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Abstract

Image harmonization, aiming to make composite images
look more realistic, is an important and challenging task.
The composite, synthesized by combining foreground from
one image with background from another image, inevitably
suffers from the issue of inharmonious appearance caused
by distinct imaging conditions, i.e., lights. Current solu-
tions mainly adopt an encoder-decoder architecture with
convolutional neural network (CNN) to capture the context
of composite images, trying to understand what it looks like
in the surrounding background near the foreground. In this
work, we seek to solve image harmonization with Trans-
former, by leveraging its powerful ability of modeling long-
range context dependencies, for adjusting foreground light
to make it compatible with background light while keep-
ing structure and semantics unchanged. We present the de-
sign of our harmonization Transformer frameworks with-
out and with disentanglement, as well as comprehensive ex-
periments and ablation study, demonstrating the power of
Transformer and investigating the Transformer for vision.
Our method achieves state-of-the-art performance on both
image harmonization and image inpainting/enhancement,
indicating its superiority. Our code and models are avail-
able at https://github.com/zhenglab/HarmonyTransformer.

1. Introduction

Combining regions of different photographs into a realis-
tic composite is a fundamental problem in many vision and
graphics applications, such as image compositing, mosaic-
ing, editing, and scene completion [33]. However, the com-
posite, synthesized by combining the foreground from one
image with the background from another image, inevitably
suffers from the issue of inharmonious appearance between
foreground and background caused by distinct imaging con-
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DoveNet Ours
Figure 1. We create two composite images about pig that flies (top)
and tiger at party (bottom), also show harmonization comparison
between state-of-the-art DoveNet [9] and our method.

" Source Composite

ditions (e.g., day and night, sunny and cloudy, outdoors and
indoors). Therefore, making the composite look more re-
alistic, namely image harmonization, is an important and
challenging task [33, 35, 10, 9].

Image harmonization aims to adjust the foreground to
make it compatible with the background on the appear-
ance. Essentially, the appearance of a natural image de-
pends on various factors in the scene, such as illumination,
material, and shape [41, |]. For a composite image, the
foreground and the background are considered semantically
harmonious, although sometimes it might be impractical or
unreasonable (e.g., pig that flies and tiger at party in Fig-
ure 1). Thus, the inharmony of composite images is mainly
caused by the distinct lights in the different scenes between
foreground and background while imaging, for instance, a
tiger captured in the wild under natural light as foreground
and the party captured in a hall under artificial lighting as
background, yielding inharmonious color appearance be-
cause an object appears coloured due to the way it interacts
with light. Hence, adjusting the foreground color to make
it compatible with the background color, while keeping the
structure and semantics unchanged, are crucial and essential
for harmonizing composite images.

Traditional harmonization methods have focused on bet-
ter matching techniques to ensure consistent appearance be-
tween foreground and background, by transferring hand-
crafted statistics such as color and texture [39, 33]. Re-
cently, deep harmonization models and large-scale datasets
have been developed to address this challenging task [35,
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, 9], achieving better performance benefiting from deep
model and big data. Current deep models mainly adopt an
encoder-decoder CNN architecture, which employs an en-
coder to capture the context of the composite image and a
decoder to reconstruct the harmonized image, trying to un-
derstand what it looks like in the surrounding background
region near the foreground region.

Actually, the encoder-decoder CNN tackle image har-
monization with a two-stage process: harmonizing fore-
ground with background and reconstructing the harmonized
image. Essentially, the first stage works on adjusting fore-
ground color with background color to make them com-
patible, while the second stage devotes to recovering orig-
inal structure and semantics. However, since CNN inher-
ently has the inductive bias of locality, a shallow CNN can
only capture the context of surrounding background near
the foreground, and without global background context, it
might be not enough for better adjustment to make the color
of foreground and background consistent. Besides, previ-
ous methods adopt U-Net [32] with successive contraction,
which has the ability to capture global context, but the in-
harmony might be introduced again to reconstruction via
skip connections from encoder to decoder as a side effect.

