
Removing the Bias of Integral Pose Regression

Kerui Gu1 Linlin Yang1,2 Angela Yao1

1National University of Singapore, Singapore
2University of Bonn, Germany

{keruigu, yangll, ayao}@comp.nus.edu.sg

Abstract

Heatmap-based detection methods are dominant for
2D human pose estimation even though regression is
more intuitive. The introduction of the integral regression
method, which, architecture-wise uses an implicit heatmap,
brings the two approaches even closer together. This
begs the question – does detection really outperform
regression? In this paper, we investigate the difference
in supervision between the heatmap-based detection and
integral regression, as this is the key remaining difference
between the two approaches. In the process, we discover an
underlying bias behind integral pose regression that arises
from taking the expectation after the softmax function. To
counter the bias, we present a compensation method which
we find to improve integral regression accuracy on all 2D
pose estimation benchmarks. We further propose a simple
combined detection and bias-compensated regression
method that considerably outperforms state-of-the-art
baselines with few added components.

1. Introduction
Pose estimation aims to determine the spatial position

of articulated joints such as the human body or hand.
At first glance, it seems that the problem should be a
straight-forward regression. However, methods which di-
rectly regress joint coordinates [4, 29, 25] are less effective
than those which locate the joints by estimating a likelihood
heatmap [24, 8, 36, 28]. The rationale is that working with
heatmaps allows the architecture to remain fully convolu-
tional, thereby retaining spatial structures throughout the
encoding and decoding process.

As labels, heatmap methods use a Gaussian centered at
the ground truth joint coordinate. This formulation converts
pose estimation into a detection problem; the network is
tasked with predicting, at each pixel, the probability of that
pixel being a joint pixel. The standard approach is to then
use an argmax function to decode the output heatmap into
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Figure 1. An illustration of the integral regression bias, with the
implicit heatmap overlaid with the resulting predicted joint loca-
tion as indicated by the white square. The bias, i.e. difference
between the heatmap mode and predicted location, increases as
the mode is further from the center and the value of β decreases.
There is no bias only when the heatmap mode is centered. This
paper proposes a method to compensate for the bias by partition-
ing the heatmap into individual regions (Ω1 to Ω4, see upper left
heatmap) to ensure that the heatmap mode is centered.

a joint coordinate. The argmax function has two key draw-
backs: it is not differentiable and it fixes the resolution of
the estimated coordinate to that of the heatmap itself. De-
spite these disadvantages, however, detection-based meth-
ods1 are highly effective and achieve state-of-the-art results
for human pose estimation [24, 8, 36, 28].

An alternative form of decoding is to take a softmax to-
gether with an expectation [14, 29, 25, 21]. Both the soft-

1The naming convention used in the literature can be confusing in the
context of this discussion as detection-based methods are often referred to
as indirect regression or heatmap regression [2, 14, 40].
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max and the expectation functions are differentiable. As
such, one can train end-to-end directly from ground truth
joint coordinates while retaining the benefits of fully con-
volutional architectures. This approach is referred to as la-
tent heatmap regression [14] in the hand pose estimation
literature and integral pose estimation [29] in body pose es-
timation literature.

Sun et al. [29]’s comparison between integral pose re-
gression versus detection-based heatmaps concluded that
integral regression is either as competitive or better for 2D
pose estimation. However, the results may not be fully
conclusive, as [29] used a unique backbone for integral re-
gression when comparing against existing detection-based
methods. Given that detection-based methods still domi-
nate state-of-the-art, this begs a revisiting of the question.
Which is better for 2D pose estimation - heatmap based de-
tection or integral regression?

A critical difference when comparing the two methods is
that integral regression method is slower to converge than
heatmap-based detection. [29, 40] have put forth that the
explicit heatmap label in detection provides a denser form
of supervision than the joint coordinates of integral regres-
sion. We show, as a main contribution of this paper, that the
slow convergence may also be the result of an induced bias
in integral regression. Specifically, the combination of the
softmax with an expectation shifts the heatmap’s alignment
with respect to the true coordinate position. This in turn
limits the ability of the neural network to learn efficiently.
By compensating for the bias, we improve both the learning
and performance of the integral regression method.

