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Abstract

Video semantic segmentation is an essential task for the
analysis and understanding of videos. Recent efforts largely
focus on supervised video segmentation by learning from
fully annotated data, but the learnt models often experi-
ence clear performance drop while applied to videos of
a different domain. This paper presents DA-VSN, a do-
main adaptive video segmentation network that addresses
domain gaps in videos by temporal consistency regulariza-
tion (TCR) for consecutive frames of target-domain videos.
DA-VSN consists of two novel and complementary designs.
The first is cross-domain TCR that guides the prediction of
target frames to have similar temporal consistency as that
of source frames (learnt from annotated source data) via
adversarial learning. The second is intra-domain TCR that
guides unconfident predictions of target frames to have sim-
ilar temporal consistency as confident predictions of target
frames. Extensive experiments demonstrate the superiority
of our proposed domain adaptive video segmentation net-
work which outperforms multiple baselines consistently by
large margins.

1. Introduction

Video semantic segmentation aims to assign pixel-wise

semantic labels to video frames, and it has been attract-

ing increasing attention as one essential task in video anal-

ysis and understanding [19, 53, 15, 45, 60]. With the

advance of deep neural networks (DNNs), several stud-

ies have been conducted in recent years with very impres-

sive video segmentation performance [65, 40, 20, 33, 37,

38, 26, 47]. However, most existing works require large

amounts of densely annotated training videos which entail

a prohibitively expensive and time-consuming annotation

process [3, 14]. One approach to alleviate the data an-

notation constraint is to resort to self-annotated synthetic

videos that are collected with computer-generated virtual

scenes [62, 24], but models trained with the synthesized
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Figure 1. Temporal consistency helps in domain adaptive video

segmentation: A video segmentation model trained in a Source
domain often experiences clear performance drop while applied to

videos of a Target domain. We employ temporal consistency, the

inherent and universal nature of videos, as a constraint to regu-

larize inter-domain and intra-domain adaptation for optimal video

segmentation in target domain as in Target (ours).

data often experience clear performance drops while ap-

plied to videos of natural scenes largely due to the domain
shift as illustrated in Fig. 1.

Domain adaptive video segmentation is largely neglected

in the literature despite its great values in both research

and practical applications. It could be addressed from two

approaches by leveraging existing research. The first ap-

proach is domain adaptive image segmentation [80, 69,

79, 58, 21, 74] which could treat each video frame inde-

pendently to achieve domain adaptive video segmentation.

However, domain adaptive image segmentation does not

consider temporal information in videos which is very im-

portant in video semantic segmentation. The second ap-

proach is semi-supervised video segmentation [56, 78, 5]

that exploits sparsely annotated video frames for segment-

ing unannotated frames of the same video. However, semi-

supervised video segmentation was designed for consecu-
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tive video frames of the same domain and does not work

well in domain adaptive video segmentation which usu-

ally involves clear domain shifts and un-consecutive video

frames of different sources.

In this work, we design a domain adaptive video segmen-

tation network (DA-VSN) that introduces temporal con-

sistency regularization (TCR) to bridge the gaps between

videos of different domains. The design is based on the ob-

servation that video segmentation model trained in a source

domain tends to produce temporally consistent predictions

over source-domain data but temporally inconsistent pre-

dictions over target-domain data (due to domain shifts) as

illustrated in Fig. 1. We designed two complementary regu-

larization modules in DA-VSN, namely, cross-domain TCR

(C-TCR) and intra-domain TCR (I-TCR). C-TCR employs

adversarial learning to minimize the discrepancy of tempo-

ral consistency between source and target domains. Specif-

ically, it guides target-domain predictions to have similar

temporal consistency of source-domain predictions which

usually has decent quality by learning from fully-annotated

source-domain data. I-TCR instead works from a differ-

ent perspective by guiding unconfident target-domain pre-

dictions to have similar temporal consistency as confident

target-domain predictions. In I-TCR, we leverage entropy

to measure the prediction confidence which works effec-

tively across multiple datasets.

