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Abstract

Deep generative approaches have recently made consid-
erable progress in image inpainting by introducing struc-
ture priors. Due to the lack of proper interaction with im-
age texture during structure reconstruction, however, cur-
rent solutions are incompetent in handling the cases with
large corruptions, and they generally suffer from distorted
results. In this paper, we propose a novel two-stream net-
work for image inpainting, which models the structure-
constrained texture synthesis and texture-guided struc-
ture reconstruction in a coupled manner so that they better
leverage each other for more plausible generation. Further-
more, to enhance the global consistency, a Bi-directional
Gated Feature Fusion (Bi-GFF) module is designed to ex-
change and combine the structure and texture information
and a Contextual Feature Aggregation (CFA) module is de-
veloped to refine the generated contents by region affin-
ity learning and multi-scale feature aggregation. Quali-
tative and quantitative experiments on the CelebA, Paris
StreetView and Places2 datasets demonstrate the superi-
ority of the proposed method. Our code is available at
https://github.com/Xiefan-Guo/CTSDG.

1. Introduction
Image inpainting [3] refers to the process of reconstruct-

ing damaged regions of an image while simultaneously

maintaining its overall consistency, which is a typical low-

level visual task with many practical applications, such as

photo editing, distracting object removal, and restoring cor-

rupted parts.

As with most computer vision problems, image inpaint-

ing has been largely advanced by the widespread use of

deep learning during the past decade. Different from the

traditional methods [2, 5] that gradually fill in missing areas

by searching for the most similar patches from known re-

gions, the deep generative ones [19, 7, 31, 33] capture more

high-level semantics and do a better job for images with

*Corresponding author.

(a) (b) (c) (d)

Figure 1: High-quality inpainting results. From left to right:

(a) input corrupted images, (b) our reconstructed structures,

(c) our filled results, and (d) ground-truth images.

non-repetitive patterns. There also exists another trend to

combine the advantages of deep generative and traditional

patch-based methods for image inpainting [35, 30, 24, 15],

delivering inpainting contents with both realistic textures

and plausible semantics. Moreover, updated versions of

vanilla convolution are investigated [13, 27, 36], where op-

erations are masked and normalized to be conditioned only

on valid pixels, achieving promising performance for irreg-

ular corruptions. Nevertheless, the methods above expose

a common drawback in recovering the global structure of

the image, as a generative network is not as powerful as ex-

pected for this issue.

To deal with this problem, a number of multi-stage meth-

ods are proposed to explicitly incorporate structure model-

ing, which hallucinate structures of missing regions in the

first stage and use them to guide pixel generation in the sec-

ond stage. For instance, EdgeConnect [18] encodes such

structures by edges, while [20] and [28] adopt interme-

diate edge-preserved smooth images and foreground con-

tours. These alternatives show the results with improved

structures and textures. Unfortunately, acquiring reason-

able edges from corrupted images is itself a very challeng-
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ing task, and taking unstable structural priors tends to incur

large errors in those series-coupled frameworks.

More recently, a few attempts mix the modeling pro-

cesses of structures and textures. PRVS (Progressive Re-

construction of Visual Structure) [10] and MED (Mutual

Encoder-Decoder) [14] are the representatives, and they

generally exploit a shared generator for both textures and

structures. Despite some performance gains reported, the

relationship between structures and textures is not fully con-

sidered in this single entangling architecture. In particular,

since image structures and textures correlate throughout the

network, it is difficult for them to convey holistic comple-

mentary information to assist the other side. Such a fact

indicates that there is still much space for improvement.

In this paper, we propose a novel two-stream net-

work which casts image inpainting into two collaborative

subtasks, i.e., structure-constrained texture synthesis and

texture-guided structure reconstruction. In this way, the

two parallel-coupled streams are individually modeled and

combined to complement each other. Correspondingly, a

two-branch discriminator is developed to estimate the per-

formance of this generation, which supervises the model to

synthesize realistic pixels and sharp edges simultaneously

for global optimization. In addition, we introduce a novel

Bi-directional Gated Feature Fusion (Bi-GFF) module to

integrate the rebuilt structure and texture feature maps to

enhance their consistency, along with a Contextual Feature

Aggregation (CFA) module to highlight the clues from dis-

tant spatial locations to render finer details. Due to the

dual generation network as well as the specifically designed

modules, our approach is able to achieve more visually con-

vincing structures and textures (see Figure 1, zoom in for a

better view).