In our performance comparisons, we are inspired by [27]
to dig deeper into the factors of variation present in cur-
rent benchmarks. To that end, we go beyond the current
standard of reporting of a single (average) value of AP and
PCK to separate different factors. Surprisingly, we find that
in the “hard” cases of pose estimation, i.e., smaller size,
fewer joints, or more occlusion, integral regression outper-
forms heatmap based detection. However, these effects are
obscured because the hard cases constitute the dataset tail.

Finally, in an effort to retain the benefits of both
detection-based heatmaps and integral regression, we pro-
pose a combined learning framework. Specifically, we in-
corporate our bias compensation into the end-to-end learn-
ing of integral regression, while leveraging the detection-
based loss in initial training epochs to leverage the dense
supervision. Summarizing our contributions,

• We show via derivation a previously unobserved bias
in integral pose regression based on the combination
of the softmax and expectation operations.

• We propose a simple compensation scheme to counter
this bias which can up training and improve the perfor-
mance of integral regression methods.

• We analyze the performance differences of detection-
and regression-based human pose estimation methods
for different factors of variation. Regression method
performs better in “hard” cases of fewer joints, more
occlusion and lower-resolution inputs.

• We propose a bias-compensated joint framework for
detection and regression that retains the benefits of
both fast convergence and high performance in hard
cases. Our new framework achieves state-of-the-art re-
sults on MS COCO and MPII for 2D human pose esti-
mation and RHD for 2D & 3D hand pose estimation.

2. Related Work
Regression-based methods. Classical methods [34, 4]
used CNNs to extract features and directly predict joint lo-
cations with fully connected layers. Shortly after, integral
pose regression [29] was proposed; it can leverage the use of
a fully convolutional architecture while training end-to-end
from joint coordinates. The “integral” takes on the form of
a soft-argmax with an expectation and has also been used in
previous works [16, 39, 30]. While there are a large number
of detection-based methods, only two recent works [21, 25]
followed an integral regression approach. [21] combined
contextual information with a regression loss while [25]
proposed a variance or distribution penalty on top.
Detection-based methods. Since the heatmap representa-
tion was introduced in [33], heatmap-based detection meth-
ods [11, 35, 18, 6, 9, 38, 37, 20, 7] has dominated human
pose estimation. A well-known example is the Hourglass
Network [24], which stacks together encoder-decoder mod-
ules with skip connections to estimate and gradually re-
fine the joint heatmaps. More recently, the Simple Base-
line (SBL) [36] proposed a simple but effective baseline by
adding a few deconvolutional layers. HRNet [28] improved
the performance with a higher-resolution framework. Other
work [23] adds additional modules on top of HRNet to im-
prove the performance by considering the neuroevolution.

In contrast to all the above works, our motivation is
not to develop a new architecture for human pose estima-
tion. Instead, we investigate the underlying drawbacks of
regression-based human pose estimation and show that a
possible cause could be a bias in combining the softmax
with the expectation. Our work is analogous to DARK [40]
and UDP [13], which are designed for detection-based pose
estimation and address the quantisation error and biased
data processing respectively.

3. Pose Estimation Preliminaries
We consider top-down approaches in which already-

cropped image I of a person is provided. The aim of
2D body pose estimation is to predict the 2D coordinates
J ∈ RK×2 of K body joints. The standard in 2D pose
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estimation is to use an encoder-decoder framework. The
encoder, via a series of convolutional layers, reduces the
image to a low-resolution feature map; the decoder then
progressive up-samples the feature maps into a final out-
put H ∈ Rh×w×K , where h and w is a scale factor of the
shape of the input image I and each of the K channels rep-
resents the output for a specific joint k. For clarity, we drop
the subscript k in our exposition below and use simply H
and J to represent the heatmap and coordinates of joint k.