The contributions of this work can be summarized in

three major aspects. First, we proposed a new framework

that introduces temporal consistency regularization (TCR)

to address domain shifts in domain adaptive video segmen-

tation. To the best of our knowledge, this is the first work

that tackles the challenge of unsupervised domain adapta-

tion in video semantic segmentation. Second, we designed

inter-domain TCR and intra-domain TCR that improve do-

main adaptive video segmentation greatly by minimizing

the discrepancy of temporal consistency across different do-

mains and different video frames in target domain, respec-

tively. Third, extensive experiments over two challenging

synthetic-to-real benchmarks (VIPER [62] → Cityscapes-

Seq [14] and SYNTHIA-Seq [63] → Cityscapes-Seq) show

that the proposed DA-VSN achieves superior domain adap-

tive video segmentation as compared with multiple base-

lines.

2. Related Works

2.1. Video Semantic Segmentation

Video semantic segmentation aims to predict pixel-level

semantics for each video frame. Most existing works ex-

ploit inter-frame temporal relations for robust and accurate

segmentation [34, 77, 20, 46, 72, 42, 37, 26, 47]. For ex-

ample, [77, 20] employs optical flow [18] to warp feature

maps between frames. [42] leverages inter-frame feature

propagation for efficient video segmentation with low la-

tency. [37] presents an adaptive fusion policy for effec-

tive integration of predictions from different frames. [26]

distributes several sub-networks over sequential frames and

recomposes the extracted features via attention propagation.

[47] presents a compact network that distills temporal con-

sistency knowledge for per-frame inference.

In addition, semi-supervised video segmentation has

been investigated which exploits sparsely annotated video

frames for segmenting unannotated frames of the same

videos. Two typical approaches have been studied. The

first approach is based on label propagation that warps la-

bels of sparsely-annotated frames to generate pseudo labels

for unannotated frames via self-supervised learning [70, 41,

36], patch matching [1, 4], motion cues [66, 78] or optical

flow [55, 77, 56, 17]. The other approach is based on self-

training that generates pseudo labels through a distillation

across multiple augmentations [5].

Both supervised and semi-supervised video segmenta-

tion work on frames of the same video or same domain

that have little domain gaps. Our proposed domain adaptive

video segmentation exploits off-the-shelf video annotations

from a source domain for the segmentation of videos of a

different target domain without requiring any annotations

of target-domain videos.

2.2. Domain Adaptive Video Classification

Domain adaptive video classification has been explored

to investigate domain discrepancy in action classification

problem. One category of works focuses on the specific ac-

tion recognition task that aims to classify a video clip into

a particular category of human actions via temporal align-

ment [8], temporal attention [57, 13], or self-supervised

video representation learning [54, 13]. Another category

of works focus on action segmentation that simultaneously

segments a video in time and classifies each segmented

video clip with an action class via temporal alignment [9]

or self-supervised video representation learning [10].

This work focuses on a new problem of domain adap-

tive semantic segmentation of videos, a new and much more

challenging domain adaptation task as compared with do-

main adaptive video classification. Note that existing do-

main adaptive video classification methods do not work

for the semantic segmentation task as they cannot generate

pixel-level dense predictions for each frame in videos.

2.3. Domain Adaptive Image Segmentation

Domain adaptive image segmentation has been widely

investigated to address the image annotation challenge and

domain shift issues. Most existing methods take two typical

approaches, namely, adversarial learning based [25, 67, 69,

68, 48, 32, 58, 21, 31] and self training based [80, 79, 43,

44, 7, 74, 39, 76, 52]. The adversarial learning based meth-
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Figure 2. The framework of the proposed domain adaptive video segmentation network (DA-VSN): DA-VSN introduces temporal consis-

tency regularization (TCR) to minimize the divergence between source and target domains. It consists of a video semantic segmentation

model G that generates segmentation predictions, a source-domain supervised learning module (SSL) that learns knowledge from source

domain, a cross-domain TCR component (C-TCR) that guides target predictions to have similar temporal consistency as source predictions,

and an intra-domain TCR component (I-TCR) that guides unconfident target predictions to have similar temporal consistency as confident

target predictions.

ods perform domain alignment by adopting a discriminator

that strives to differentiate the segmentation in the space of

inputs [25, 75, 12, 30, 39, 31], features [25, 11, 27, 73, 22,

28, 48] or outputs [67, 69, 49, 68, 32, 50, 71, 21, 58, 29].