Experiments are extensively conducted on the CelebA

[16], Paris StreetView [4] and Places2 [39] datasets for eval-

uation. Qualitative and quantitative results demonstrate that

our model significantly outperforms the state-of-the-art.

The main novelties and contributions are as follows:

• We propose a novel two-stream network for image in-

painting, which models structure-constrained texture

synthesis and texture-guided structure reconstruction

in a coupled manner so that the dual generation tasks

better facilitate each other for more accurate results.

• We design a Bi-directional Gated Feature Fusion (Bi-

GFF) module to share and combine information be-

tween the structure and texture features for consistency

enhancement and a Contextual Feature Aggregation

(CFA) module to yield more vivid details by model-

ing long-term spatial dependency.

• We achieve the new state-of-the-art performance on

multiple public benchmarks both qualitatively and

quantitatively.

2. Related Work

2.1. Traditional Methods

The traditional methods can be mainly summarized

into two categories, i.e., diffusion-based and patch-based.

Diffusion-based methods [3, 1] render missing regions re-

ferring to the appearance information of the neighboring

ones. Their results are not so good due to this prelimi-

nary searching mechanism. In patch-based methods [2, 29],

pixel completion is conducted by searching and pasting the

most similar patches from undamaged regions of source

images, which takes advantage of long-distance informa-

tion. These methods achieve better performance, but they

are computationally expensive when calculating patch sim-

ilarities between missing and available regions and struggle

to reconstruct patterns with rich semantics.

2.2. Deep Generative Methods

The deep generative methods [35, 36, 8, 34, 38, 40, 37,

26, 12] are currently dominating, which effectively extract

meaningful semantics from damaged images and recover

reasonable contents with high visual fidelity, owing to their

powerful feature learning ability.

Recently, Wang et al. [25] significantly improve the

quality of image synthesis with sharper edges by involving

structural information. Subsequently, a number of multi-

stage methods that serially incorporate additional structural

priors are proposed, producing more impressive results.

EdgeConnect [18] extracts image structures by edges, based

on which the holes are filled. Xiong et al. [28] show

a similar model while it employs foreground object con-

tours as structure priors instead of edges. Ren et al. [20]

point out that edge-preserved smooth images convey bet-

ter global structure since more semantics are captured. But

these methods are sensitive to the accuracy of structures

(e.g. edges and contours) which is not easy to guarantee. To

overcome this weaknesses, several methods attempt to ex-

ploit the correlation of textures and structures. Li et al. [10]

design a visual structure reconstruction layer to progres-

sively entangle the generation of image contents and struc-

tures. Yang et al. [32] introduce a multi-task framework to

generate sharp edges by adding structural constraints. Liu

et al. [14] present a mutual encoder-decoder network to

simultaneously learn the CNN features that correspond to

structures and textures with different layers. However, it

is rather difficult to model both textures and structures and

make them sufficiently complement each other in a single

shared architecture.

Our study also makes use of image structural information

and figures out a different but more effective two-stream

network, where structure-constrained texture synthesis and

texture-guided structure reconstruction are jointly consid-

ered. The two subtasks better facilitate each other, leading
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Figure 2: Overview of the proposed method (best viewed in color). Generator: Image inpainting is cast into two subtasks,

i.e., structure-constrained texture synthesis (left, blue) and texture-guided structure reconstruction (right, red), and the two

parallel-coupled streams borrow encoded deep features from each other. The Bi-directional Gated Feature Fusion (Bi-GFF)

module and Contextual Feature Aggregation (CFA) module are stacked at the end of the generator to further refine the results.

Discriminator: The image branch estimates the generated texture, while the edge branch guides structure reconstruction.

to more convincing textures and structures in dual genera-

tion.