3.1. Detection-Based Method

In detection-based methods, H is treated as an explicit
heatmap. During inference, the coordinates of joint k, Jd,
is estimated by taking an argmax operation,

Jd = argmax
p

H(p), (1)

where p denotes the pixel coordinate in the heatmap. This
formulation can be interpreted as taking a maximum like-
lihood on the heatmap if H was proportional to the proba-
bility density of the joint location. In practice, however, the
final coordinate estimate is actually shifted to sit between
the highest and second-highest response on the heatmap to
account for the heatmap quantization [24].

During training, a ground truth heatmap Hgt is gener-
ated for joint k by placing a small Gaussian centered at the
ground truth coordinate Jgt. The loss applied for kth joint is
a pixel-wise MSE between Hgt and estimated heatmap H:

Lde =
1

|Ω|
∑
p∈Ω

∥H(p)−Hgt(p)∥2, (2)

where Ω denotes the set of all pixel locations in the heatmap
and |Ω| denotes the number of pixels in the heatmap.

3.2. Integral Regression Method

In the integral regression method, H is not an explicit
heatmap and hence the “latent” demarcation by [14]; it is
decoded into coordinates by applying a softmax normaliza-
tion followed by an expectation operation. More specifi-
cally, the estimated heatmap H for joint k is normalized to
H̃ via a softmax function:

H̃(p) =
exp(β ·H(p))∑

p′∈Ω exp(β ·H(p′))
, β > 0 (3)

where β is a smoothing parameter. The softmax ensures that
the elements of H̃ will sum up to 1 so that H̃ can be applied
directly as a probability density when taking the expected
value to estimate the coordinate Jr:

Jr = EH̃[p] =
∑
p∈Ω

H̃(p) · p. (4)

The key advantage of taking the expected value instead of
the argmax is that it is a differentiable operation. For train-
ing, an L1 distance between the joint coordinates for each
joint can be applied directly as a loss:

Lre = ∥Jr − Jgt∥. (5)

The L1 is preferred over L2 as a loss because of its better
performance; this was first studied in [29].

4. Bias-Compensated Integral Pose Regression
4.1. Derivation of Bias

To take the expectation, we need a normalized proba-
bility density function and the softmax function serves that
purpose to normalize H. However, the softmax is also
dense in that it assigns nonzero values to all the pixels in
H̃k, even for the zero elements of H2. The non-zero as-
signments to the (close-to) zero-valued pixels of H in turn
contributes to the expected value and biases the estimated
coordinate Jr towards the center of the heatmap. The fur-
ther away the joint coordinate is from the center, the greater
the bias (see Fig. 1).

The effects of such a bias can be alleviated somewhat by
choosing an appropriate value for β in the softmax. The
smaller β is, the more the function distributes the probabil-
ity density and the greater the impact of the zero-pixels in
H. The larger β is, the more the function concentrates the
density around the largest values of H. In the limit when β
goes to infinity, the softmax converges to the argmax func-
tion [5]. In turn, it also becomes non-differentiable. In fact,
as β gets progressively larger, the gradients of pixels which
are further away from the center become smaller and grad-
ually approach zero. It is therefore necessary to trade off
between the extent of the bias versus having sufficient gra-
dients for learning.

Note that the decoder can compensate for this bias by
learning to estimate an H with densities shifted even fur-
ther away from the center. We posit that this adds an extra
learning challenge for the neural network, since it must now
account for the displacement of the joints from the heatmap
center. When looking at the distribution of joint locations,
e.g. of the MS COCO training dataset (see Fig. 2), we can
see that this adds a significant source of additional variation
of bias values. This is likely further exacerbated by the data
augmentation, which is standard practice for training.

4.2. Bias Compensation

As shown in Fig. 1, the only case in which there is no bias
is when the probability density is centered on the heatmap.
A naı̈ve way to to compensate for the bias to directly shift
the coordinate system and center the heatmap at the ground

2Consider the numerator of Eq. (3), exp(β · 0) = 1
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Figure 2. Distribution of joint locations on training set of COCO.
The distance is normalized by the maximum joint distance to the
center. For β = 10 (see Eq. 3), normalized joint distances of
{0.2, 0, 5, 0.8} from the center result in biases of {0.2, 0.7, 1.2}
px respectively of a 64×48 heatmap. Using a smaller β makes this
bias even more extreme.

truth coordinate Jgt; then, there would be no bias when tak-
ing the expectation of H̃. However, this requires knowing
the location of Jgt, which is feasible for training, but not
suitable at inference time.