The self-training based methods exploit self-training to pre-

dict pseudo labels for target-domain data and then exploit

the predicted pseudo labels to fine-tune the segmentation

model iteratively.

Though a number of domain adaptive image segmenta-

tion techniques have been reported in recent years, they do

not consider temporal information which is critically impor-

tant in video segmentation. We introduce temporal consis-

tency of videos as a constraint and exploit it to regularize

the learning in domain adaptive video segmentation.

3. Method

3.1. Problem Definition

Given source-domain video frames XS with the corre-

sponding labels Y S and target-domain video frames XT

without labels, the goal of domain adaptive video segmenta-

tion is to learn a model G that can produce accurate predic-

tions PT in target domain. According to the domain adap-

tation theory in [2], the target error in domain adaptation

is bounded by three terms including a shared error of the

ideal joint hypothesis on the source and target domains, an

empirical source-domain error, and a divergence measure

between source and target domains.

This work focuses on the third term and presents a do-

main adaptive video semantic segmentation network (DA-

VSN) for minimizing the divergence between source and

target domains. We design a novel temporal consistency

regularization (TCR) technique for consecutive frames in

target domain, which consists of two complementary com-

ponents including a cross-domain TCR (C-TCR) compo-

nent and an intra-domain TCR (I-TCR) component as il-

lustrated in Fig. 2. C-TCR targets cross-domain alignment

by encouraging target predictions to have similar temporal

consistency as source predictions (accurate via supervised

learning), while I-TCR aims for intra-domain adaptation

by forcing unconfident predictions to have similar temporal

consistency as confident predictions in target domain, more

details to be described in the ensuing two subsections.

Note the shared error in the first term (the difference

in labeling functions across domains) is usually small as

proven in [2]. The empirical source-domain error in the

second term actually comes from the supervised learning

in the source domain. For domain adaptive video segmen-

tation, we directly adopt video semantic segmentation loss

Lssl(G) [77, 37, 26, 47] as the source-domain supervised

learning loss.

3.2. Cross-domain Regularization

Cross-domain temporal consistency regularization (C-

TCR) aims to guide target predictions to have similar tem-

poral consistency of source predictions which is determined

by minimizing the supervised source loss Lssl and usually

has decent quality. We design a dual-discriminator structure

for optimal spatial-temporal alignment of source and target

video-clips as illustrated in Fig. 3. As Fig. 3 shows, one dis-

criminator Ds focuses on spatial alignment of a single video

frame of different domains (as in domain adaptive image

segmentation) and the other discriminator Dst focuses on

temporal alignment of consecutive videos frames of differ-

ent domains. Since Dst inevitably involves spatial informa-

tion, we introduce a divergence loss between Ds and Dst to
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Figure 3. The framework of the proposed cross-domain tempo-

ral consistency regularization (C-TCR): C-TCR performs tem-

poral alignment to minimize the divergence of temporal consis-

tency between source and target domains. It introduces a spatial-

temporal discriminator Dst to align consecutive predictions (en-

coding spatial-temporal information) and a spatial discriminator

Ds to align single-frame predictions (encoding spatial informa-

tion). A spatial-temporal adversarial learning loss Lsta and a spa-

tial loss Lsa are introduced to optimize the discriminators and seg-

mentation model. To enhance temporal alignment, we introduce a

weight discrepancy loss Lwd to force Dst to be independent from

Ds so that Dst can focus more on temporal alignment.

force Dst to focus on the alignment in temporal space.