3. Approach
As illustrated in Figure 2, the proposed method is im-

plemented as a generative adversarial network, where the

two-stream generator jointly synthesizes image textures and

structures, and the discriminator judges their quality and

consistency. In this section, we detailedly describe the gen-

erator, the discriminator, and the loss functions.

3.1. Generator

The generator is a two-stream architecture, modeled by

a U-Net variant, as shown in Figure 2 (a). At the encoding

stage, the corrupted image and its corresponding edge map

are individually projected into the latent space, where the

left branch focuses on texture features and the right branch

targets structure features. At the decoding stage, the texture

decoder synthesizes structure-constrained textures by bor-

rowing structure features from the structure encoder, while

the structure decoder recovers texture-guided structures by

taking texture features from the texture encoder. With such

a dual generation architecture, structures and textures well

complement each other, leading to improved results.

In this encoder-decoder based backbone, we replace all

the vanilla convolutions with the partial convolution lay-

ers to better capture information from irregular boundaries,

since partial convolutions are conditioned only on uncor-

rupted pixels. Besides, skip connections are utilized to

produce more sophisticated predictions by combining low-

level and high-level features at multiple scales. To enhance

the consistency of the rebuilt structures and textures, the

feature maps output by the two branches are further fused to

render the final result through a specially designed Bi-GFF

module followed by a CFA module. Refer to the supple-

mentary material for more details of the backbone.

Bi-directional Gated Feature Fusion (Bi-GFF). This

module is proposed to further combine the decoded tex-

ture and structure features. It exchanges messages between

the two kinds of information, where soft gating is exploited

to control the rate. Due to this integration operation, the

feature is refined and simultaneously texture- and structure-

aware. Figure 3 illustrates the Bi-GFF module.

Specifically, the texture feature map output by the de-

coder is denoted as F t and the structure feature map is de-

noted as F s. To build texture-aware structure features, a

soft gating Gt, which controls to what extent the texture

information is integrated, is formulated as:

Gt = σ (g (Concat (F t,F s))) , (1)

where Concat(·) is channel-wise concatenation, g(·) is the

mapping function implemented by a convolution layer with

the kernel size of 3, and σ(·) is Sigmoid activation. With

Gt, we adaptively merge F t into F s as:

F
′
s = α(Gt � F t)⊕ F s, (2)

where α is a training parameter initialized to zero, and

� and ⊕ denote element-wise multiplication and element-

wise addition, respectively.

Symmetrically, we calculate the structure-aware texture

feature F
′
t as follows:

Gs = σ (h (Concat (F t,F s))) , (3)

F
′
t = β(Gs � F s)⊕ F t, (4)
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Figure 3: Illustration of the Bi-directional Gated Feature

Fusion (Bi-GFF) module, which entangles the decoded

structure and texture features to refine the results.

where h follows the same pattern as g and β is a training

parameter initialized to zero as α.

Finally, we fuse F
′
s and F

′
t to obtain the integrated fea-

ture map F b by channel-wise concatenation:

F b = Concat(F
′
s,F

′
t). (5)

Contextual Feature Aggregation (CFA). To better learn

which existing regions contribute to filling holes, this mod-

ule is designed, which enhances the correlation between lo-

cal features of an image and maintains the overall image

consistency. It is inspired by [35], but unlike its fixed-scale

patch matching scheme, in this study, multi-scale feature

aggregation is adopted to encode rich semantic features at

multiple scales so that it well balances the accuracy and

complexity to handle more challenging cases, in particular,

scale changes. The detailed process is depicted in Figure 4.

To be specific, given a feature map F , we first extract the

patches of 3×3 pixels and calculate their cosine similarities

as:

Si,j
contextual =

〈
f i

‖f i‖2
,

f j

‖f j‖2

〉
, (6)

where f i and f j correspond to the i-th and j-th patch of the

feature map, respectively.

