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Abstract

Deep neural networks (DNN) have shown superior per-
formance in a variety of tasks. As they rapidly evolve,
their escalating computation and memory demands make it
challenging to deploy them on resource-constrained edge
devices. Though extensive efficient accelerator designs,
from traditional electronics to emerging photonics, have
been successfully demonstrated, they are still bottlenecked
by expensive memory accesses due to tremendous gaps
between the bandwidth/power/latency of electrical mem-
ory and computing cores. Previous solutions fail to fully-
leverage the ultra-fast computational speed of emerging
DNN accelerators to break through the critical memory
bound. In this work, we propose a general and unified
framework to trade expensive memory transactions with
ultra-fast on-chip computations, directly translating to per-
formance improvement. We are the first to jointly explore
the intrinsic correlations and bit-level redundancy within
DNN kernels and propose a multi-level in situ generation
mechanism with mixed-precision bases to achieve on-the-fly
recovery of high-resolution parameters with minimum hard-
ware overhead. Extensive experiments demonstrate that our
proposed joint method can boost the memory efficiency by
10-20× with comparable accuracy over four state-of-the-
art designs, when benchmarked on ResNet-18/DenseNet-
121/MobileNetV2/V3 with various tasks.

1. Introduction

Deep neural networks (DNNs) have demonstrated
record-breaking performance in a variety of intelligent
tasks. Modern DNN models and datasets keep growing
rapidly, which demonstrate critical conflicts with resource-
constrained applications. Stringent constraints in efficiency,
latency, and power in practical applications raise a surging
need to develop more efficient computing solutions.

Extensive efficient neural network (NN) accelerators
have been designed to support such domain-specific com-

putations. In electrical domain, hardware-efficient digi-
tal platforms have been demonstrated, e.g., Eyeriss [5, 6],
EIE [19], TPU [26]. Due to the high efficiency of ana-
log computing, electrical analog accelerators gain much
momentum recently, e.g., ReRAM-crossbar-based matrix
multiplication engines [41, 45, 49]. As a promising sub-
stitute for electrical designs to continue Moore’s law, op-
tical computing provides order-of-magnitude higher effi-
ciency than electrical counterparts. In optical comput-
ing domain, photonic accelerators are proposed to pro-
vide considerably more efficient solutions to AI accelera-
tion [12–16, 33, 35, 37, 42–44, 47, 51, 58, 61].

However, memory performance turns out to be the criti-
cal bottleneck since it fails to match the computing capabil-
ity of emerging cores. Especially for emerging accelerators,
e.g., ReRAM-based and photonics-based engines, the enor-
mous latency, power, and bandwidth gap between memory
and computing engines severely prohibits the full utilization
of their advanced computing power.

Previous efforts towards memory-efficient accelerator
designs focus on weight quantization [20, 38, 60], pruning
with sparsity exploration [9, 20, 21, 30, 50, 55], structured
weight matrices [11,14,31,49], slim architectures [2,7,25],
better hardware scheduling [34, 56], low-rank approxima-
tion [10, 30, 46, 53, 54, 57], etc. However, limited research
has been done to thoroughly investigate the intrinsic redun-
dancy in CNN kernels. It is in high demand to provide a
unique memory optimization strategy that fully exploits the
potentials of advanced ultra-fast AI acceleration platforms.

Therefore, in this work, we propose a unified frame-
work that generalizes prior low-rank solutions for memory-
efficient NN designs via a multi-level in situ weight gener-
ation technique with mixed-precision quantization. We are
the first to jointly explore multi-level redundancy in chan-
nel, kernel, and bitwidth based on a strong intuition on the
intrinsic correlations within convolutions. A photonic case
study of in situ weight generator is presented to show how
our method can help unleash the full power of emerging
neuromorphic computing systems. The main contributions
of this work are as follows,
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• We explore the multi-level intrinsic correlation in
CNNs and propose a unified framework that gener-
alizes prior low-rank-based convolution designs for
higher memory efficiency.

• We fully-leverage the ultra-fast execution speed of
emerging accelerators and propose a hardware-aware
multi-level in situ generation to trade expensive mem-
ory access for much cheaper computations.

• We integrate a precision-preserving mixed-precision
strategy to leverage the bit-level redundancy in multi-
level bases for a larger design space exploration.

• Experiments and a photonic case study show that our
proposed multi-level in situ generation and mixed-
precision techniques can save ∼97% weight load la-
tency and significantly reduce memory cost by 10-20×
with competitive accuracy compared to prior methods,
even on compact networks and complex tasks.

2. Preliminary
In this section, we give a brief introduction to the back-

ground knowledge and our motivation.