As such, we propose a bias compensation scheme that re-
moves the contributions of the additional support encoded
in H, i.e. extra non-zero assignments. Suppose we wish
to recover the true coordinate location (xo, yo); assume
for now that (xo, yo) lies in the upper left quadrant of the
heatmap. We can partition the image plane into four rectan-
gular sections with splits at 2xo and 2yo, with Ω1 as the sec-
tion that contains (xo, yo) and Ω2, Ω3 and Ω4 denoting the
other regions in clockwise fashion (see the top-left image in
Fig. 1). Based on this partition, we can split the expectation
defined in Eq. (4) as follows

Jr =
∑
p∈Ω1

H̃(p) · p +
∑

p∈Ω2,Ω3,Ω4

H̃(p) · p. (6)

We assume that the support for (xo, yo) is well localized,
i.e. fully contained within Ω1 in H and that sections Ω2 to
Ω4 contain only zero or near-zero elements. As such, only
the first term of Eq. (6) should contribute to the Jro. It
follows then that the joint location can be estimated as a
scaled version of the first term of Eq. (6)

Jro =
1

w1

∑
p∈Ω1

H̃(p) · p, where w1=
∑
p∈Ω1

H̃(p), (7)

where we define Jro as the estimate of (xo, yo), i.e. a bias-
compensated joint location. Note that the above formulation

is implicit since Ω1 depends on (xo, yo). With algebraic
rearrangement, we can formulate Jro as a function of Jr:

Jro = C
(C−wh)J

r −

[
hw2

2(C−wh)
h2w

2(C−wh)

]
. (8)

C above is the normalizing constant used in the softmax,
i.e. the denominator of Eq. (3), and is a function of β:

C(β) =
∑
p∈Ω

exp(β ·H(p)). (9)

From Eq. (8) and Eq. (9), we see that the impact of the
bias is negligible for a large C, since the scaling factor ap-
proaches one while the offset will approach zero. This is
exactly the case when a large β is used, i.e. the softmax ap-
proaches the argmax function. However, when C is small,
then the bias becomes more significant; so if β is not suffi-
ciently large, the network must learn very large and concen-
trated values of H(p) to compensate to estimate the correct
Jr. We posit that it is exactly this interplay which makes
it very challenging for the network to learn and hence the
slow convergence rates of the integral regression method
(see Sec. 5.4). We refer the reader to the Supplementary for
the full derivation as well as other cases when xo, yo are in
the other quadrants.

From Eq. (8), we can recover the bias-compensated joint
location Jro. Note that this formulation does not require
knowledge of the ground truth. During inference, we can
directly compensate for the biased location Jr based on the
expectation in Eq. (4). During training, we can do the same,
and simply update the L1 loss of Eq. (5) with Jro, i.e.

Lre = ∥Jro − Jgt∥. (10)

In our approach, we have opted to retain the softmax and
instead compensate for the expectation. Naive activation
functions in place of the softmax have been explored for hu-
man pose estimation, but have been shown to be less effec-
tive [25]. A less naive option is the sparsemax [22], which
has been proposed as a sparse alternative to the softmax. It
projects the pre-activation value to a simplex so only a few
non-zero values are preserved. However, given the large
size of the flattened heatmap, only assigning a number of
pixels with non-zero values makes it hard to train.

4.3. Joint Framework

We now propose a new method for pose estimation that
incorporates our bias compensation. We wish to have the
advantage of end-to-end training from integral pose regres-
sion, but still retain the fast training speeds of heatmap-
based detection. It is believed that using the Gaussian
heatmap as a label in detection methods can provide dense
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supervision and spatial information which makes the train-
ing effective and efficient. However, as studied in [25], the
pixel-wise L2 loss enforces the heatmap to be exactly same
as the ground truth. This is a metric that we do not really
care about because the loss cannot guarantee that the accu-
racy of joint predictions will always improve.