We then apply softmax to the similarities to obtain the

attention score of each patch:

Ŝ
i,j

contextual =
exp

(
Si,j

contextual

)
∑N

j=1 exp
(
Si,j

contextual

) . (7)

Next, the extracted patches are reused to reconstruct the

feature map based on the attention map:

f̃ i =
N∑
j=1

f j · Ŝ
i,j

contextual, (8)
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Conv

Extract Patches

Match

W
ei

gh
ts

  
G

en
er

at
or

Reconstruct

··· ···

[dilation=8]

[dilation=4]

[dilation=2]

[dilation=1]

Deconv

Pixel-wise Weight maps

Output Feature

Pixel-wise Weight Map Generator

Feature Feedforward

Element-wise Multiplication

Element-wise Addition

Skip Connection

Input

Input Feature

Region affinity learning

Multi-scale feature aggregation

Figure 4: Illustration of the Contextual Feature Aggregation

(CFA) module, which models long-term spatial dependency

by capturing features at diverse semantic levels.

where f̃ i is the i-th patch of the reconstructed feature map

F rec. The operations above are implemented as convo-

lution, channel-wise softmax, and deconvolution, respec-

tively.

When the feature map is reconstructed, four sets of di-

lated convolution layers with different dilation rates are

used to capture multi-scale semantic features:

F k
rec = Convk (F rec) , (9)

where Convk(·) denotes dilated convolution layers with di-

lation rate of k, k ∈ {1, 2, 4, 8}.

To better aggregate the multi-scale semantic features,

we further design a pixel-level weight map generator Gw,

which aims to predict the pixel-wise weight maps. In our

implementation, Gw consists of two convolution layers with

the kernel size of 3 and 1, respectively, each of which is fol-

lowed by ReLU non-linear activation, and the number of the

output channels for Gw is set to 4. The pixel-wise weight

maps are calculated as:

W = Softmax (Gw (F rec)) , (10)

W 1,W 2,W 4,W 8 = Slice(W ), (11)

where Softmax(·) is channel-wise softmax and Slice(·) is

channel-wise slice. Finally, the multi-scale semantic fea-

tures are aggregated to produce the refined feature map F c

by element-wise weighted sum:

F c =
(
F 1

rec �W 1
)⊕ (

F 2
rec �W 2

)⊕(
F 4

rec �W 4
)⊕ (

F 8
rec �W 8

)
.

(12)

Note, as the mask update mechanism of partial convo-

lution layers is exploited, there is no need to distinguish
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the foreground and background pixels of the image as [35]

does. Skip connection [21] is adopted to prevent semantic

damage caused by patch-shift operations and a pair of con-

volution and deconvolution layers are seamlessly embedded

into our architecture to improve computational efficiency.

3.2. Discriminator

Motivated by global and local GANs [7], Gated Con-

volution [36] and Markovian GANs [9], we develop a two-

stream discriminator to distinguish genuine images from the

generated ones by estimating the feature statistics of both

texture and structure. The discriminator is shown in Fig-

ure 2 (b). The texture branch includes three convolution

layers with the kernel size of 4 and stride of 2, tailed by

two convolution layers with the kernel size of 4 and stride

of 1. We use the Sigmoid non-linear activation function at

the last layer and the Leaky ReLU with the slope of 0.2 for

other layers. The structure branch shares the same pattern

as the upper stream, where the input edge map is detected

by a residual block [6] followed by a convolution layer with

the kernel size of 1. Finally, the outputs of the two branches

are concatenated in the channel dimension, based on which

we calculate the adversarial loss.

Different from the case in the texture branch, it is in-

tractable to optimize the adversarial loss of the structure

branch only with the detected edge map, mainly due to the

sparse nature of the edge. We therefore adopt the gray-scale

image as an additional condition and feed the paired data as

the input in the structure branch, as several previous studies

do [28, 18]. As such, the structure discriminator not only es-

timates the authenticity of the generated structure, but also

guarantees its consistency with the ground-truth image. Be-

sides, spectral normalization [17] is used, as it proves effec-

tive in solving the well-known training instability problem

of generative adversarial networks.

3.3. Loss Functions

The model is trained with a joint loss, containing the re-

construction loss, perceptual loss, style loss and adversarial

loss, to render visually realistic and semantically reasonable

results.