2.1. Memory bottleneck in NN accelerator designs

Previous works have proposed extensive NN accelera-
tor architectures to enable efficient DNN inference. Re-
cent emerging non-Von Neumann accelerators mainly fo-
cus on the innovation of the core matrix multiplication en-
gine. However, the computation speed and efficiency of
the cores are no longer the bottlenecks of the overall sys-
tem. To prove this claim, Figure 1d shows that multiple
cascaded small convolutional layers have less floating-point
operations (FLOPs) than a single wide convolutional layer
but have higher execution time due to lower parallelism and
more memory transactions. Hence, the expensive memory
transaction and interconnect delay turn out to the pain point.

Most accelerators still rely on on-chip SRAMs and off-
chip DRAMs to store/access weights, bringing serious chal-
lenges regarding the significant data movement cost. First,
the mismatch between memory and computing cores in
terms of latency and bandwidth heavily limits the potential
performance of modern accelerators, especially for ultra-
fast optical accelerators. Typical DRAM and SRAM has an
access time of tens of nanoseconds, and the fastest SRAM
runs at only 5 GHz. However, for example, the computation
is executed at the speed of light (picosecond-level delay) in
optical NNs with massive parallelism and potentially over
100 GHz photo-detection rate [1, 43].

Furthermore, data movement becomes the power bottle-
neck. Figure 1a shows the power breakdown on a recent
photonic neural chip Mars [37, 48]. The SRAM access
dominates the total power consumption. The same issue
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Figure 1: Power breakdown of a silicon photonic accelerator
Mars [37, 48] (a) and an electrical accelerator Eyeriss [5] (b).
The data movement (red) takes the most power for both. (c)
Roofline model of emerging accelerators. Memory-bounded de-
signs (red point) need to be improved to a better design (green
point) (d) Normalized runtime and number of floating-point oper-
ations (FLOPs) among different convolution (Conv) types. C5 is
5×5 Conv, C5G is 5×5 Conv with low-rank decomposition, 2C3
is two cascade 3×3 Conv, and 4C1 is four cascade 1×3 Conv.

also exists in state-of-the-art (SOTA) electrical digital ac-
celerators like famous Eyeriss [5,6] shown in Figure 1b.

Limited prior works have explicitly optimized memory
cost for emerging accelerators by leveraging their ultra-fast
computing speed. Hence, a specialized memory-efficient
NN design methodology to minimize data movement cost
is exciting and essential to explore.

2.2. Efficiency and accuracy trade-off

Extensive works have been done to explore the NN de-
sign space for higher efficiency with less accuracy degra-
dation. Efficient neural architectures are designed with
lightweight structures, e.g., depthwise separable convolu-
tion [7], blueprint convolution [18], channel shuffling [25],
etc. Besides, network compression techniques are often uti-
lized to explore the sparsity and redundancy of DNNs and
trim the model size by pruning and quantization [20, 21].
Furthermore, low-rank decomposition [30, 57] is a widely
adopted technique to reduce the number of parameters by
approximating a weight matrix by two smaller matrices.
Also, structured neural networks [14] [15] [31] have been
proposed to reduce memory cost with block-circulant ma-
trix representation and Fourier-transform-based algorithm.

The above generic methods are applicable for emerging
ultra-fast neuromorphic engines but do not fully leverage
their powerful computing capability. It will be interesting
and promising to explore the intrinsic correlation in DNN
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Figure 2: Convolutional kernel correlations in ImageNet-
pretrained models are shown by the proportion of the sum of the
top 30% singular values (

∑
σ30%). (a) Intra-kernel correlations

averaged on different kernels. Error bars show the ±σ variance.
We skip 1×1 Conv. (b) Cross-kernel correlations, where green
dots are 1×1 Conv.

weights and enable in situ weight generation by the comput-
ing core itself to minimize data movement from memory.

3. Proposed NN design methodology

Motivated by prior work [7, 18, 30, 57], we focus on
widely deployed convolutional neural networks (CNNs) to
thoroughly explore their intrinsic multi-level redundancy
for better efficiency. We consider a 2-dimensional (2-D)
convolutional kernel W ∈ RCo×Ci×k×k with Co kernels,
Ci input channels, and kernel sizes k. Interestingly we
observe intrinsic multi-level correlation within the kernel
that we can leverage for memory compression. This mem-
ory compression directly translates to latency/power im-
provement since convolutions have frequent weight access,
whose memory cost is even higher than feature maps [4].

3.1. Multi-level weight generation

3.1.1 Intra-kernel correlation

We first explore the low-rank property among different
channels of a kernel. The i-th kernel Wi ∈ RCi×k2

can be treated as a matrix with Ci row vectors with
length k2. From its singular values Σ = SVD(Wi) =
diag(σ0, σ1, · · · ), we observe relatively strong correla-
tions between those column vectors since the first several
major components σ30% concentrates the majority of the
total values. Figure 2a shows the intra-kernel low-rank
property of modern CNNs. Different layers tend to have
different intra-kernel correlations, where shallower layers
show higher correlations. This provides us an opportunity
to generate the i-th kernel Wi ∈ RCi×k2

using a low-
dimensional channel basis W b

i ∈ RBi×k2

with a cardinal-
ity of Bi < min(Ci, k

2) and a corresponding coefficient
matrix Ui ∈ RCi×Bi . Figure 3 visualizes the procedure for
convolutions with a general matrix multiplication (GEMM)
interpretation using the im2col algorithm [3]. This intra-

kernel generation is formally expressed as.