Recently, Transformer [36] won renown as a new type
of neural network, which can capture long-range context
dependencies, thanks to the self-attention design. Instead
of RNN and LSTM, Transformer was first applied to natu-
ral language processing (NLP) tasks where it achieved sig-
nificant improvements [36, 12, 4]. Nowadays Transformer
is also showing it is a viable alternative to CNN by being
applied to computer vision (CV) tasks, such as object de-
tection [5, 43], image recognition [14], and image process-
ing [6]. Thus, in this work, we seek to solve image harmo-
nization with Transformer, by leveraging its powerful abil-
ity of modeling long-range context, to satisfy the require-
ment of harmonization on capturing global context.

Inspired by the observation that adjusting light plays a
key role in harmonizing images [16], we move one step
forward. Based on intrinsic image [2] and Retinex the-
ory [26, 25] with the assumption of ideal Lambertian sur-
face, the light intensity values represented in an image ac-
tually encode all the characteristics of corresponding scene
points, thus, in order to adjust the light of composite images,
it is intuitive to separate material-dependent reflectance for
light-dependent illumination re-rendering with disentangled
background light for better harmonization. Therefore, in
our work, we further devise to harmonize composite images
by capturing the “light” from the background and put it on
the “material” via disentangled harmonization Transformer.

Our contributions include: (1) we design and build the
first harmonization Transformer frameworks without and
with disentangled representation; (2) we explore and ana-
lyze the harmonization Transformer in the aspects of input,

encoder/decoder, head, and layer; (3) we present compre-
hensive experiments to show the efficacy of both Trans-
former and disentanglement, achieving performance sub-
stantially better than previous methods on image harmo-
nization; (4) we illustrate the utility of our framework in
two extra vision tasks, i.e., image inpainting and image en-
hancement, both producing very competitive results.

2. Related Work
2.1. Image Harmonization

Early contributions in image harmonization have fo-
cused on using low-level image representations in color
space to adjust foreground to background appearance, in-
cluding color distribution matching [30, 31, 8], multi-scale
statistics [33], and gradient-based methods [20, 29, 34].
Further studies have attended to assess and improve the re-
alism of images [24, 38], among which Zhu et al. [42] fit
a CNN model that distinguishes natural photographs from
automatically generated composite images and adjusts color
of composites by optimizing predicted visual realism score.

Recently, CNN models have been developed for end-
to-end image harmonization. Tsai et al. [35] exploited
encoder-decoder structure with skip connections to cap-
ture context and semantic information of composite im-
ages for harmonization. Cun ef al. [10] also went with an
encoder-decoder U-Net backbone equipped with an addi-
tional spatial-separated attention module to learn regional
appearance changes in low-level features. Cong et al. [9]
employed an attention enhanced U-Net generator with a
global discriminator and a domain verification discrimina-
tor to transform foreground domain to background domain.
Different from all existing methods, we devote to solve im-
age harmonization with Transformer.

2.2. Vision Transformer

Transformer [36], first applied to NLP tasks [12, 4], is a
new type of neural network mainly based on self-attention
mechanism. Due to its strong representation capabilities,
researchers are recently looking at ways to employ Trans-
former to CV tasks [17, 21]. Chen et al. [7] trained a
sequence Transformer (iGPT) to auto-regressively predict
pixels, achieving results comparable with CNNs on image
classification. Dosovitskiy et al. [14] applied a pure Trans-
former directly to sequences of image patches (ViT) at-
taining excellent results compared to state-of-the-art CNNs.
Carion et al. [5] redesigned the framework of object detec-
tion with Transformer (DETR) by treating the object de-
tection task as an intuitive set prediction problem, open-
ing up a new avenue to object detection [43, 1 1]. Besides,
Transformer has been utilized to address a variety of other
CV problems, including image processing [6], pose estima-
tion [ 18], video inpainting [40]. Our work also contributes
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to the study of vision Transformer, diving deeper into Trans-
former for image harmonization and beyond.

3. Methods

This work seeks to leverage Transformer for image har-
monization, thus, we first analyze how to employ Trans-
former for vision, and then present our harmonization
Transformer and disentangled harmonization Transformer.