Formally, let G be the generator and D be the discrimi-

nator. Denote by Igt the ground-truth image, Egt the com-

plete edge map, Y gt the gray-scale image, M in the initial

binary mask (with value 1 for existing region, 0 otherwise),

Iin = Igt �M in the damaged image, Ein = Egt �M in

the damaged edge map, and Y in = Y gt � M in the dam-

aged gray-scale image. The output of our generator is de-

fined as Iout,Eout = G(Iin,Ein,Y in,M in).
Reconstruction Loss. We adopt the �1 distance between

Iout and Igt as the reconstruction loss, formulated as:

Lrec = E
[‖Iout − Igt‖1

]
. (13)

Perceptual Loss. Since the reconstruction loss struggles to

capture high-level semantics, we introduce the perceptual

loss Lperc to evaluate the global structure of an image. It

measures the �1 distance of Iout to Igt in the feature space

defined by the VGG-16 network [23] pre-trained on Ima-

geNet [22]:

Lperc = E

[∑
i

‖φi (Iout)− φi (Igt)‖1
]
, (14)

where φi(·) denotes the activation map of the i-th pooling

layer from VGG-16 given the input image I∗. In our imple-

mentation, pool-1, pool-2 and pool-3 are used.

Style Loss. We further include the style loss to ensure style

consistency. Similarly, the style loss calculates the �1 dis-

tance between feature maps:

Lstyle = E

[∑
i

‖(ψi (Iout)− ψi (Igt))‖1
]
, (15)

where ψi(·) = φi(·)Tφi(·) denotes the Gram matrix con-

structed from the activation map φi.

Adversarial Loss. The adversarial loss is to guarantee the

visual authenticity of the reconstructed image as well as the

consistency of textures and structures, defined as:

Ladv = min
G

max
D

EIgt,Egt
[logD (Igt,Egt)]

+ EIout,Eout log [1−D (Iout,Eout)] .
(16)

Intermediate Loss. To encourage the structure and texture

features to be accurately captured by the two decoders, re-

spectively, we introduce intermediate supervisions on F s

and F t:

Linter = Lstructure + Ltexture

= BCE(Egt,Ps(F s)) + �1(Igt,Pt(F t)),
(17)

where Ps and Pt denote the projection functions imple-

mented by a residual block followed by a convolution layer,

which map F s and F t to edge map and RGB image, re-

spectively.

In summary, the joint loss is written as:

Ljoint = λrecLrec + λpercLperc + λstyleLstyle

+ λadvLadv + λinterLinter,
(18)

where λrec, λperc, λstyle, λadv and λinter are the tradeoff

parameters, and we empirically set λrec = 10, λperc = 0.1,

λstyle = 250, λadv = 0.1, and λinter = 1.

4. Experiments
Extensive experiments are conducted on three public

datasets for both subjective and objective evaluation. Ab-

lation studies are also performed to validate the specifically

designed architecture and modules.
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(a) Input (b) PatchMatch (c) PConv (d) DeepFillv2 (e) RFR (f) MED (g) Ours (h) Ground-truth

Figure 5: Qualitative comparison on CelebA, Paris StreetView and Places2 (zoom in for a better view): (a) input corrupted

images, (b) PatchMatch [2], (c) PConv [13], (d) DeepFillv2 [36], (e) RFR [11], (f) MED [14], (g) Ours, and (h) ground-truth

images.

4.1. Experimental Settings

We evaluate the proposed method on the CelebA [16],

Paris StreetView [4] and Places2 [39] datasets, which are

widely adopted in the literature, and we follow their original

training, testing, and validation splits. Irregular masks are

obtained from [13] and classified based on their hole sizes

relative to the entire image with an increment of 10%. All

the images and corresponding masks are resized to 256 ×
256 pixels.

