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Figure 1. Our results of painting from part on various datasets, considering both object and scene, involving both outpainting and inpainting
(left: input, right: output): (a) regular image outpainting, (b) irregular image outpainting, and (c) image inpainting. (d) The t-SNE [30]
visualizing embeddings of three flower images and their parts, indicating strong correlations between parts and the whole image.

Abstract

This paper studies the problem of painting the whole
image from part of it, namely painting from part or part-
painting for short, involving both inpainting and outpaint-
ing. To address the challenge of taking full advantage
of both information from local domain (part) and knowl-
edge from global domain (dataset), we propose a novel
part-painting method according to the observations of re-
lationship between part and whole, which consists of three
stages: part-noise restarting, part-feature repainting, and
part-patch refining, to paint the whole image by leverag-
ing both feature-level and patch-level part as well as pow-
erful representation ability of generative adversarial net-
work. Extensive ablation studies show efficacy of each
stage, and our method achieves state-of-the-art perfor-
mance on both inpainting and outpainting benchmarks with
free-form parts, including our new mask dataset for irreg-
ular outpainting. Our code and dataset are available at
https://github.com/zhenglab/partpainting.
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1. Introduction

Given a part of an image, human have the natural abil-
ity to paint the unseen region (e.g., outside or inside the
part) [37]. Painting from part, or part-painting for short,
is the task to paint a whole reasonable and realistic image
according to a part of the image, which can be widely used
in many computer vision applications such as view expan-
sion [58, 47, 40], texture synthesis [25, 49, 42], image edit-
ing [3, 60, 9], and object removal [28, 55]. Due to intrinsic
complexity of the part in an image (e.g., diverse shapes and
different positions), part-painting is full of challenges.

Specifically, in order to paint a reasonable and realistic
whole image from a part, it is indispensable to not only re-
quire information from the given part (local domain), but
also learn knowledge from other similar images (global do-
main). However, the multiple properties of the parts lead
to fiendish complexity and huge uncertainty of the balance
between local domain and global domain for part-painting.
Thus, how to make full use of information from local do-
main (part) and knowledge from global domain (dataset)
while keeping a proper balance between them, is essential
and crucial for painting from part.

Recent advances in part-painting, i.e., image inpaint-
ing [51, 39, 55, 32, 38, 29] and image outpainting [48,
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, 17], mainly feed the part as input into convolutional
neural networks (CNNs) and learn from dataset to com-
plete the whole painting. For inside part-painting (image
inpainting), the unknown region is usually small and lo-
cated inside the part, it is able to fill a small number of
missing pixels via convolution with surrounding pixels that
are coherent with missing ones, thus yielding promising re-
sults [35, 53, 54, 28, 50, 27]. But for outside part-painting
(image outpainting), the unknown region locates outside the
part and is usually large, making this task tends to be a
generative problem with more challenges, and recent stud-
ies tackle it by first extending the part via feature expan-
sion or reconstruction and then generating the result via
adversarial learning [48, 17]. Therefore, current inpaint-
ing and outpainting methods are not easy to be applied to
each other: the former is hard to paint large reasonable
content outside [48, 43], and the latter can not handle free-
form cases due to the design of requiring square part in-
put [48, 17]. Moreover, both of previous painting methods
mainly “look” the part once in the beginning, which can not
take enough advantage of the information from part (e.g.,
pixels, patches, features) during painting. In this work, we
take both inpainting and outpainting with free-form parts
into account as a unified part-painting framework.

We tackle part-painting basically relying on the follow-
ing two observations: (1) both low-level and high-level fea-
tures of the part have a strong statistical correlation with the
whole image features [41, 44], and (2) small patches from
the part have a high probability of abundantly recurring in
the whole image [15, 61]. Figure 1(d) shows the t-SNE [30]
visualizing embeddings of three flower exemplars with the
parts and corresponding whole image for each, which indi-
cates that (1) different whole images have relatively inde-
pendent distributions while the parts are strongly correlated
to corresponding whole image, and (2) the parts of every
exemplar have very similar visual characteristics to the cor-
responding whole image.