3.1. Transformer for Vision

Image Input. Transformer is designed to handle sequen-
tial data, such as natural language, for tasks like translation,
eschewing recurrence and instead relying entirely on an at-
tention mechanism to draw global dependencies between
input and output. Thus, to use Transformer for vision, we
need to formulate 2D image to 1D sequence with tokens
(words in NLP) and their embeddings as input. Actually
we can tokenize an image into patches as tokens in order
to avoid very long sequence with pixels as tokens. In this
work, we preliminarily analyze the impact of different token
numbers as well as different embedding types on the perfor-
mance of Transformer in image harmonization. For token
number, we consider to use different strides for adjustment
while splitting image into patches. For embedding type, we
consider to adopt linear (FC or CONV) and nonlinear (MLP
or CNN with nonlinear activation function) projections. We
empirically find that harmonization Transformer might be
sensitive to token number while not sensitive to embedding
type, see “Transformer Input” of Section 4.3 for analysis.
We illustrate the image input pattern in Figure 2.

Transformer Encoder/Decoder. Transformer body
contains an encoder TRE(-) to capture relations, and a de-
coder TRD(-) to produce outputs towards the task. TRE
is composed of a stack of identical layers, where each
layer has a multi-head self-attention sub-layer and a feed
forward network sub-layer. T'RD is also composed of
a stack of identical layers, where each layer, in addition
to the two sub-layers in each encoder layer, has a third
encoder-decoder attention sub-layer that performs multi-
head attention over the output of encoder stack. We can see
that T"RFE employs self-attention to explore self-relation of
its input, while T"RD performs cross-attention to discover
cross-relation between its input and encoder output. Thus,
for an image input, T'RE aims at outputting self-attention
maps that encode the dependencies among input tokens (im-
age patches), and T'RD devotes to producing the mapping
from source domain (I'RE input) to target domain (T'RD
input/output). In this work, we investigate the efficacy of
TRE and TRD on image harmonization task, as well as
effect analysis of different heads and layers, see Section 4.3.
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Figure 2. The image input pattern of using Transformer for vision.
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Figure 3. Our harmonization Transformer (HT) framework con-
tains a convolutional encoder-decoder (E£-D) involving a Trans-
former encoder (T'RFE) inside.

3.2. Harmonization Transformer

In order to eliminate the color inharmony caused by dif-
ferent light between foreground and background, we first
design a simple basic harmonization Transformer frame-
work, employing Transformer in a very basic convolutional
encoder-decoder architecture, as shown in Figure 3.

The CNN encoder E and decoder D are responsible for
compressing the input image to compact feature represen-
tation as Transformer input and reconstructing the Trans-
former output back to harmonized image, respectively. In
this way, we actually utilize CNN embedding for Trans-
former under a basic encoder-decoder architecture. Noting
that, for harmonization task with many information of in-
put image unchanged, T'"RE and T'R D can be considered to
play similar roles in harmonization relying on self-attention,
thus we only use 7'RE in our framework, see “Transformer
Encoder/Decoder” of Section 4.3 for analysis.

Formally, given a composite image Hand a foreground
mask M which indicates the inharmonious region as in-
put, our goal is to produce a harmonized image H as out-
put, where H is expected to be as close to real image H
as possible. Specifically, CNN encoder F(-) generates a
lower-resolution feature map F € R"*%X¢ where we use
h = %, w = %, and ¢ = 256. Then we reshape F to
sequence F/ € RM*¢ with pixels (corresponding to im-
age patches) as T'RE input tokens and channel aggregation
of each pixel as token embedding, also add with fixed po-
sition embeddings E using the sinusoidal version of vanilla
Transformer [36]. Further we inversely reshape the output
sequence of T'RE back to feature map with the same size as
F, and feed it into CNN decoder D(-) to attain harmonized
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Figure 4. Our disentangled harmonization Transformer (D-HT)
framework is a dual-pathway architecture for separating the com-
posite image into pseudo-reflectance and pseudo-illumination in-
trinsic images. Refer to Section 3.3 for more details.

result H. We formulate the whole process as:
H=D|¢(TRE[(EEM)+E])|,

where ¢ and ¢’ represent reshape and inverse reshape oper-
ations respectively.