Wi = UiW
b
i , ∀i ∈ [Co] (1)

Therefore, we reduce the parameter of the i-th kernel
from |Wi| = Cik

2 to |W b
i | + |Ui| = Bik

2 + CiBi. Note
that for 1×1 convolution, we skip this intra-kernel gener-
ation and directly use all Ci channels given the constraint
Bi < min(Ci, 1

2).

3.1.2 Cross-kernel correlation

Furthermore, we explore the second-level correlation cross
Co kernels. We view the entire convolutional kernel W ∈
RCo×(Cik

2) as a matrix with Co row vectors with length
of Cik

2. Figure 2b quantifies the correlation among dif-
ferent kernels. Though it is slightly weaker than the intra-
kernel correlation, it still brings another opportunity to fur-
ther decompose the weight along another dimension. In-
stead of generating Co kernels independently, we only gen-
erate a subset of kernels as our kernel basis Wc = {Wi ∈
RCik

2

,∀i ∈ [Bc], Bc < min(Co, Cik
2)} using Eq. (1).

This generated kernel basis Wc is used to span the en-
tire kernel together with another coefficient matrix V ∈
RCo×Bc as follows,

W = V Wc = V {UiW
b
i }i∈[Bc], (2)

If Bc ≥ min(Co, Cik
2), we only consider intra-kernel cor-

relation by setting Bc = Co without performing Equa-
tion (2). After the proposed two-level generation, the pa-
rameter compression ratio is,

r =
|V |+

∑
i∈[Bc]

(|Ui|+ |W b
i |)

|W | =

(
Co +Bik

2 + CiBi

)
Bc

CoCik2
.

(3)
The extra computation for in situ kernel generation
O(2BcCiBik

2 + 2CoBcCik
2) is marginal compared with

the convolution itself O(2CoCik
2HW ), where H and W

are output feature map sizes. Thus the runtime overhead is
negligible, consistent with what we showed before in Fig-
ure 1d. In this way, we successfully save expensive memory
transactions with marginal computation overhead, which
fully leverages the emerging accelerators’ ultra-fast com-
puting capability to mitigate the critical memory bound.

3.2. Augmented mixed-precision generation

Besides the weight correlation that explores parameter-
level reduction, we further explore the bit-level redundancy
with mixed-precision bases. Modern NN accelerator de-
signs, especially emerging analog engines, prefer to use
low-bit weights to reduce memory access latency and sim-
plify the control circuitry complexity [17, 38, 43, 59, 60]. In
this section, we utilize the precision preserving feature of
analog engines and propose an augmented mixed-precision
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Figure 3: Intra-kernel and cross-kernel generation.

generation strategy to recover high-precision weights with
low-bitwidth basis and coefficients.

We assume the bitwidths for W b
i , Ui, and V are qb, qu,

and qv , respectively. The first-level intra-kernel generation
is capable of generating Wc ∈ RBc×(Cik

2) with at most
(2qb−1)(2qu−1)Bi+1 possible distinct values, which cor-
responds to a bitwidth upper bound sup(qc) = (qb + qu +
log2 Bi). Unlike digital cores, this precision can be main-
tained by the direct cascade of two analog tensor units with-
out resolution loss caused by the analog-to-digital conver-
sion. Then, the cross-kernel generator will output W with
an equivalent bitwidth sup(q) = (qv + sup(qc) + log2 Bo)
that can also be preserved in the matrix multiplication unit.
The advantages are clear that our method enables the weight
generator to be completely in the analog domain to recover
a high-precision, i.e., q > qb, qu, qv , weight matrix using
low-precision basis and coefficient matrices. The memory
compression ratio rm is thus calculated as,

rm =

∑
i∈[Bc]

(
qb|W b

i |+ qu|Ui|
)
+ qv|V |

qw|W |

=
BcBik

2qb +BcCiBiqu + CoBcqv
CoCik2qw

.

(4)

Hence, given a target qw, we can explore fine-grained
mixed-precision settings of qb, qu, and qv to further cut
down the memory cost in the bit-level, which is an orthog-
onal technique to the above parameter-level counterparts.