The model is implemented in PyTorch. Training is

launched on a single NVIDIA 1080TI GPU (11GB) with the

batch size of 6, optimized with the Adam optimizer. Analo-

gous to [13], we first use a learning rate of 2× 10−4 for ini-

tial training, then finetune the model with a learning rate of

5× 10−5, and freeze the Batch Normalization (BN) param-

eters of the generator. The discriminator is trained with a

learning rate of 1/10 of the generator. It takes around 4 days

to train the models on CelebA and Paris StreetView and 10

days on Places2. The fine-tuning is completed within one

day. The detailed architectures of the networks are shown

in the supplementary material.

4.2. Qualitative Comparison

Figure 5 compares our results with the ones of the repre-

sentative methods including the current state-of-the-arts on

the three benchmarks. It can be seen, as a classical patch-

based method, PatchMatch [2] fails in handling large holes.

PConv [13] is suitable for irregular corruptions, but obvi-

ous artifacts can be observed in Figure 5 (c). DeepFilllv2

[36] suffers from over-smoothing predictions and distorted

structures. With the Recurrent Feature Reasoning module,

RFR [11] yields competitive results; however, the details are

still not so elegant as ours (the face and sky in Figure 5 serve

as examples). MED [14] attempts to correlate structure and

texture generation, while the shared generator is inadequate

for generating sharp edges and clear textures (e.g., facades

in Figure 5).

We also show additional comparison to EdgeConnect

[18] and PRVS [10] in Figure 6 as these methods all claim to

improve results by reconstructing image structures. Com-

paratively, the proposed model recovers more reasonable

and sharper structures, leading to better results.

To sum up, our model is able to hallucinate more mean-

ingful structures and vivid textures through dual generation.
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(a) Input (b) EdgeConnect (c) PRVS (d) Ours (e) EdgeConnect (f) PRVS (g) Ours (h) Ground-truth

Figure 6: Visual comparison of different structure-based methods on CelebA, Paris StreetView and Places2 (zoom in for a

better view): (a) input corrupted images; (b, c, d) reconstructed structures of EdgeConnect [18], PRVS [10] and Ours; (e, f,

g) corresponding filled results of EdgeConnect [18], PRVS [10] and Ours; and (h) ground-truth images.

Metrics LPIPS† PSNR¶ SSIM¶ User Study¶

Mask Ratio 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-60%

PatchMatch [2] 0.074 0.183 0.332 30.02 24.77 20.51 0.864 0.680 0.487 2.7%

PConv [13] 0.065 0.134 0.283 30.19 25.18 21.20 0.885 0.730 0.527 4.0%

DeepFillv2 [36] 0.056 0.123 0.266 30.32 25.34 21.48 0.889 0.735 0.531 14.0%

RFR [11] 0.048 0.101 0.239 30.74 25.80 21.99 0.899 0.750 0.553 23.3%

EdgeConnect [18] 0.061 0.131 0.268 30.28 25.30 21.39 0.886 0.737 0.535 4.7%

PRVS [10] 0.057 0.124 0.257 30.30 25.39 21.50 0.893 0.742 0.541 5.3%

MED [14] 0.053 0.120 0.248 30.41 25.45 21.63 0.895 0.745 0.547 6.0%

Ours 0.042 0.095 0.227 30.81 25.97 22.23 0.904 0.759 0.561 40.0%

Table 1: Objective quantitative comparison and user study on Places2 (†Lower is better; ¶Higher is better).

4.3. Quantitative Comparison

Objective evaluation. We quantitatively evaluate the pro-

posed method using three major metrics: LPIPS, PSNR and

SSIM, and compare the scores to those of the state-of-the-

art counterparts with irregular mask ratios of 0-20%, 20-

40% and 40-60%. Table 1 shows the results achieved on the

Places2 dataset, where the proposed method outperforms

the other approaches, clearly demonstrating its effective-

ness. More comparison on the CelebA and Paris StreetView

datasets is shown in the supplementary material.

User Study. We further perform subjective user study. 10

volunteers with image processing expertise are involved in

this evaluation. They are invited to choose the most real-

istic image from those inpainted by the proposed method

and the representative state-of-the-art approaches. Specifi-

cally, each participant has 15 questions, which are randomly

sampled from the Places2 dataset. We tally the votes and

show the statistics in Table 1. Our method performs more

favorably against the other ones by a large margin, clearly

validating its effectiveness.