It is also noteworthy that, we only use a single £; loss to
encourage H~ H:

L1 = Bgy g [l - ] 2)

3.3. Disentangled Harmonization Transformer

A further idea for better harmonizing composite images,
according to intrinsic image [2] and Retinex theory [26, 25],
is to separate light-dependent illumination and material-
dependent reflectance [16]. Therefore, we then devise a
dual-pathway framework for image harmonization, by sep-
arating the composite image into pseudo-reflectance and
pseudo-illumination intrinsic images ', and devote to disen-
tangling the light from background and put it on reflectance
for harmonization. Particularly, we employ Transformer in
both pathways, to leverage its advantages of long-range de-
pendencies learning for better harmonization.

We illustrate our framework of disentangled harmoniza-
tion Transformer in Figure 4. The pseudo-reflectance path-
way (top) is similar to the structure of harmonization Trans-
former (Section 3.2), since the output pseudo-reflectance
R can also be regarded as an image-to-image transforma-
tion. While the pseudo-illumination pathway (bottom) is
quite different, where we intend to map the background im-
age space to light latent space, and we choose FC embed-
ding on patches of input masked composite image without
overlapping, to acquire tokens with embeddings and posi-
tion embeddings as T RE, input, then we utilize a TRD,
connected to TRE;, with an initial zero light code and

'We add “pseudo-” prefix to indicate that they are actually not
physically-based but relative reflectance and illumination.

learnable light position as its input, to produce the back-
ground light code, finally we impose this light on the output
pseudo-reflectance of T"REr by employing a T RDj, yield-
ing the pseudo-illumination i. The harmonized image H
can finally be obtained via H =R o1 (® is element-wise
product) based on Retinex theory.

Formally, we first split background HY e RH*WxC
(channel number C = 3) into patch sequence ﬁbg €

RTX(P ‘©) (patch number T = P2 , and we use patch size
= §), then we flatten each patch (as token) and expand it
to C’ = 256 dimensions as its embedding though a linear
projection LP(-). We also add fixed position embeddings
E, to token embeddings and feed them into TRE(-). And
we further employ TRDy(-) to receive TREL(-) output
and light tokens t; € R%*C" (we set d; = 27 referring
to the 27 dimensional spherical harmonic coefficients of the
lighting) with learned light position embeddings E; as in-
put, producing background light code 1?9 € R4*C" a5 out-
put. Note that we use light code to represent light in latent
space, and light token to represent input of corresponding
Transformer. This process can be represented as:

1" = TRDy, [TREL (LP(HY) + E,). ¢ + Ez} NE)

Moreover, we employ T'RD;(+) receiving background
light tokens #; € R%*C" (1*9) and pseudo-reflectance to-
kens ¢, € R"*¢ from TRER with their corresponding po-
sition embeddings E; and E,. as input, to produce pseudo-
illumination tokens that will be reshaped and decoded by
D;(-), yielding the harmonized pseudo-illumination I:

i=Di[¢/(TRD: (0 + Bist, +E)]. @)

The harmonized pseudo-reflectance R can be attained via
Equation 1. So final harmonized image will be H=Rol
The only loss used is also a single £; loss (Equation 2).
Overall, we devise to employ two encoders and two
decoders of Transformer, where T RER receives patch
CNN embeddings and produces pseudo-reflectance, yet
TREj, receives patch FC embeddings and produces out-
put for TRDy, to capture background light, while TRD;
receives background light and pseudo-reflectance tokens
from TRER to produce pseudo-illumination, and finally
we combine pseudo-reflectance and pseudo-illumination to
yield harmonization. We hope our work can provide mean-
ingful reference for better harnessing vision Transformer.