3.3. Training with in situ weight generation

Our main target is to reduce memory cost with accept-
able accuracy loss. Now we introduce how to optimize
the designed CNN with in situ generators such that the
desired accuracy can be achieved. We adopt a two-stage
quantization-aware knowledge distillation to train our pro-
posed NN, described in Alg. 1. Firstly, we obtain a pre-
trained full-precision model without in situ generation as
our teacher model M̂ whose weight matrix is denoted as
Ŵ . Our low-rank mixed-precision model is the corre-
sponding student model M whose weight matrix W is gen-
erated by quantized W b

i , Ui, and V . A differentiable quan-
tizer [60] is used in our quantization-aware training. For

Algorithm 1 Training with in situ generation

Input: A pretrained teacher M̂ with weights Ŵ , a student
model M with W b

i , Ui, and V , mixed-precision bitwidths
qb, qu, and qv , training datasetDtrn, total iterations T , initial
step size η0;

Output: Converged student model;
1: Step 1: ℓ2 Initialization from the teacher model
2: W b

i ,Ui,V ← argmin ∥Ŵ − V {UiW
b
i }i∈[Bc]∥

2
2

3: Step 2: Quantization-aware knowledge distillation
4: for t← 0 · · ·T − 1 do
5: Randomly sample a mini-batch It from Dtrn

6: U t+1
i ← U t

i − ηt∇Ui(LKD + λLort), ∀i ∈ [Bc]
7: W b,t+1

i ←W b,t
i − ηt∇W b

i
(LKD + λLort), ∀i ∈ [Bc]

8: V t+1 ← V t − ηt∇Vi(LKD + λLort)
9: ηt+1 = Update(ηt) ▷ Step size decay

simplicity, we omit the quantization notation for quantized
W b

i , Ui, and V if mixed-precision quantization is used.
Then we let the student mimic the teacher using a two-stage
training algorithm. First, we solve the following problem to
project the teacher model onto the student parameter space
by minimizing their ℓ2 distance,

min ∥M̂(Ŵ )−M(W )∥22 ≈ ∥Ŵ −V {UiW
b
i }i∈[Bc]∥

2
2. (5)

Given the smoothness of M and M̂, the above ℓ2 distance
can be approximated by the first-order term of its Taylor ex-
pansion. This ℓ2 distance-based subspace projection is an
effective and efficient initialization method for the student
model. Then we try to find local optima in the low-rank
space starting from this projected solution point. Therefore,
in the second stage, we train the student model with knowl-
edge distillation [23] as,

min LKD = βT 2DKL(qT , pT ) + (1− β)H(q, pT=1),

s.t. pT =
exp(M(W )

T
)∑

exp(M(W )
T

)
, qT =

exp(M̂(Ŵ )
T

)∑
exp(M̂(Ŵ )

T
)
,

W = V {UiW
b
i }i∈[Bc],

0 < Bi < min(Ci, k
2), Bi ∈ Z

0 < Bc < min(Co, Cik
2), Bi ∈ Z,

(6)

where M(W ) is the output logits, DKL is the Kull-
back–Leibler divergence between two probability distribu-
tions, H(·, ·) is the cross entropy, q is the ground truth
distribution, T and β are hyper-parameters controlling the
smoothness. This training method [23] can distill the repre-
sentability of the high-rank full-precision model to our low-
rank quantized student.

However, we notice that once the basis and coefficient
matrices have a deficient row-rank or column-rank, the
spanning subspace of the generated matrix will become too
small to approximate the original full-rank matrix. There-
fore, to maximize the rank of the spanned weight matrix, we
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Figure 4: Photonic implementation of in situ weight generator
and peripheral structures. Left bottom

set a row orthonormality constraint to the basis W b
i and a

column orthogonality constraint to the coefficient matrices.
This constraint can be relaxed using penalty methods as a
multi-level orthogonal regularization term Lort as follows,

Bc∑
i=1

(
∥W b

i (W
b
i )

T−I∥22+∥ŨT
i Ũ−I∥22

)
+∥Ṽ T Ṽ −I∥22,

Ũi =
(

u0

∥u0∥22
· · · u0

∥uBi−1∥22

)
, Ṽ =

(
v0

∥v0∥22
· · · v0

∥vBc−1∥22

)
.

(7)
Equation (7) is a generalization to a previous single-level
penalty [18, 54] and exerts a soft constraint to multi-level
correlations such that the spanning space will not collapse
to a low-dimensional subspace. Therefore, the overall loss
function is L = LKD + λLort.

3.4. Case study: silicon photonics implementation

We showcase a photonic implementation of the proposed
in situ weight generator in Figure 4. We focus on a SOTA
design based on micro-ring resonators [47]. Other acceler-
ators can also benefit from our method as long as the multi-
level correlation and precision preserving properties hold.