For spatial alignment, we forward the current frame xS

k

to obtain the current prediction pSk, and simultaneously for-

ward xS

k−1 to to obtain the consecutive prediction pSk−1.

The spatial discriminator Ds aligns frame-level predictions

pSk and pTk and its objective Lsa can be formulated as fol-

lows:

Lsa(G,Ds) = log(Ds(p
S

k)) + log(1−Ds(p
T

k)). (1)

For temporal alignment, we stack the current predic-

tion pSk and the consecutive predictions pSk−1 as pSk−1:k

which encode spatial-temporal information in source do-

main. This same process is applied to target domain which

produces two consecutive target predictions pTk−1:k that en-

code spatial-temporal information in target domain. The

spatial-temporal discriminator Dst then aligns pSk−1:k and

pTk−1:k and its objective Lsta can be formulated as follows:

Lsta(G,Dst) = log(Dsta(p
S

k−1:k))

+ log(1−Dsta(p
T

k−1:k)).
(2)

We enforce the divergence of the weights of Dst and

Ds so that the spatial-temporal discriminator Dst can fo-

cus more on temporal alignment. The weight divergence of

the two discriminators can be reduced by minimizing their

cosine similarity as follows:

Lwd(Dst, Ds) =
1

J

J∑

j=1

−→w j
st · −→w j

s∥∥∥−→w j
st

∥∥∥
∥∥∥−→w j

s

∥∥∥
, (3)

where J is the number of convolutional layers in each

discriminator, −→w j
st and −→w j

s are obtained by flattening the

weights of the j-th convolutional layer in the discriminators

Dst and Ds, respectively.

Combining the losses in Eqs 1, 2, 3, the C-TCR loss

Lctcr can be formulated as follows:

Lctcr(G,Dst, Ds) = Lsta(G,Dst)

+ λsaLsa(G,Ds)

+ λwdLwd(Dst, Ds),

(4)

where λsa and λwd are the balancing weights.

3.3. Intra-domain Regularization

The intra-domain temporal consistency regularization (I-

TCR) aims to minimize the divergence between source and

target domains by suppressing the temporal inconsistency

across different target frames. As illustrated in Fig. 4, I-

TCR guides unconfident target predictions to have sim-

ilar temporal consistency as confident target predictions.

Specifically, it first propagates predictions (of previous

frames) forward by using frame-to-frame optical flow es-

timates, and then forces unconfident predictions in the cur-

rent frame to be consistent with confident predictions prop-

agated from the previous frame.

In the target domain, we first forward xT

k to obtain the

current prediction pTk , and similarly forward xT

k−1 to obtain

the previous prediction pTk−1. We then adopt FlowNet [35]

to estimate the optical flow fxT

k−1→xT

k
from xT

k−1 to xT

k .

With the estimated frame-to-frame optical flow fxT

k−1→xT

k
,

the prediction pTk−1 can be warped to generate the propa-

gated prediction p̂Tk−1.

To force unconfident predictions pTk in the current frame

to be consistent with confident predictions p̂Tk−1 propagated

from the previous frames, we employ an entropy function E
[64] to estimate the prediction confidence and use the con-

fident prediction p̂Tk−1 (i.e., with low entropy) to optimize
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Figure 4. The framework of the proposed intra-domain temporal consistency regularization (I-TCR): I-TCR guides unconfident target-

domain predictions to have similar temporal consistency as confident predictions, where the prediction confidence is measured by entropy.

It consists of a network F to estimate optical flow and a propagation operation P to warp the previous frame prediction and its entropy

based on the estimated optical flow. The objective of I-TCR is to force the current frame prediction with high entropy (i.e., low confidence)

to be consistent with the propagated prediction with low entropy (i.e., high confidence). Note that only networks trained by the current

frame requires gradient.

unconfident prediction pTk (i.e., with high entropy). Given

pTk and p̂Tk−1 from target video frames XT, the I-TCR loss

Litcr can be formulated as follows:

Litcr(G) = S(E(pTk)− E(p̂Tk−1))|pTk − p̂Tk−1|. (5)

where S is a signum function which returns 1 if the input is

positive or 0 otherwise.