4. Experiments on Image Harmonization

4.1. Datasets and Metrics

Synthesized iHarmony4 Dataset. We conduct experi-
ments on public synthesized iHarmony4 dataset [9] to ana-
lyze and evaluate our harmonization Transformers on image
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Dataset Metric | Composite | E-D (U-Net) E-D (CNN) ' DIH [35] SZAM[10] DoveNet [9] | Ours (HT) ' Ours (D-HC) Ours (D-HT)
PSNR1 33.99 34.94 35.58 ; 33.59 35.09 35.83 37.87 ; 36.85 38.76

Hcoco | fPSNRT 19.86 21.66 21.73 | 20.67 22.45 22.48 24.24 | 23.11 25.27
MSE| 69.37 41.54 40.92 | 56.17 35.65 34.26 20.99 | 29.84 16.89

fMSE] 996.59 684.33 627.33 1 798.99 542.06 551.01 377.11 | 468.68 299.30

PSNRT 28.52 33.72 34.58 | 32.36 34.23 35.13 36.10 | 35.08 36.88

HAdobesk | fPSNRT 17.52 23.52 24.04 ! 22.36 24.28 25.19 25.80 ! 24.67 26.78
MSE| 345.54 72.09 66.46 : 94.89 53.93 56.86 47.96 : 64.35 38.53

fMSE| 2051.61 508.53 435.16 | 593.03 404.62 380.39 321.14 | 390.57 265.11

PSNR1T 28.43 30.11 29.98 | 29.08 30.53 30.75 32.37 | 31.30 33.13

HFlickr fPSNRT 18.09 20.16 19.76 19.31 20.89 20.76 22.25 | 21.11 23.06
MSE| 264.35 135.16 156.62 1 168.35 123.36 125.85 88.41 | 109.60 74.51

fMSE| 1574.37 945.14 1002.23 ' 1099.13 785.65 827.03 617.26 ! 733.46 515.45

PSNR1 34.36 34.17 34.50 ! 33.59 34.48 34.87 36.38 ! 36.54 37.10

Hday2night fPSNR?T 19.14 19.86 19.64 ' 19.74 20.51 20.63 21.68 : 21.86 22.51
MSE| 109.65 62.60 95.79 | 86.25 54.39 57.17 58.14 | 52.64 53.01

fMSE| 1409.98 1114.96 1321.89 | 1129.40 989.07 1075.71 823.68 | 716.04 704.42

PSNR?T 31.78 34.03 34.64 | 32.73 34.32 35.04 36.71 | 35.71 37.55

All fPSNRT 18.97 22.00 22.15 1 20.99 22.77 23.04 24.43 | 23.32 25.41
MSE| 172.47 61.30 62.29 ! 80.55 51.13 51.51 37.07 ! 49.24 30.30

fMSE] 1376.42 669.94 625.67 ' 778.41 537.23 541.53 395.66 479.94 320.78

Note: we train DIH and SZAM yet use pre-trained DoveNet to obtain the results for comparison.
Table 1. Quantitative comparison across four sub-datasets of iHarmony4 [9]. 1 indicates the higher the better, and | indicates the lower

the better.

Bold means the best, and bold means the next best. E-D means encoder-decoder, and HT represents our harmonization

Transformer, while D-HC and D-HT denote our disentangled harmonization framework with CNN and Transformer respectively.

harmonization. iHarmony4 is composed of 4 sub-datasets:
HCOCO, HAdobe5k, HFlickr, and Hday2night, each of
which includes synthesized composite images, foreground
masks of composite images, and corresponding real images.
We follow the same settings of this dataset as DoveNet [9].

Real Composite Images. Following [35, 10, 9], we
also evaluate our method on 99 real composite images used
by [35] for subjective evaluation.

Objective Evaluation Metrics. Following [35, 9], we
use Mean Squared Error (MSE) and Peak Signal-to-Noise
Ratio (PSNR) as evaluation metrics. However, for image
harmonization task, it is more suitable and more accurate
to calculate the difference only in the foreground region
due to unchanged background [9], thus we also report fore-
ground MSE (fMSE) and foreground PSNR (fPSNR) as
better metrics, measuring how well the foreground is har-
monized. Noting that, we calculate fMSE and correspond-
ing fPSNR over each single image and then take average
across the dataset, so that they can be regarded as a better
indicator in evaluating harmonization generalization ability
of the method. Whereas, we argue that MSE and PSNR es-
sentially measure the average errors over all pixels across
the dataset, thus are not very suitable for tasks like harmo-
nization with a number of pixels (background) unchanged.
In our experiments, we use fMSE as the main metric.