Therefore, for painting from part, in order to make bet-
ter use of information from part (local domain), we lever-
age both feature-level and patch-level information of part
(part-feature and part-patch) during painting; while, to bal-
ance the painting guidance between part information (lo-
cal domain) and dataset knowledge (global domain), we de-
vise a learnable adaptive strategy for both feature-level re-
construction and patch-level fusion; furthermore, we start
painting from the noise sampled from local part distribu-
tion (part-noise), to ensure more reasonable and realis-
tic synthesis via powerful representation of generative ad-
versarial network (GAN). Specifically, we build a novel
GAN-based network architecture for part-painting, includ-
ing three stages in correlation with part-noise, part-feature
and part-patch, where, part-noise is sampled from the distri-
bution of part encoding, part-feature is extracted from part

in multiple levels and injected into both high-level and low-
level synthesis for further repainting, and part-patch is ob-
tained from part mask of repainted whole image then uti-
lized to find and replace the most strongly correlated patch
from the unknown region for final refining.

Our contributions include: (1) we propose a new part-
painting task, involving both image inpainting and image
outpainting from free-form parts, as well as a novel archi-
tecture to solve it; (2) we devise three stages, i.e., part-
noise restarting, part-feature repainting, and part-patch re-
fining, for guiding and optimizing the part-painting; (3) our
method achieves state-of-the-art performance on both in-
painting and outpainting benchmarks with free-form parts,
including our new built irregular image outpainting dataset.

2. Related Work
2.1. Inpainting and Outpainting

Existing researches for image inpainting and outpaint-
ing can be mainly divided into non-learning methods and
learning methods. Non-learning image inpainting methods
usually filled unknown region by propagating contiguous
information or searching and copying similar pixels from
known region [2, 6, 4, 3, 10], which might work well for
texture synthesis but are difficult to produce semantically
meaningful content only relying on the known region. Non-
learning image outpainting methods generally obtained the
solutions from a pre-constructed dataset through matching
and stitching [13, 36, 1, 58, 47, 40], which is not suitable
for dealing with complex scenes due to the lack of semantic
understanding of images and limited by the used dataset. So
non-learning methods of inpainting and outpainting actually
try to seek similar information from the part (local domain)
and the dataset (global domain) respectively for painting.

Recently, deep CNNs have been developed to learn pow-
erful models to tackle image inpainting and outpainting
problems. Learning methods of image inpainting can be
categorized into direct and progressive manners. Specifi-
cally, some methods attempted to paint a whole image from
the visible region in a direct way [19, 54, 52, 28, 55, 27],
for instance, Yu et al. [54] proposed a contextual atten-
tion layer to fill defects with more realistic textures from
the visible region, Liu et al. [28] and Yu et al. [55] de-
signed special convolution to construct CNNs that could
fill in irregular/free-form regions, Li et al. [27] devised
a recurrent feature reasoning network that recurrently in-
fers the hole boundaries of feature maps. Progressive in-
painting methods painted the unknown region in multiple
stages [51, 38, 32, 26, 18, 12], which usually utilized addi-
tional prior information, for example, Xiong et al. [51] and
Nazeri et al. [32] painted unknown based on pre-learning
contour/edge knowledge, Ren et al. [38] dealt with the
problem depending on prior structural information, Dong
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et al. [12] painted and edited fashion images with pars-
ing images synthesized in advance. Learning methods of
image outpainting extrapolated a regular sub-image to a
whole image using GANs to learn global domain knowl-
edge [48, 43, 17], especially, Wang et al. [48] first proposed
a cGAN-based method to address the issue of feature expan-
sion and context prediction, Teterwak et al. [43] introduced
semantic conditioning to the discriminator for one-side im-
age extension, Guo et al. [17] performed image extrapola-
tion in a spiral growing fashion.

2.2. Generative Adversarial Networks

Since the breakthrough made by Goodfellow et al. [16],
GAN has become a promising approach for high-quality
image synthesis. Recently, more and more works have
shown GAN’s strong representation ability for learning
complex data distributions, especially, StyleGAN [22] pro-
posed an alternative generator architecture that highly im-
proved GAN’s generative ability on high quality (high res-
olution) by combining both style information mapped from
a noise of normal distribution and stochastic attributes ex-
tracted from a noise of Gaussian distribution, GauGAN [34]
synthesized a high-quality photorealistic image from a ran-
dom noise encoded from a style image guided by the seman-
tic information for spatially-adaptive normalization, Big-
GAN [5] presented a regularization scheme with a relevant
noise sampling technique to boost performance of large-
scale GANs. These cutting-edge techniques indicate that
GAN has powerful ability to learn the target distribution
from a simple distribution (noise), and GAN’s ability could
be boosted by making the noise being more suitable to the
target distribution. In our work, we also leverage GAN’s
powerful representation ability for painting and encode the
part to a distribution of local domain for GAN.