After loading the lightweight basis and coefficient ma-
trices from the local electrical buffer, two cascaded ultra-
fast optical weight banks will achieve the first-level and
second-level generation to obtain the final weights W .
Without intermediate storage, the analog weights are di-
rectly broadcast to all photonic tensor units via ultra-
low-power optical interconnects [1] to perform the pri-
mary operation, e.g., convolution. Compared with the
memory-agnostic design, which requires massive and fre-
quent weight loading, our proposed design can effectively

cut down memory footprint and access latency. Con-
sider a 16-bit (qw=16) kernel W ∈ R128×128×3×3 and
a setting (Bi, Bc, qb, qu, qv)=(2,40,4,4,4) implemented by
micro-rings of diameter R=20 µm, the extra latency intro-
duced by in situ generator is as follows,

τgen = (τDAC + τmod + τprop1 + τoe) + (τmod + τprop2 + τoe)

≈ τDAC + 2× (τmod + τoe) +
4BiR

c
+

4BcR

c

≈ 400 ps + 2× (50 ps + 10 ps) + 25.2 ps = 545.2 ps

≪ 2(1− rm)|W |
BWSRAM

≈ (1− 0.0272)× 288 KB
34 GB/s

= 7.9 µs,

(8)
where τDAC is the latency for 10 Gb/s digital-to-analog
converter, τmod is the device modulation delay, τprop is the
photonic weight bank propagation delay, τoe is the optical-
to-electrical conversion delay for layer cascade, c is the
light speed, and BWSRAM is the SRAM bandwidth [26].
The generator saves 7.9 µs latency (>97% of total weight
load latency) with merely 545.2 ps weight generation la-
tency overhead. Given ∼50% of total latency is consumed
by kernel loading [4], our weight generation leads to at least
2× overall speedup. More speedup can be expected if ac-
tivation quantization is further applied. In terms of power,
our method can achieve significant energy reduction since
we save (1 − rm) ≈ 97% weight loading and replace all
high-resolution DACs with (1 − r) ≈ 89% fewer low-bit
DACs [39] (power is exponential to bitwidth), which ac-
count for most power as shown in Figure 1a.

We further perform quantitative evaluation on a neuro-
morphic simulator MNSIM-2.0. On ResNet-18/ImageNet,
compared with 8-bit BSConv, our method reduces the over-
all latency from 56.46 ms to 41.11 ms (27.2%↓), reduces
the overall energy from 25.77 mJ to 3.69 mJ (85.7%↓), and
improves energy-delay-product by 9.6×.

4. Experiments
In this section, we first conduct ablation experiments on

the proposed techniques and compare our method with prior
efficient designs in memory cost and accuracy.

4.1. Dataset

Our ablation and comparison experiments are based
on FashionMNIST [52], CIFAR-10 [29], and CIFAR-
100. We also test on more tasks including SVHN [36],
TinyImagetNet-200 [8], StanfordDogs-120 [27] and
StandfordCars-196 [28] for fine-grained classification.

4.2. Neural network architectures

We first use a customized 3-layer CNN as a toy exam-
ple to do multi-level correlation exploration on FashionM-
NIST, whose settings are (C32K5S2-C32K5S1-C32K5S1-
AvgPool3-FC10), where C32K5S2 is a 5×5 convolution
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Figure 5: (a) Accuracy (color) and compression ratio (contour) of the customized 3-layer CNN on FashionMNIST [52] with various
Bi and Bc (92.14% Acc. for the original Conv). (b) Accuracy (blue contour) and compression ratio r (black contour) for ResNet-18 on
CIFAR-10. Red stars are representative settings of our method. Blue stars show previous designs.

with 32 kernels and stride 2, AvgPool3 is an average pool-
ing layer with output size 3×3, and FC10 means the output
linear layer. BatchNorm and ReLU activation are used be-
tween convolutional layers. Then, the rest ablation exper-
iments and comparison experiments are based on ResNet-
18 1 [22], DenseNet-121 2 [24], and MobileNetV2 [40],
which are adapted to CIFAR-10/100.

4.3. Training settings

We train all models for 200 epochs using RAdam [32]
optimizer with an initial learning rate of 0.002, an expo-
nential decay rate of 0.98 per epoch, and a weight decay
of 5e-4. On CIFAR-10/100, images are augmented by ran-
dom horizontal flips and random crops with 4 paddings. On
TinyImageNet, StanfordDogs-120, and StanfordCars-196,
additional color jitter is added. Mini-batch sizes are 64, 128,
64, and 64 for our 3-layer CNN, ResNet-18, DenseNet-121,
and MobileNetV2, respectively.

4.4. Ablation: multi-level correlation exploration

To explore the impact of the multi-level basis cardinal-
ity Bi and Bc on the parameter count and accuracy, we
first perform a grid search on FashionMNIST with our cus-
tomized 3-layer CNN, shown in Figure 5a. In terms of pa-
rameter compression ratio r, Bc shows a stronger impact
than Bi since r ∝ Bc while Bi only partially contributes
to r. For test accuracy, generally larger Bi and Bc lead to
higher accuracy. However, the accuracy is much more sen-
sitive to Bc than Bi, where we find a great opportunity to
minimize memory cost with a small accuracy drop. There-
fore, we conclude a heuristic design guidance that a small
Bi and medium Bc leads to sweet points. We further val-
idate it on CIFAR-10 with ResNet-18, whose contours are
shown in Figure 5b. In the design space exploration, we
also plot full-rank Conv, depthwise separable Conv [22],
and blueprint Conv [18] as our special cases. The blueprint

1https://github.com/kuangliu/pytorch-cifar
2https://github.com/gpleiss/efficient_densenet_

pytorch
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Figure 6: Exploration on different orthogonal regularization
weights with ResNet-18 on CIFAR-10 [29].