We therefore use the pixel-wise supervision in the
detection-based methods (Eq. (2)) as an additional loss:

L = Lre + λ(t) · Lde, (11)

and reduce λ over time. This has the effect of minimizing
the impact Lde in subsequent epochs and allows the net-
work to learn the arbitrary shape of the implicit heatmap.
Out of simplicity, we use a simple step function for λ(t),
i.e. λ(t) = 1 for t < To and λ(t) = 0 for t >= To. The
key purpose of this joint framework is to speed up training
while maintaining the freedom of the implicit heatmap to
allow the network to learn any distribution (rather than a
Gaussian) that can lead to the correct coordinate location.

5. Experiments
5.1. Datasets and Implementation Details

Datasets and evaluation metrics. We evaluate our meth-
ods on two human pose datasets, MS COCO [19], MPII [1]
and one hand pose dataset, RHD [41].

The COCO dataset has 250k person instances with 17
annotated keypoints. We evaluate with the standard metric,
Object Keypoint Similarity (OKS). OKS utilizes the area of
person instance to normalize the absolute error between the
predicted location and ground truth location. We use the
main competition metric, the mean average precision(AP)
over 10 OKS thresholds to evaluate the performance. We
also report the value before normalization, the squared Eu-
clidean distance between the prediction and ground truth,
which we denote as End Point Error (EPE).

The MPII dataset contains 49k person instances with
16 annotated keypoints. We use the standard train/val split
of [33] and evaluate performance with Percentage of Cor-
rect Keypoints (PCK) and EPE.

RHD is a synthesized hand dataset with 41k training and
2.7k testing images from 20 animated characters. For each
RGB image, 21 hand keypoint annotations are provided.
We follow [14] and evaluate with AUC and EPE.

Implementation details. We implement our experiments
in Pytorch [26] and use Adam [15] for the model training.
We use SBL [36] and HRNet [28] with different backbones,
e.g., SBL-ResNet50 and HRNet-W32, as our baselines and
follow the same learning configurations for detection-based,
regression-based, and our method. We rerun the experi-
ments, i.e., detection-based methods, to report the results
for a fair comparison. We set β = 10 as default value of

integral regression method. For our combined method, we
use a To of 120 epochs for SBL and 190 epochs for HRNet.

5.2. Performance Comparison

5.2.1 Architecture design

To directly compare detection- and regression-based meth-
ods, other influencing factors affecting the final perfor-
mance should be excluded. Generally, the framework of
both methods are the same, in that an encoding step extracts
features from input images while a decoding step converts
the features back into an explicit or implicit heatmap rep-
resentation. The difference lies only in the loss. The de-
tection methods use an MSE Loss to supervise the explicit
heatmap, while regression methods directly supervise the
predicted joint location generated by taking the expectation
of the implicit heatmap representation.

Former research [36, 28, 25] has shown that powerful en-
coders which are better in extracting features boost predic-
tion accuracy. Meanwhile, it’s also straightforward to un-
derstand that different decoders, i.e., different numbers and
parameters of upsampling layers, will also affect the results.
In addition, representation resolution, including input size
and heatmap size, is another key variable. Therefore, we
adopt the same encoding-decoding architecture and repre-
sentation size to create a fair comparison between detection-
and regression-based methods.

When implementing the comparison, we apply the off-
the-shelf models, i.e. SBL [36] or HRNet [28], as the shared
encoding-decoding architecture to generate the heatmap
H all K joints. For detection, we train the model by
Eq. (2) and make final predictions by the argmax in Eq. (1).
For regression, we apply the state-of-the-art regression
method [29], i.e. integral regression to obtain the joint lo-
cation by Eq. (4) and train the network by Eq. (5).