Subjective Evaluation Metric. We invite 60 subjects to
participate in user study and acquire a total of 29700 pair-
wise results for all 99 images, with 30 results for each pair
of different methods on average. All subjects are not aware
of image harmonization task, and are only required to se-
lect the visually better one corresponding to better method

for each pair, then we record how many times one method
is selected in each pair on all 99 images as the statistics for
pairwise comparison of Bradley-Terry (B-T) model [3, 23],
to calculate global ranking score for each method.

4.2. Implementation Details

We train all our models with only a single £, loss, us-
ing Adam optimizer [22] with parameters of 5; = 0.5,
B2 = 0.999 for total 60 epochs. Initial learning rate is
set as e+ and decayed to e~ after 40 epochs. The final
activation function is tanh for harmonized image H in Sec-
tion 3.2, pseudo intrinsic images R and T in Section 3.3.
We resize input images as 256 x 256 for training and test-
ing, and our models produce harmonized images with the
same size. Specially, output pseudo-reflectance and pseudo-
illumination are normalized to [0, 1] to recover H. All our
model architectures and details are in supplementary file.

4.3. Harmonization Transformer

Baseline and Comparison. For comparison, we first
construct an encoder-decoder U-Net (E-D U-Net) and a
basic encoder-decoder CNN (E-D CNN with Encoder-
ResBlocks-Decoder structure) as baselines. Table 1 shows
quantitative comparison of image harmonization across four
sub-datasets of iHarmony4, comparing our harmonization
Transformer (HT with 2-head and 9-layer T'RE, Figure 3)
with baselines and state-of-the-art methods: DIH [35],
S2AM [10] and DoveNet [9]. Besides, we also provide eval-
uation results of composite images as reference.

As can be seen, compared to E-D U-Net, E-D CNN per-
forms better on HCOCO and HAdobe5SK while worse on
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Real Composite DIH
Figure 5. Qualitative comparison across four sub-datasets of iHarmony4 [9] (one example for each dataset). From top to bottom: HCOCO,
HAdobe5k, HFlickr, and Hday2night. Red boxes in composite images mark foreground.

HFlickr and Hday2night, and the reason might be that, U-
Net has global receptive field to capture global context but
its skip connections may bring in inharmony to reconstruc-
tion, while CNN usually has limited receptive field due to
its inductive bias of locality. In summary, CNN works better
than U-Net with lower fMSE on the whole dataset. But our
simple HT model outperforms not only the baselines but
also the state-of-the-arts, indicating the efficacy of Trans-
former for modeling long-range context on harmonization.

MSE vs. fMSE. It is worth mentioning that our HT
model is superior to S?AM in fMSE, but inferior to S?AM
in MSE on Hday2night, mainly because that MSE evaluates
harmonization performance at dataset level while fMSE re-
flects harmonization ability at image level which is more
valuable and generalized, for instance, one method may ob-
tain lower MSE yet higher fMSE because it harmonizes
some images with big foreground very better while har-
monizes some images with small foreground very worse,
demonstrating unstable performance.

SFAM DoveNet Ours(D-HT)

Transformer Input. We then conduct ablation study to
investigate the impact of token number and embedding type
with respect to Transformer performance based on the struc-
ture shown in Figure 2, where we use a 1-head and 3-layer
TRE for TR following by a CNN decoder for reconstruc-
tion. We use stride S to adjust token numbers 7". Table 2
presents that the performance is continuously improved
with the increase of token number (N = 4N = 16N) for
both linear and nonlinear token embedding. Besides, for
a fixed token number, e.g. 4N, the performance is similar,
no matter which embedding type (linear FC or CONYV, or
nonlinear MLP or CNN) we choose. Thus we can spec-
ulate that Transformer performance might be sensitive to
token number while insensitive to embedding type on har-
monization. This makes sense that, Transformer can mine
richer context if we provide long sequence with more tokens
even redundancy may exist (overlapping patches), and the
current different embedding methods can provide effective
information for image patches so that they may not matter.
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Token T=N T=4N T=I16N
Embedding S=8 S=4 S=2
FC 611.25 522.84  447.64

CONV 610.01 524.87  446.54

MLP 596.05 514.19  440.76

CNN 598.17 520.19  443.98

Table 2. Quantitative comparison of using different token numbers
T adjusted by stride S, and embedding types (linear FC/CONV
and nonlinear MLP/CNN) on fMSE]|.