Conv can be generalized by our method once Bi=1 and
Bc=max. To some extent, separable Conv can also be gen-
eralized by setting Bi=max and Bc=1 while using differ-
ent V for different input channels. Note that sharing V
across channels is the key-point for our efficiency superi-
ority. With the concluded design guidance, we indeed can
quickly find design points that outperform the above prior
works in memory efficiency with comparable accuracy, e.g.,
(Bi=2, Bc=44). Note that we assume a global (Bi, Bc) set-
ting for all layers, while layer-specific cardinalities can be
an interesting future topic to push towards the Pareto front.

4.5. Ablation: multi-level orthogonality regulariza-
tion

Several representative (Bc,Bi) pairs are evaluated on
ResNet-18 CIFAR-10 with various regularization weights
λ. Figure 6 reveals that the model performance can be
consistently improved by 0.5%-1% with proper λ values
(0.01 ∼ 0.05). This shows that the proposed multi-level or-
thogonal penalty term can encourage the spanned kernel to
be as high-rank as possible with augmented representability.

4.6. Ablation: initialization and distillation

We further evaluate different combinations of the pro-
posed ℓ2 initialization and knowledge distillation with rep-
resentative (Bi, Bc) pairs in Table. 1. In our ℓ2 initial-
ization, we optimize Equation (5) using RAdam [32] for

5234



Param Ratio r=0.025 Param Ratio r=0.05
Bi Bc Bi Bc Bi Bc Bi Bc

3 17 8 8 2 44 4 28
Baseline 90.62% 88.02% 92.46% 91.98%
Ortho Reg 90.82% 88.52% 92.88% 92.32%
SVD Init 91.32% 88.10% 93.05% 92.80%
ℓ2 Init 91.32% 88.85% 93.18% 92.75%
ℓ2+Ortho 91.40% 88.65% 93.17% 92.93%
ℓ2+Ortho+KD 91.52% 88.96% 93.29% 93.19%

Table 1: Accuracy evaluation on orthogonal regularization (Or-
tho), initialization (ℓ2 and SVD), and knowledge distillation (KD).
ResNet-18 is evaluated on CIFAR-10.

Figure 7: Accuracy and memory compression ratio contour
of ResNet-18 on CIFAR-10 with mixed-precision quantization
(qb, qu, qv). Black dots show qb=qu=qv .

3k iterations with lr=2e-2. We first compare with a tradi-
tional truncated singular value decomposition (SVD) based
method [10, 54]. Both methods benefit accuracy while our
ℓ2 initialization demonstrates better results. With orthog-
onality penalty and knowledge distillation (β=0.9, T=3),
our method achieves the highest accuracy. In conclusion,
a good initialization and knowledge from the teacher are
critical to the accuracy of the student model.

4.7. Ablation: mixed-precision bases exploration

We perform a fine-grained investigation on the mixed-
precision bitwidth (qb, qu, qv) to justify the trade-off be-
tween accuracy and memory efficiency. For simplicity, we
assume the same bitwidth combination for all layers. Fig-
ure 7 plots the accuracy-memory curve with equal qb, qu,
and qv . Above 3-bit, we can maintain over 93% accuracy
(∼1% drop). Equal bit-precision for basis and coefficients
may not be the best combination. Thanks to our mixed-
precision bit-level generation mechanism, we allow larger
freedom to further explore different qb, qu, and qv settings

around a region of interest where the accuracy starts to drop.
One key observation is that mixed-precision settings indeed
can lead to higher accuracy with lower memory cost than
equal settings. We also observe that relatively-balanced set-
tings, e.g., (2,5,3), (4,5,6), generally outperform extremely-
imbalanced ones, e.g., (5,1,8), (2,4,8). Hence, we claim that
relatively-balanced mixed-precision bases are preferred to
achieve better memory efficiency and less accuracy loss.

4.8. Comparison with prior work

Our method can serve as a memory-efficient drop-in sub-
stitution for normal convolutions. To show the superior-
ity of our method over prior arts, we compare the memory
compression ratio and inference accuracy with the baseline
convolution (Conv) and four representative prior works,
depthwise separable Conv (DSConv) [22], single-level
low-rank decomposition (PENNI) [30], blueprint Conv
(BSConv) [18], and block-circulant Conv (CirCNN) [11]
on ResNet-18 and DenseNet-121 in Table. 2. For fair com-
parisons, all methods only apply to convolutional layers and
use the same training settings as mentioned. To clarify, the
selection of (Bi,Bc,qb,qu,qv) is not from exhaustive enu-
meration but simply based on the target compression ratio
and the heuristic design guidance we concluded. We only
evaluate the unpruned PENNI version since pruning is an
orthogonal technique to our method. We use a low-rank fac-
tor d=2 for PENNI [30] and a circulant block size k=4 for
CirCNN [11] for a comparable memory cost and accuracy.