5.2.2 Influencing Factors

When the capacity of both methods, including extracting
and representing features, is the same, the difference be-
tween the two only lies in the way of converting heatmap to
coordinate and supervisory signals. Therefore, the results
that the two methods present during the training and infer-
ence process can be compared to study the differences.

Specifically, in the training, we compare the two meth-
ods by evaluating the rising speed on the validation or test
set. In the inference, we compare the generalization ability
on different kinds of samples on the validation or test set.
We divide the benchmarks according to the different layouts
of people portrayed in the images. Similar with [27], three
factors are taken into consideration: the amount of present
joints or keypoints (11-17, 6-10, 1-5), the percentage of oc-
clusion (<10%, 10-50%, >50%), and the largest dimension
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Figure 3. We separate the COCO dataset based on input (bounding
box) size, number of joints present in the scene, and percentage
of occlusion (of the present joints). The splits from left to right
roughly correspond to the difficulty of the pose estimation.
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Figure 4. Although the detection and regression methods even-
tually converge to similar values, the detection-based method is
more efficient in training, especially in the initial epochs.

of the bounding box input (> 128px, 96-128px, 64-96px,
32-64px). Examples of the divisions for these three factors
are shown in Fig. 3.

5.2.3 Comparison Results

SBL-ResNet50 and HRNet-W32 are used as baselines to
evaluate the training efficiency and generalization errors on
COCO validation set.
Training comparison. Training efficiency can be evaluated
by the ascending speed of AP as iteration increases. From
Fig. 4, we can observe that, in the end, the detection and re-
gression method reaches a similar accuracy. However, after
40 epochs, the detection method has already had a compa-
rable result while the regression method needs 90 epochs to

# Joints
Input Size [11, 17] [6, 10] [0, 5] all
[1282, ] 8.89 / 9.16 13.96 / 13.82 33.0 / 33.8 13.4 / 13.6
[962, 1282] 6.35 / 6.59 10.9 / 11.0 21.1 / 17.2 7.26 / 7.18
[642, 962] 4.41 / 4.57 9.12 / 9.05 16.0 / 14.8 7.26 / 7.18
[322, 642] 2.97 / 3.01 4.32 / 4.51 9.23 / 8.1 4.46 / 4.35
%Occlusion [0, 5] [6, 10] [11, 17] all
> 50% 16.6 / 15.2 16.0 / 14.8 32.0 / 28.1 19.0 / 17.4
[10%, 50%] 7.02 / 7.36 6.88 / 7.00 23.7 / 22.8 8.36 / 8.53
< 10% 4.91 / 5.22 6.78 / 7.18 27.1 / 24.3 5.59 / 5.80
all 6.91 / 6.96 8.04 / 8.12 28.0 / 25.4 8.21 / 8.28

Table 1. Comparisons of EPE on the COCO validation set with
a common SBL backbone, with separation according to number
of present joints, input size, and percentage of occlusions. Pre-
sentation format is detection / regression. Regression outperforms
detection with fewer joints present, smaller input sizes and more
occlusion, though this phenomenon is obscured once all the factors
are averaged due to the dataset distribution.

Figure 5. Comparisons of EPE of our method (S) with detec-
tion (D) and regression (R) on the divided sub benchmarks. Our
method performs best i.e. has the lowest EPE in 7 of the 9 condi-
tions.

achieve the similar performance.
We posit that one of the reasons is that in detection-based