6xlayer 9xlayer 12 xlayer
E(3)+D(3)| E(6) |E(3)+D(6)| E(9) |[E(3)+D(9)| E(12)
451.80 [459.47| 403.76 |415.60| 426.56 [419.08

Table 3. Quantitative comparison of using different Transformer
encoder (E) and decoder (D) layer numbers on fMSEJ.

3xlayer 6 xlayer 9xlayer 12xlayer
1 xhead 502.37 459.47 415.60 419.08
2xhead 479.53 450.14 395.66 400.11
4xhead 461.22 406.99 392.74 397.37

Table 4. Quantitative comparison of using different Transformer
layer numbers and attention heads in HT model on fMSE|.

Transformer Encoder/Decoder. We further design ex-
periments to validate the effect of Transformer encoder and
decoder layer numbers on harmonization based on the HT
structure (Figure 3). Table 3 demonstrates that the perfor-
mance is similar if encoder layer number is equal to to-
tal layer number of encoder and decoder, although the de-
coder has an extra attention sub-layer. Therefore, in our HT
model, we only use the encoder TRE.

Transformer Head and Layer. We lastly conduct ab-
lative experiments to analyze the impact of using different
Transformer layer numbers and attention heads on harmo-
nization with our HT model (Figure 3). Table 4 tells us that,
both more layers and more heads are helpful for improving
performance, but if we use more than 9 layers, the room for
performance improvement will be limited.

4.4. Disentangled Harmonization Transformer

Comparison. We move on to our disentangled harmo-
nization framework, where we build two disentangled mod-
els of using CNN (D-HC) and Transformer (D-HT with 2-
head 9-layer TRE and T'RD, Figure 3) respectively. To
validate the effectiveness of our disentanglement, we con-
struct D-HC model by replacing T'RER with ResBlocks,
TRE;, and TRDj with Encoder and MLP, TRD; with
AdalN [19] in D-HT model. Table 1 shows that, D-HC
model achieves competitive or superior results compared
to state-of-the-art methods, indicating that the disentangle-
ment does contribute to harmonization. Also our D-HT
model performs the best with a very low fMSE (320.78 vs.
537.23 of S2AM and 541.53 of DoveNet). Note that D-HC
outperforms HT on Hday2night, probably due to better har-

Method PSNRT fPSNRT MSE] fMSEJ
Roenn+lonn | 3571 2332 4924 479.94
Rrgpe+lony | 3717 24.96 3199 35255
Ronn+lTr | 3726 25.07 3222  348.80
Rrre+lrp | 37.55 25.41 30.30 320.78

Table 5. Ablation study on our disentangled harmonization.

S =
Figure 6. Image harmonization visual results with normal masks

(middle row) and inverted masks (bottom row) on composite im-
ages (top row). Red boxes mark foreground of normal masks.

monization ability of disentanglement (D-HC) and insuffi-
cient training data (only 311 images) for Transformer (HT)
that lacks inductive bias.

Analysis of Disentanglement. We conduct ablation
study on our D-HT model, by replacing one pathway of re-
flectance (R) and illumination (I) with that (CNN) in D-HC
model, resulting in four variants listed in Table 5, and the
results show the strength of Transformer on harmonization.

Moreover, we design an additional experiment by in-
verting the normal masks, that is, exchanging foreground
and background to yield inverted masks, so that our D-
HT model tries to harmonize background according to fore-
ground. Figure 6 presents harmonized results with normal
masks (middle row) and inverted masks (bottom row) for
contrast, indicating that D-HT can produce promising har-
monized outputs from arbitrary foreground masks.