Compared with the baseline convolution, our 32-bit ver-
sion achieves 5×-20× memory reduction. Compared with
our special cases DSConv and BSConv, our method with
a small Bi and a medium Bc shows 2×-4× memory re-
duction and comparable accuracy. Our multi-level genera-
tion outperforms the single-level low-rank decomposition
method PENNI with 3.8×-4.7× lower memory cost and
better accuracy. We outperform CirCNN in both metrics.
With mixed-precision generation, we boost the memory
efficiency by 25×-125× and 16×-19× over the baseline
Conv and the best prior work BSConv respectively, with
competitive accuracy. Though on DensetNet-121 CIFAR-
100, we have ∼0.7% accuracy drop, we have much lower
memory cost. A larger Bc and higher bitwidths can be se-
lected to recover the accuracy as a trade-off.

4.9. Boost compact models on harder tasks

To fully justify our superiority, we need to answer an-
other three important questions: 1) how does it perform on
architectures that are already compact; 2) is it compatible
with activation quantization that is more memory bottle-
necked; and 3) does the compressed low-rank kernel still
have enough representability to capture critical features in
high-resolution images. Similar to Figure 2, we also ob-
serve strong intra-kernel correlation for depth-wise Conv
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CIFAR-10 CIFAR-100
Param Ratio Mem Ratio Acc Param Ratio Mem Ratio Acc

ResNet-18 (Conv) [22] 1.0000 1.0000 94.10% 1.0000 1.0000 73.53%
ResNet-18 (DSConv) [7] 0.1287 0.1287 92.10% 0.1323 0.1323 68.65%
ResNet-18 (PENNI d=2) [30] 0.2352 0.2352 92.77% 0.2383 0.2383 70.14%
ResNet-18 (BSConv) [18] 0.1291 0.1291 93.10% 0.1327 0.1327 71.11%
ResNet-18 (CirCNN k=4) [11] 0.2510 0.2510 92.16% 0.2541 0.2541 67.93%
ResNet-18 (Ours-2-44-32-32-32) 0.0497 0.0497 93.29% 0.0536 0.0536 70.85%
ResNet-18 (Ours-2-44-8-8-8) 0.0497 0.0131 93.79% 0.0536 0.0140 71.05%
ResNet-18 (Ours-2-44-3-6-3) 0.0497 0.0080 93.72% 0.0536 0.0090 71.47%
DenseNet-121 (Conv) [24] 1.0000 1.0000 94.69% 1.0000 1.0000 76.51%
DenseNet-121 (DSConv) [7] 0.7362 0.7362 93.81% 0.7396 0.7396 74.35%
DenseNet-121 (PENNI d=2) [30] 0.7608 0.7608 94.32% 0.7640 0.7640 75.26%
DenseNet-121 (BSConv) [18] 0.7291 0.7291 94.24% 0.7326 0.7326 75.79%
DenseNet-121 (CirCNN k=4) [11] 0.2601 0.2601 92.86% 0.2698 0.2698 72.45%
DenseNet-121 (Ours-1-25-32-32-32) 0.1986 0.1986 94.89% 0.2091 0.2091 75.09%
DenseNet-121 (Ours-1-25-8-8-8) 0.1986 0.0587 94.78% 0.2091 0.0612 75.59%
DenseNet-121 (Ours-1-25-4-6-6) 0.1986 0.0395 94.68% 0.2091 0.0422 75.05%

Table 2: Comparison among efficient convolutions in terms of parameter/memory compression ratio (smaller is better) and
accuracy. The cardinality d in PENNI is 2. CirCNN uses a block size k=4. (Ours-Bi-Bc-qb-qu-qv) is the network setup.

(DWConv) and cross-kernel correlation for point-wise Conv
(PWConv). Hence we further apply our in-situ generation
scheme to each individual DWConv and PWConv in the in-
verted residual block of MobileNet-V2 for further weight
compression. Besides, we perform quantization to activa-
tion for each layer to save the most critical activation mem-
ory cost. Table 3 shows that we can further save >10×
weight storage and reduce the largest activation memory
cost by 4× even on compact architectures. On fine-grained
image recognition tasks where the input images have high
resolutions and low categorical variances, the compressed
models still demonstrate strong model representability that
can capture subtle but critical traits with negligible accuracy
drop. Table 4 evaluates our methods further on searched
compact networks on detection tasks, which are known to
be energy/memory-demanding, our method can lead to 5-
12× compression with marginal performance loss.