methods, dense supervision of full spatial map is applied;
whereas in regression, the model only has supervision of
only the expected coordinate location. Therefore, the latent
feature map of regression methods can be arbitrary, as long
as the final value corresponds to the correct joint location.
Though this arbitrariness can be interpreted as beneficial,
it does increase the difficulty in the training process. We
demonstrate this by ablation study in Sec. 5.4.
Inference comparison. In Table 1, we report EPE on the
divided benchmarks w.r.t. the amount of present keypoints,
the size of input person instance, and the percentage of oc-
clusion. If we only focus on the influence that different sizes
have on the performance, the last column in the table shows
that the detection performs better in large inputs and few
occlusion cases, which can be considered easy, and regres-
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Method Type Backbone Input size AP(%)↑ EPE(px)↓
Mask-RCNN [12] D ResNet-50-FPN - 62.9 -
Hourglass [24] D 8-stage Hourglass 256 × 192 66.9 -
CPN [8] D ResNet-50 256 × 192 71.6 -
IPR [29] R ResNet-101 256 × 256 67.2 9.98
+ Ours R ResNet-101 256 × 256 69.1(+1.9) 9.42(-0.56)
SBL [36] D ResNet-50 256 × 192 70.5 9.52
+ IPR R ResNet-50 256 × 192 68.2 9.63
+ Ours R ResNet-50 256 × 192 71.2(+0.7) 8.93(-0.70)
SBL [36] D ResNet-152 384 × 288 73.8 8.21
+ IPR R ResNet-152 384 × 288 71.3 8.28
+ Ours R ResNet-152 384 × 288 74.4(+0.6) 7.82(-0.39)
HRNet [28] D HRNet-W32 256 × 192 75.3 7.85
+ IPR R HRNet-W32 256 × 192 72.9 8.03
+ Ours R HRNet-W32 256 × 192 75.8(+0.5) 7.47(-0.38)

Table 2. Evaluation of our method competing with state-of-the-art methods on COCO validation set. ’D’ and ’R’ stands for detection- and
regression-based methods respectively. Our proposed method outperforms both detection- and regression-based baselines.

Method Type Backbone Input size # Params GFLOPS AP (%)↑ AR (%)↑
Mask-RCNN [12] D ResNet-50-FPN - - - 63.1 66.5
CPN [8] D ResNet-Inception 384 × 288 - - 72.1 78.5
RMPE [10] D PyraNet 320 × 256 28.1M 26.7 72.3 -
SBL [36] D ResNet-152 384 × 288 68.6M 35.6 73.7 79.0
HRNet [28] D HRNet-W48 384 × 288 63.6M 32.9 75.5 80.5
MSPN [17] D 4-stg MSPN 384 × 288 - - 76.1 81.6
DARK [40] D HRNet-W48 384 × 288 63.6M 32.9 76.2 81.1
UDP [13] D HRNet-W48 384 × 288 63.8M 33.0 76.5 81.6
DirectPose [31] R ResNet-101 - - - 63.3 -
IPR [29] R ResNet-101 256 × 256 45.0M 11.0 67.8 -
Ours R HRNet-W48 384 × 288 63.6M 32.9 76.1 81.0

Table 3. Evaluation of our method competing with state-of-the-art methods on COCO test-dev set. ’D’ and ’R’ stands for detection- and
regression-based methods respectively. Our proposed method is competitive against state-of-the-art detection-based methods and surpasses
the performance of regression-based methods by a large margin.

sion performs better in tiny poses and many occlusion cases,
which are harder; In addition, when the number of present
keypoints changes, the performance of the two methods dif-
fers. Specifically, for easy cases, detection method performs
better; for medium cases, regression method becomes com-
peting; for hard cases, regression method even exceeds. We
report more experiments in the supplementary material.

When adding our components, we extract both benefits
of the detection- and regression-based methods. Experi-
mentally, from Fig. 5, we can see that our method outper-
forms the regression method in hard cases and the detection
method in easy cases.

5.3. Comparison with State-of-the-Art

Evaluation on MS COCO. We compared our method with
top-performers of 2D human pose estimation models in
Table 2 and Table 3 on COCO val and test-dev set. We
can see that our method is competitive against state-of-the-
art detection-based method and surpass the performance of
regression-based methods by a large margin.

Evaluation on MPII. In Table 4, we also compare our
method with state-of-the-art models on the MPII validation
set with former regression-based methods, including [32],
DSNT [25] IPR [29], and detection-based methods, includ-
ing SimpleBaseLine [36] and HRNet [28].
Evaluation on RHD. We compare our method with a
regression-based method, 2.5D regression [14] and two
detection-based methods [41, 3] in Table 5. We can see that
our method surpasses the baseline significantly with bias
compensated and augmentation loss added.