DA-VSN jointly optimizes the source-domain super-

vised learning (i.e., SSL) and the target-domain unsuper-

vised learning (i.e., C-TCR and I-TCR) as follows:

min
G

max
Dst,Ds

Lssl(G) + λuLctcr(G,Dst, Ds)

+ λuLitcr(G),
(6)

where λu is the weight for balancing the supervised and

unsupervised learning in source and target domains.

4. Experiments
4.1. Experimental Setup

Datasets: Our experiments involve two challenging

synthetic-to-real domain adaptive video semantic segmen-

tation tasks: VIPER [62] → Cityscapes-Seq [14] and

SYNTHIA-Seq [63] → Cityscapes-Seq. Cityscapes-Seq
is a standard benchmark for supervised video semantic seg-

mentation and we use it as the target-domain dataset. It con-

tains 2, 975 and 500 video sequences for training and eval-

uation, where each sequence consists of 30 realistic frames

with one ground-truth label provided for the 20th frame.

VIPER is used as one source-domain dataset, which con-

tains 133, 670 synthesized video frames with segmentation

labels produced by game engines. SYNTHIA-Seq is used

as the other source-domain dataset, which contains 8, 000
synthesized video frames with automatically generated seg-

mentation annotations. The frame resolution is 1024×2048,

1080×1920 and 760×1280 in Cityscapes-Seq, VIPER and

SYNTHIA-Seq, respectively.

Implementation Details: We adopt ACCEL [37] as the

video semantic segmentation architecture. It consists of two

segmentation branches, an optical flow network and a score

fusion layer. Each segmentation branch generates single-

frame prediction using Deeplab network [6] whose back-

bone is ResNet-101 [23] pre-trained on ImageNet [16]. The

optical flow network propagates prediction in the previous

frame via FlowNet [35] and the score fusion layer adap-

tively integrates predictions in previous and current frames

using a 1 × 1 convolutional layer. All the discriminators in

our experiments are designed as in DCGAN [61]. For the

efficiency of training and inference, we apply bicubic inter-

polation to resize every video frame in Cityscapes-Seq and

VIPER to 512 × 1024 and 720 × 1280, respectively. Our

experiments are built on PyTorch [59] and the size of mem-

ory usage is below 12 GB. All the models are trained using

SGD optimizer with a momentum of 0.9 and a weight de-

cay of 10−4. The learning rate is set at 10−4 and has a poly-

nomial decay with a power of 0.9. The balancing weights

λsa, λwd, and λu are set as 1, 1 and 0.001, respectively. The
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VIPER → Cityscapes-Seq

Method Lssl Lsa Lsta Lwd mIoU

Source only � 37.1

SA � � 41.6

STA � � 43.7

JT � � � 44.2

C-TCR � � � � 46.5
Table 1. Ablation study of C-TCR over domain adaptive segmen-

tation task VIPER → Cityscapes-Seq: spatial alignment (SA)

and spatial-temporal alignment (STA) both outperform ‘Source

only’ greatly. Simple joint training (JT) with STA and SA yields

marginal gains over STA, showing that additional spatial align-

ment does not help much. C-TCR outperforms JT clearly by in-

troducing weight discrepancy loss Lwd which forces STA to be

independent from SA and focuses more on temporal alignment.

mean intersection-over-union (mIoU) is adopted to evaluate

all methods.

4.2. Ablation Studies

We conduct comprehensive ablation studies to examine

the effectiveness of our designs. and Tables 1 and 2 show

experimental results. As shown in Table 1, both spatial

alignment (SA) and spatial-temporal alignment (STA) out-

perform ‘Source only’ consistently, which verifies the ef-

fectiveness of the alignment in spatial and temporal spaces.