5. Conclusion

In this work, we propose a general and unified frame-
work for memory-efficient DNN designs via multi-level in
situ generation. We jointly leverage the intrinsic correla-
tion and bit-level redundancy within convolutional kernels
and allow the ultra-fast accelerator to generate the weights
in situ by itself to boost the performance. A photonic case
study is given to show our latency/power advantages. Ex-
periments show that our method achieves 10×-20× mem-
ory efficiency boost compared with prior methods. Our
method provides a unified view to prior single-level low-
rank methods and enables a new design paradigm to break
through the ultimate memory bottleneck for emerging DNN
accelerators by their tremendous computing power.

CIFAR-10 CIFAR-100
Mem Ratio Acc Mem Ratio Acc

Original [40] 1.0000 93.06% 1.0000 73.90%
Ours-5-40-4-4-4 0.0783 94.03% 0.0867 73.11%
Ours-5-40-4-4-4 (A8) 0.0783 94.02% 0.0867 72.90%

SVHN TinyImageNet-200†

Original [40] 1.0000 96.37% 1.0000 67.13%
Ours-5-40-4-4-4 0.0783 96.61% 0.1251 65.59%
Ours-5-40-4-4-4 (A8) 0.0783 96.63% 0.1251 65.44%

StanfordDogs-120† StanfordCars-196†

Original [40] 1.0000 72.25% 1.0000 89.32%
Ours-5-40-4-4-4 0.0885 71.06% 0.0948 89.54%
Ours-5-40-4-4-4 (A8) 0.0885 71.42% 0.0948 89.47%

Table 3: In-situ generation with activation/weight quantiza-
tion on MobileNetV2 [40]. The setup follows (Ours-Bi-
Bc-qb-qu-qv). A8 means 8-bit activation. † means teacher
models are initialized with ImageNet-pretrained models.
The setup for TinyImageNet is (6-60-5-5-5).

StanfordDogs-120 ImageNet-50 PASCAL VOC
Mem Ratio Acc Mem Ratio Acc Mem Ratio mAP

MobilenetV2 (SSD-lite) 1.0000 72.25% 1.0000 87.56% 1.0000 0.683
Ours (SSD-lite) 0.0885 71.06% 0.0821 87.52% 0.1392 0.655
MobilenetV3-S (SSD-lite) 1.0000 65.41% 1.0000 85.04% 1.0000 0.544
Ours (SSD-lite) 0.2082 66.64% 0.2060 85.44% 0.2238 0.513
EfficientNet-B0 1.0000 75.43% 1.0000 89.56% - -
Ours 0.1257 75.00% 0.1132 88.52% - -

Table 4: Evaluate compact models beyond simple tasks and
classification.
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A. B. Miller, and Demetri Psaltis. Inference in artificial in-
telligence with deep optics and photonics. Nature, 2020. 1

[52] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking Machine
Learning Algorithms. Arxiv, 2017. 5, 6

[53] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,
Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong.
TRP: Trained Rank Pruning for Efficient Deep Neural Net-
works. In Proc. IJCAI, pages 977–983, 2020. 1

[54] Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel
Hu, Ang Li, Hai Li, and Yiran Chen. Learning low-rank
deep neural networks via singular vector orthogonality reg-
ularization and singular value sparsification. In Proc. CVPR
Workshops, 2020. 1, 5, 7

[55] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-
jie Wen, Makan Fardad, and Yanzhi Wang. A systematic
dnn weight pruning framework using alternating direction
method of multipliers. In Proc. ECCV, 2018. 1

[56] Zhekai Zhang, Hanrui Wang, Song Han, and William J.
Dally. SpArch: Efficient Architecture for Sparse Matrix
Multiplication. In Proc. HPCA, 2020. 1

[57] Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran
You, Yonggan Fu, Yuan Xie, Zhangyang Wang, and Yingyan
Lin. SmartExchange: Trading Higher-cost Memory Stor-
age/Access for Lower-cost Computation . In Proc. ISCA,
2020. 1, 2, 3

[58] Zheng Zhao, Derong Liu, Meng Li, et al. Hardware-software
co-design of slimmed optical neural networks. In Proc. AS-
PDAC, 2019. 1

[59] Qilin Zheng, Zongwei Wang, Zishun Feng, Bonan Yan,
Yimao Cai, Ru Huang, Yiran Chen, Chia-Lin Yang, and
Hai Helen Li. Lattice: An ADC/DAC-less ReRAM-based
Processing-In-Memory Architecture for Accelerating Deep
Convolution Neural Networks. In Proc. DAC, pages 1–6,
2020. 3

[60] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 1, 3, 4

[61] Farzaneh Zokaee, Qian Lou, Nathan Youngblood, et al.
LightBulb: A Photonic-Nonvolatile-Memory-based Accel-
erator for Binarized Convolutional Neural Networks. In
Proc. DATE, 2020. 1

5238