We report the results of different methods in Table 6. The
results show that the detection loss not only speeds up the
training, but also enhances the performance. The EPE on
hard samples demonstrates the superiority of our method
over detection based one.

5.4. Ablation Study

Our method consists of two novel components: bias
compensation and a regularization term. In this subsection,
we do ablation studies to demonstrate the influence of each
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Method Type PCKh@0.5(%)↑ EPE(px)↓
Tompson et al. [32] R 80.2 -
DSNT [25] R 85.7 -
IPR [29] R 86.5 -
+ Ours R 87.2(+0.7) -
SBL-ResNet50 [36] D 87.6 20.9
+ IPR R 86.2 21.5
+ Ours R 87.9(+0.3) 20.3(-0.6)
SBL-ResNet152 [36] D 89.6 18.3
+ IPR R 87.9 19.5
+ Ours R 89.9(+0.3) 17.8(-0.5)
HRNet-W32 [28] D 90.4 16.6
+ IPR R 88.7 18.2
+ Ours R 90.6(+0.2) 16.2(-0.4)

Table 4. Comparison on MPII validation set. Our method gains
significant improvement on the baselines.

Method Type AUC(%)↑ EPE(px/mm)↓
Z&B [41] D 72.0/67.5 9.14/30.4
Cai [3] D -/88.7 -/-
2.5D regression [14] R 84.4 / 93.0 4.76 / 14.3
+ Ours R 85.8 / 93.6 4.34 / 13.5

Table 5. Comparison on the RHD test set of 2D/3D AUC and EPE
for hand pose estimation. Our proposed method outperforms the
baseline and two detection-based methods.

Method β AP EPE EPEH

SBL [36] - 70.5 9.52 32.1
+IPR 10 68.2 9.63 28.7
+Lde, λ=1 all epochs 10 70.2 9.38 28.0
+Lde 10 70.4 9.31 27.8
+de-bias 10 71.0 9.15 27.1
+Lde+de-bias 1 70.7 9.02 26.1
+Lde+de-bias 20 70.3 9.32 30.7

+Lde+de-bias 10 71.2 8.93 25.6

Table 6. Evaluation of each component of our method on
COCO validation set. EPEH denotes EPE on ‘hard’ samples,
i.e. those with few number of joints present ([0,5]) and heavy
occlusions(>50%). For Lde, λ(t) = 1 for To = 120 unless oth-
erwise indicated. Our proposed components improve the perfor-
mance with respect to the baseline, especially on these hard sam-
ples. A combination with β=10 is optimal.

component. We use SBL-ResNet 50 as our backbone to per-
form the ablation experiments and the input size is 256 ×
192. The results are evaluated on the COCO validation set.
Effectiveness of components. We evaluate the components
by comparing the convergence speed of different methods
and the inference results. Baselines are the detection-based
and regression-based (+IPR) methods and we compare them
with the models combined with detection loss or bias com-
pensation. In addition, we also include the experiment when
the regularization term is stronger and detection loss is ap-
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Figure 6. The influence of each component on the convergence
speed on the COCO validation set. Our proposed components will
accelerate the training speed of regression method, approaching to
that of the detection method.

plied for all epochs. We illustrate the curves of methods in
Fig. 6, which stand for the AP on the validation set after
training specific epochs. We can see that each component
will speed up the training. Meanwhile, in Table 6, each
component contributes to the higher performance.
Selection of hyperparamter β. As illustrated above, a
small β leads to large bias and a large β makes back prop-
agation difficult. We evaluate the different selection of the
value of β in Table 6 and choose β = 10 as our optimal
value.

6. Conclusion

Our main contribution is to reveal the bias of integral
pose regression method. We also, for the first time, sys-
tematically make a fair comparison between detection and
regression-based methods. Inspired by the two, we propose
to integrate the two methods to extract both benefits and
compensate the bias in the integral regression. Experimen-
tal results on COCO, MPII, and RHD show that our method,
which can be served as a plug-in component, improves the
baseline by a large margin and proves to be effective in both
2D human pose estimation and hand pose estimation.
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