .
SWDA**(CVPR’19) [43] 71.00 .
MAF*(ICCV’19) [23] 72.10 -
SCL*(Arxiv’19) [45] 72.70 -
ATF*(ECCV’20) [24] 73.50 -
SWDA (CVPR’19) [43] 72.42

SWDA + PIT 75.77 3.35
SCL (Arxiv’19) [45] 75.28

SCL + PIT 77.11 1.84
GPA (CVPR’20) [60] 69.24

GPA + PIT 74.51 5.27

* reported from its original paper, and ** from [24].

Table 4: Detection results of Virtual KITTI — KITTI.

Methods | car AP(%) | Gain(%)
SWDA (CVPR’19) [43] 69.74

SWDA + PIT 71.86 2.12
SCL (Arxiv’19) [45] 70.50

SCL + PIT 71.91 1.41
GPA (CVPR’20) [60] 65.36

GPA + PIT 70.71 5.35

posed method can effectively narrow the specific FoV gap.

4.3.2 FoV-decreasing Adaptation

As analyzed in Section 3.1, in this case, our method works
with insufficient labeled data. So we reduce the size of the
source dataset manually for the experiment setting, with no
special treatment on the target domain.

KITTI (90°, 34°) — Cityscapes (50°, 26°). We use 1,000

Table 5: Comparison with data augmentation.

SWDA [43] Aug PIT | car AP(%) Gain(%)
v 72.42 .
v v 74.74 2.32
v v 75.77 3.35
v VAV 76.93 4.51

labeled images in KITTI dataset as source data. Table 6a
shows the detection results on Cityscapes, and our method
outperforms baselines by 1.48% ~ 2.01% on car AP.

Virtual KITTI (80°, 29°) — Cityscapes (50°, 26°). We
use the “clone” subset (2126 images) of Virtual KITTI as
source data. As shown in Table 6b, our method achieves
increases when plugged in all the baseline networks.

4.4. Domain Adaptation for Semantic Segmentation

We conduct two experiments : 1) Cityscapes (50°,
26°) — KITTI (90°, 34°), 2) Virtual KITTI (80°,29°) —
KITTI(90°, 34°). mIoUs are reported for comparisons. The
class-wise IoUs are reported in the supplementary material.

The results are shown in Table 7. Assembled in four
state-of-the-art domain adaptative semantic segmentation
methods, our method improves the mloUs by 1.06% to
1.77% compared to the original methods, which again
demonstrates the effectiveness of the proposed method.

4.5. Comparison with Data Augmentation

Though served as a fixed part before and after the net-
work, PIT is totally different from data augmentation. Data
augmentation processes data with random parameters in
several directions to diversify samples, while PIT aims at
the opposite purpose. It calculates the optimal transform di-
rectly and reduces the variety of intra-class instances, which
is beneficial for the feature alignment.

We use the commonly-used data augmentation (random
scale and random crop) [56] in experiments. Tab. 5 shows
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Table 6: Detection results of FoV-decreasing case.

(a) KITTI subset — Cityscapes.

Methods | car AP(%) | Gain(%)
SWDA (CVPR’19) [43] 39.67

SWDA + PIT 41.68 2.01
SCL (Arxiv’20) [45] 38.64

SCL + PIT 40.25 1.61
GPA (CVPR’20) [60] 44.77

GPA + PIT 46.25 1.48

(b) Virtual KITTI subset — Cityscapes.

Methods | car AP(%) | Gain(%)
SWDA (CVPR’19) [43] 37.53

SWDA + PIT 38.95 1.42
SCL (Arxiv’19) [45] 37.22

SCL + PIT 38.71 1.49
GPA (CVPR’20) [60] 44.56

GPA + PIT 45.56 1.00

Before PIT After PIT
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Figure 6: The bin-wise performance in AP space.Based on
detection task Cityscapes — KITTI, SWDA [43] backbone.

that PIT and data augmentation play different roles in the
UDA task. Data augmentation aims at the linear transfor-
mation of objects (e.g. different scale), while PIT reduces
the instance diversity caused by non-linear deformations.

4.6. Visualization

In order to demonstrate the effectiveness of PIT over dif-
ferent incident angles, we reported the performance for dif-
ferent bins in the AP space (specified in Sec. 3.1). Using the
center point to represent a predicted bounding box, we cal-
culate the bin-wise accuracy and visualize in Fig. 6. There
are clear improvements in the peripheral regions where the
objects have greater deformation, which verifies the effec-
tiveness of the instance alignment through PIT. See more
results in the supplementary material.

5. Conclusion

In this paper, we statistically analyzed the impact of FoV
difference between domains, including both FoV-increasing
and -decreasing cases. Then we proposed a novel method

Table 7: Segmentation results.

(a) Cityscapes — KITTL

Method ‘ mloU ‘ Gain
Self-Ensembling (ICCV’19) [9] | 59.54
Self-Ensembling + PIT 61.00 | 145
CowMix (Arxiv’20) [16] 59.15
CowMix + PIT 60.37 | 1.22
CutMix (BMVC’20) [15] 58.78
CutMix + PIT 60.09 | 1.31
DACS (WACV’21) [49] 59.19
DACS + PIT 60.82 | 1.63

(b) Virtual KITTI — KITTL

Method
GIO-Ada* (CVPR’19) [7]

‘ mloU ‘ Gain
| 535 | -

Self-Ensembling (ICCV’19) [9] | 55.45
Self-Ensembling + PIT 5722 | 1.77
CowMix (Arxiv’20) [16] 56.07
CowMix + PIT 5724 | 117
CutMix (BMVC20) [15] 55.58
CutMix + PIT 56.72 | 1.14
DACS (WACV’21) [49] 55.51
DACS + PIT 56.57 | 1.06

(PIT) for cross-FoV detection/segmentation, which can be
widely used in real-world applications due to the variety of
cameras. Our method aligns the structural appearance of
instances in the same category across domains. We also de-
sign a loss re-weighting strategy as a substitution of reverse
PIT to speed up the training. As a plug-and-play approach,
our method can be easily embedded into a wide range of ex-
isting networks. Experiments demonstrate that it boosts the
performance in cross-domain detection and segmentation.
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