4.4. Analysis on Network Architecture

Our model assumptions include that structure priors are

essential to image inpainting and dual generation of tex-

tures and structures is beneficial. We therefore experimen-

tally verify the credit of such architecture design on Paris

StreetView.

On Structure Priors. To highlight the structure priors, we

build a single-stream network as baseline, which fills miss-

ing regions by solely modeling texture features, and the dis-

criminator is single-stream accordingly. As shown in Fig-

ure 7 (b), the baseline method does not well deal with com-

plex structures and tends to smooth out the detailed textures

in case of large corruptions. The quantitative results in Ta-

ble 2 also indicate that our network with structure priors

significantly improves the baseline.

On Two-stream Network Architecture. To further high-

light the two-stream dual generation architecture, we com-

pare it with a multi-task single-stream network, which is

tailed by two branches to model the image structure and tex-

ture simultaneously. We enlarge its channels to make it have
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(a) Input (b) w/o structure (c) single stream (d) w/o Bi-GFF (e) w/o CFA (f) w/ CA (g) Ours (h) Ground-truth

Figure 7: Visualization of the effects of network architecture and individual modules on Paris StreetView.

Metrics LPIPS† PSNR¶ SSIM¶

Mask Ratio 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

w/o structure priors 0.054 0.129 0.251 31.72 26.71 22.22 0.909 0.755 0.550

single-stream 0.051 0.122 0.245 32.27 27.03 22.59 0.913 0.764 0.558

w/o Bi-GFF 0.045 0.114 0.236 32.61 27.20 22.75 0.919 0.772 0.567

w/o CFA 0.049 0.119 0.243 32.34 27.09 22.64 0.914 0.766 0.561

w/ CA 0.043 0.115 0.240 32.54 27.15 22.69 0.920 0.769 0.566

Ours 0.039 0.107 0.226 32.93 27.48 22.89 0.923 0.777 0.573

Table 2: Quantitative ablation study on Paris StreetView.

the same amount of parameters as the proposed network.

The Bi-GFF and CFA modules are embedded to refine gen-

eration as the proposed model. As shown in Figure 7 (c), the

two-stream architecture exhibits superior performance with

more visually reasonable structures and detailed textures.

Quantitative results in Table 2 also validate the advantages

of texture and structure dual generation.

4.5. Ablation Study

On Bi-directional Gated Feature Fusion. The Bi-GFF

module is developed to enhance the consistency of the re-

built structures and textures. For the results obtained us-

ing a simpler fusion module (a channel-wise concatenation

followed by a convolution layer), blurred edges and unex-

pected noise can be observed in Figure 7 (d), especially

around complex boundaries, such as the windows. To make

the comparison more specific, quantitative results are given

in Table 2, which indicate that Bi-GFF contributes to the

performance gain.

On Contextual Feature Aggregation. The CFA module is

introduced to enhance the correlation between local features

and the overall image consistency. As shown in Figure 7 (e),

the model without CFA renders low-quality images, and

texture filling is sensitive to structure noise. Quantitative

results in Table 2 also validate its necessity.

On Multi-scale Feature Aggregation in CFA. As our CFA

module is updated from the contextual attention layer [35],

we directly compare it with the original version to prove its

effectiveness. As shown in Figure 7 (f) and Table 2, we

demonstrate that multi-scale feature aggregation obviously

benefits the quality of the results, with consistent textures

and better quantitative scores reported.

5. Conclusion

In this paper, we propose a novel two-stream image in-

painting method, which recovers corrupted image by simul-

taneously modeling structure-constrained texture synthesis

and texture-guided structure reconstruction. In this way, the

two subtasks exchange useful information and thus facili-

tate each other. Furthermore, a Bi-directional Gated Fea-

ture Fusion module is introduced followed by a Contextual

Feature Aggregation module to refine the results, with both

semantically reasonable structures and detail-rich textures.

Experiments show that this model is competent for this is-

sue and outperforms the state-of-the-art counterparts.
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