Specifically, the performance gain of STA is larger than

SA, which validates that temporal alignment is important in

domain adaptive video segmentation by guiding the target

predictions to have similar temporal consistency of source

predictions. Joint training (JT) of STA and SA outper-

forms STA with a marginal performance gain, largely be-

cause the spatial-temporal alignment captures spatial align-

ment already. Cross-domain temporal consistency regular-

ization (C-TCR) improves JT clearly by introducing weight

discrepancy loss Lwd between discriminators in STA and

SA which forces STA to focus on alignment in the tem-

poral space. It also validates the significance of tempo-

ral alignment in domain adaptive video semantic segmen-

tation. Similar to C-TCR, intra-domain TCR (I-TCR) out-

performs ‘Source only’ with a large margin as shown in Ta-

ble 2. This shows the importance of intra-domain adapta-

tion that suppresses temporal inconsistency across target-

domain frames. Lastly, DA-VSN produces the best video

segmentation, which demonstrates that C-TCR and I-TCR

complement with each other.

4.3. Comparison with Baselines

Since few works study domain adaptive video seman-

tic segmentation, we quantitatively compare DA-VSN with

multiple domain adaptation baselines [69, 80, 58, 79, 21,

74] that achieved superior performance in domain adap-

VIPER → Cityscapes-Seq

Method Lssl Lctcr Litcr mIoU

Source only � 37.1

C-TCR � � 46.5

I-TCR � � 45.9

DA-VSN � � � 47.8
Table 2. Ablation study of DA-VSN over domain adaptive seg-

mentation task VIPER → Cityscapes-Seq: Cross-domain TCR (C-

TCR) and intra-domain TCR (I-TCR) both outperform ‘Source

only’ by large margins. In addition, the combination of C-

TCR and I-TCR in DA-VSN outperforms either C-TCR or I-TCR

clearly, demonstrating the synergic relation of the two designs.

tive image segmentation. We apply these approaches to

the domain adaptive video segmentation task by simply re-

placing their image segmentation model by video segmen-

tation model and performing domain alignment as in [69,

80, 58, 79, 21, 74]. The comparisons are performed over

two synthetic-to-real domain adaptive video segmentation

tasks as shown in Tables 3 and 4. As the two tables show,

the proposed method outperforms all the domain adaptation

baselines consistently with large margins.

We also perform qualitative comparisons over the video

segmentation task VIPER → Cityscapes-Seq. We compare

the proposed DA-VSN with the best-performing baseline

FDA [74] as illustrated in Fig. 5. We can see that the qual-

itative results are consistent with the quantitative results in

Table 3. Specifically, our method can generate better seg-

mentation results with higher temporal consistency across

consecutive video frames. The excellent segmentation per-

formance is largely attributed to the proposed temporal con-

sistency regularization which minimizes the divergence of

temporal consistency across different domains and different

target-domain video frames.

4.4. Discussion

Feature Visualization: In the Section 4.3, we have

demonstrated that the proposed DA-VSN has achieved su-

perior performance in domain adaptive video segmentation

as compared with multiple baselines. To further study the

properties of DA-VSN, we use t-SNE [51] to visualize the

distribution of target-domain temporal feature representa-

tions from different domain adaptive video segmentation

methods, where the inter-class and intra-class variances are

computed for quantitative analysis. As shown in Fig. 6,

DA-VSN produces the most discriminative target-domain

temporal features with the largest inter-class variance and

the smallest intra-class variance, as compared with ‘Source

only’ and FDA [74].