Analysis of Light. We then walk in light latent space
to see if Transformer can learn relevant light representation.
Given an image, we use D-HT model to obtain its light la-
tent code, and then change it arbitrarily to produce results by
recovery. Figure 7 illustrates examples with outputs under
different light conditions, indicating efficacy of our design.

We further conduct experiment to employ D-HT model
for transferring light from source images to target image.
We change light code of target image by interpolating light
latent codes of two source images for producing results
shown in Figure 8, which demonstrate the light latent space.

4.5. Real Composite Image Harmonization

We also evaluate D-HT on real composite image har-
monization compared with state-of-the-arts. Table 6 and
Figure 9 demonstrate that our method achieves best perfor-
mance with highest B-T score and best visual effect.
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Figure 7. Changing light latent code of an image (left) from Trans-
former produces different results in different lighting conditions.

Target Sourcel =10 «a=08 «a=06 «a=04 =02 «a=0.0 Source?2

Figure 8. Changing light latent code of target image (L) produces
different results, by interpolating light latent codes of two source
images (Ls1 and Lg2) with Ly = aeLs1 + (1 — ) Lsa.

Method
B-T score?

Composite DIH [35] S?AM [10] DoveNet [9] Ours
0.623 0.831 0.874 1.032 2.248

Table 6. User study comparison on 99 real composite images.

] DoveNet Ours(D—H)

] Composite ] DH ] S2AM
Figure 9. Visual comparison to harmonize real composite images.

5. Beyond Image Harmonization
5.1. Image Inpainting

We apply our HT model to free-form image inpainting
task on Paris StreetView dataset [13], compared to state-of-
the-art RFR-Net [27]. Image inpainting aims to fill missing
pixels of an image, by synthesizing visually realistic and
semantically plausible pixels that are coherent with existing
ones. Table 7 and Figure 10 present superior performance of
our HT model (with the same losses as RFR-Net), by giv-
ing full play to the advantage of Transformer in modeling
long-term correlations between distant contextual informa-
tion and the missing hole.

5.2. Image Enhancement

We also employ our D-HT model to image enhance-
ment task on MIT-Adobe-5K-UPE dataset [37], compared
to state-of-the-art DeepLPF [28]. Insufficient lighting while
imaging results in degraded images, especially underex-
posed photos. Thus we use D-HT model to decompose ob-
served images into reflectance and illumination via an extra
reconstruction loss, and simply treat the reflectance as the
final enhanced results refer to [15]. In this experiment, we

Method £y err.l PSNRT SSIM T
RFR-Net [27] 0.028 28.42 0.8920
Ours (HT) 0.021 29.55 0.9047

Table 7. Quantitative comparison of image inpainting on Paris
StreetView [13].

= :

Input RFR-Net Ours(HT) Ground Truth
Figure 10. Visual comparison of image inpainting on Paris
StreetView [13].

Method PSNRT SSIMT LPIPS]
DeepLPF [25] 23.00 0.726 0.050
Ours 24.22 0.810 0.036

Table 8. Quantitative comparison of image enhancement on MIT-

Adobe-5K-UPE [37].
f O

Input DeepLPF

Ours(D-HT)
Figure 11. Visual comparison of image enhancement on MIT-
Adobe-5K-UPE [37].

Ground Truth

retrained DeepLPF model on MIT-Adobe-5K-UPE to ob-
tain results for comparison. Table 8 shows that D-HT out-
performs DeepLPF in terms of PSNR, SSIM, and LPIPS.
Figure 11 further validate that our D-HT model can recover
distinct contrast and natural color as well as clear details,
thanks to the design of disentanglement with Transformer.

6. Conclusion

In this paper, we propose a novel way of image harmo-
nization with Transformer, aiming to eliminate the inhar-
mony by leveraging Transformer’s modeling ability of long-
range context dependencies. We not only build harmoniza-
tion Transformer and disentangled harmonization Trans-
former frameworks, but also design comprehensive exper-
iments to explore and analyze the Transformer on harmo-
nization. We employ our methods on tasks beyond image
harmonization, i.e., image inpainting and image enhance-
ment, further illustrating the superiority of our design. We
hope that our work opens up new avenues for both image
harmonization and vision Transformer.
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