Complementary Studies: We also investigate whether

the proposed DA-VSN can complement with multiple do-

main adaptation baselines [80, 58, 79, 74] (as described in
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VIPER → Cityscapes-Seq

Methods road side. buil. fence light sign vege. terr. sky pers. car truck bus mot. bike mIoU

Source only 56.7 18.7 78.7 6.0 22.0 15.6 81.6 18.3 80.4 59.9 66.3 4.5 16.8 20.4 10.3 37.1

AdvEnt [69] 78.5 31.0 81.5 22.1 29.2 26.6 81.8 13.7 80.5 58.3 64.0 6.9 38.4 4.6 1.3 41.2

CBST [80] 48.1 20.2 84.8 12.0 20.6 19.2 83.8 18.4 84.9 59.2 71.5 3.2 38.0 23.8 37.7 41.7

IDA [58] 78.7 33.9 82.3 22.7 28.5 26.7 82.5 15.6 79.7 58.1 64.2 6.4 41.2 6.2 3.1 42.0

CRST [79] 56.0 23.1 82.1 11.6 18.7 17.2 85.5 17.5 82.3 60.8 73.6 3.6 38.9 30.5 35.0 42.4

SVMin [21] 51.1 14.3 80.8 11.9 30.9 23.1 83.5 37.7 74.5 59.5 79.7 36.4 53.2 20.0 4.2 44.1

CrCDA [32] 78.1 33.3 82.2 21.3 29.1 26.8 82.9 28.5 80.7 59.0 73.8 16.5 41.4 7.8 2.5 44.3

RDA [31] 72.0 25.9 80.8 15.1 27.2 20.3 82.6 31.4 82.2 56.3 75.5 22.8 48.3 19.1 6.7 44.4

FDA [74] 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4

DA-VSN (Ours) 86.8 36.7 83.5 22.9 30.2 27.7 83.6 26.7 80.3 60.0 79.1 20.3 47.2 21.2 11.4 47.8
Table 3. Quantitative comparisons of DA-VSN with multiple baselines over domain adaptive video segmentation task

VIPER → Cityscapes-Seq: DA-VSN outperforms all domain adaptation baselines consistently by large margins.

SYNTHIA-Seq → Cityscapes-Seq

Methods road side. buil. pole light sign vege. sky pers. rider car mIoU

Source only 56.3 26.6 75.6 25.5 5.7 15.6 71.0 58.5 41.7 17.1 27.9 38.3

AdvEnt [69] 85.7 21.3 70.9 21.8 4.8 15.3 59.5 62.4 46.8 16.3 64.6 42.7

CBST [80] 64.1 30.5 78.2 28.9 14.3 21.3 75.8 62.6 46.9 20.2 33.9 43.3

IDA [58] 87.0 23.2 71.3 22.1 4.1 14.9 58.8 67.5 45.2 17.0 73.4 44.0

CRST [79] 70.4 31.4 79.1 27.6 11.5 20.7 78.0 67.2 49.5 17.1 39.6 44.7

SVMin [21] 84.9 0.5 77.9 29.6 7.4 15.0 78.6 73.2 46.9 6.2 73.8 44.9

CrCDA [32] 86.5 26.3 74.8 24.5 5.0 15.5 63.5 64.4 46.0 15.8 72.8 45.0

RDA [31] 84.7 26.4 73.9 23.8 7.1 18.6 66.7 68.0 48.6 9.3 68.8 45.1

FDA [74] 84.1 32.8 67.6 28.1 5.5 20.3 61.1 64.8 43.1 19.0 70.6 45.2

DA-VSN (Ours) 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5
Table 4. Quantitative comparisons of DA-VSN with multiple baselines over domain adaptive video segmentation task SYNTHIA-

Seq → Cityscapes-Seq: DA-VSN outperforms all domain adaptation baselines consistently by large margins.

Consecutive video frames Ground Truth∗ FDA [74] DA-VSN (Ours)

Figure 5. Qualitative comparison of DA-VSN with the best-performing baseline FDA [74] over domain adaptive video segmentation task

“VIPER → Cityscapes-Seq”: DA-VSN produces more accurate pixel-wise segmentation predictions with higher temporal consistency

across consecutive video frames as shown in rows 1-3. Since Cityscapes-Seq only provides ground-truth label of one frame per 30
consecutive frames, we show the same ground truth for all rows. The Ground Truth∗ denotes the ground truth annotated for the video

frame in Row 2. Best viewed in color.
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Source only FDA [74] DA-VSN (Ours)

σ2
inter = 761.3, σ2

intra = 331.7 σ2
inter = 781.2, σ2

intra = 239.0 σ2
inter = 854.26, σ2

intra = 186.2
Figure 6. Visualization the distribution of temporal feature representations in the target domain via t-SNE [51]: We calculate inter-class

variance σ2
inter and intra-class variance σ2

intra of temporal features, i.e., the stacked feature maps from two consecutive frames. It can be

observed that the proposed DA-VSN outperforms ‘Source only’ model and FDA [74] clearly. Evaluation is conducted on the domain

adaptive video segmentation task “VIPER → Cityscapes-Seq”. Note that different colors denote different classes and best viewed in color.

VIPER → Cityscapes-Seq

Method Base + DA-VSN Gain

FDA [74] 44.4 48.5 +4.1

IDA [58] 42.0 49.9 +7.9

CBST [80] 41.7 50.2 +8.5

CRST [79] 42.4 51.3 +8.9

Table 5. The proposed DA-VSN complements with multiple do-

main adaption baselines over domain adaptive video segmentation

task VIPER → Cityscapes-Se: DA-VSN can be easily incorporated

into state-of-the-art domain adaptive image segmentation meth-

ods [80, 79, 58, 74] with consistent performance improvement.

Section 4.3) over domain adaptive video segmentation task.

To conduct this experiment, we integrate our proposed tem-

poral consistency regularization components (DA-VSN)

into these baselines and Table 5 shows the segmentation re-

sults of the newly trained models. It can be seen that the in-

corporation of DA-VSN improves video segmentation per-

formance greatly across all the baselines, which shows that

DA-VSN is complementary to the domain adaptation meth-

ods that minimize domain discrepancy via image translation

(e.g., FDA [74]), adversarial learning (e.g., AdvEnt [69])

and self-training (e.g., CBST [80] and CRST [79]).

Different Video Segmentation Architectures: We fur-

ther study whether DA-VSN can work well with dif-

ferent video semantic segmentation architectures. Three

widely adopated video segmentation architectures (i.e.,

Netwarp [20], TDNet [26] and ESVS [47]) are used in this

experiments. As shown in Table 6, the proposed DA-VSN

outperforms the ‘Source only’ consistently with large mar-

gins. This experiment shows that our method performs ex-

cellently with different video semantic segmentation archi-

tectures that exploits temporal relations via feature propa-

gation [20], attention propagation [26], and temporal con-

sistency constraint [47].

VIPER → Cityscapes-Seq

Architectures Source only DA-VSN Gain

NetWarp [20] 36.5 47.2 +10.7

TDNet [26] 37.6 47.9 +10.3

ESVS [47] 38.2 48.1 +9.9

Table 6. DA-VSN can work with different video semantic seg-

mentation architectures: DA-VSN can work with different video

segmentation architectures (e.g. Netwarp [20], TDNet [26] and

ESVS [47]) with consistent performance improvement as com-

pared with Source only over the domain adaptive video segmen-

tation task “VIPER → Cityscapes-Seq”.

5. Conclusion

This paper presents a domain adaptive video segmenta-

tion network that introduces cross-domain temporal consis-

tency regularization (TCR) and intra-domain TCR to ad-

dress domain shift in videos. Specifically, cross-domain

TCR performs spatial and temporal alignment that guides

the target video predictions to have similar temporal con-

sistency as the source video predictions. Intra-domain TCR

directly minimizes the discrepancy of temporal consistency

across different target video frames. Extensive experiments

demonstrate the superiority of our method in domain adap-

tive video segmentation. In the future, we will adapt the

idea of temporal consistency regularization to other video

domain adaptation tasks such as video instance segmenta-

tion and video panoptic segmentation.
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