3. Painting from Part

We design a part-painting network architecture, to paint
from a free-form part to a whole image. Given a part P €
RAXWX3 ‘mask M € RT*Wx1 and random noise Z €
R? sampled from a standard normal distribution, the goal
of part-painting F'(+) is to paint a reasonable and realistic
whole image W, € REXW>3. W, = F(P,M, Z).

Figure 2 shows the architecture of our method, consist-
ing of a part encoder to extract part-distribution and part-
features, a painting generator to paint the whole image from
noise, a whole discriminator and a painting discriminator
(both are unshown in Figure 2) to distinguish whole result
and painting region from corresponding reals respectively.
Our painting process is divided into three stages: part-noise
restarting, part-feature repainting, and part-patch refining,
correspondingly, we first restart painting process from re-
vised normally distributed part-noise, then we repaint the
generated features via transferring part-feature statistics in

T I N

[I:Part—noise Restarting II:Part-feature Repainting III:Part-patch Refining]

Figure 2. Overview of our network architecture with three stages
for painting outside or inside from free-form part.

multiple layers, finally we refine the repainted whole result
by fusing with most similar part-patches.

3.1. Part-noise Restarting

To leverage GAN’s powerful representation ability, we
propose to start painting from a noise not directly from the
part. Not only that, we restart the painting from the part-
noise Z, € R? following the distribution of part domain.
To do this, we revise the noise Z with parameters 3, € R¢
and 7, € R learnt from part encoder F,. (), as follows:

5p77p:Fenc(PvM)7 Zp:7p®z+5pa (1)

where ® represents Hadamard product. This is similar to
reparameterization trick in VAE [23] building exclusive dis-
tribution for each image, while we attempt to boost the
painting from a closer distribution.

3.2. Part-feature Repainting

During GAN’s painting, we consider making better use
of part-features as repainting, mimicking human’s “painting
by watching”. Thus, we design a new Repainting Residual
Block (RRB), with a core repainting layer, to replace the
normal residual block for painting generator, as shown in
Figure 3. RRB receives the whole-feature generated from
last block of painting generator and part-feature extracted
from corresponding layer of part encoder as inputs, and pro-
duces repainted whole-feature as output.

Repainting layer plays a key role in repainting, which
can be regarded as a special adaptive normalization layer,
using one feature to normalize another feature while learn-
ing to keep a balance between them. To do this, we design
the repainting via part-feature transfer then whole-feature
reconstruction, for respectively transferring part-feature to
whole-feature then learning to balance them adaptively.

Formally, we denote input feature maps of repainting
layer as f,,, which joint generated whole-feature and ex-
tracted part-feature, then we use downscaled mask M| to
separate f,, into part-location feature f, and exclusion-of-
part-location feature f,. Noting that, part-location feature
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Figure 3. The details of our Repainting Residual Block constitut-
ing painting generator, with a core Repainting Layer transfers part-
feature statistics to whole feature then reconstructs whole feature.

is extracted from corresponding part encoder layer, so we
utilize it to repaint the exclusion-of-part-location feature.

Part-feature Transfer. We calculate mean p(f) and
standard deviation o (f) of f, independently for each chan-
nel, representing part-feature statistics, then transfer them
to normalized f,; channel-wisely by:

i — (1 w i
fg_ (fp)< J(f;) >+M(fp)7 2

where ¢ represents ¢-th channel and fg is the transferred
feature. By doing so, fg will have the same statistics as
fp- Naturally, part and whole should be strongly correlated,
but shouldn’t be the same statistically (refer to Figure 1(d)).
Thus, we adaptively learn to balance pre-transferred feature
fq and post-transferred feature fg via reconstruction.

Whole-feature Reconstruction. We adopt 1 x 1 convo-
lution to produce affine parameters -y, and 3, from f,. Then
we reconstruct the transferred feature fg element-wisely for
each channel as well:

fi=v0fi+8, 3
where i represents i-th channel and f, is the reconstructed
feature. In this way, it can retain valuable whole-feature
statistics avoiding being washed away by part-feature trans-

fer. Finally, we combinate f, with part-location feature f,
to obtain the final output f,. of repainting layer.

3.3. Part-patch Refining

According to the internal statistics of a single natural im-
age having recurred small patches abundantly, we further

i Conv |

h @) Part-patch ‘Conv_ N ] .
it [ t U :
P ol % Transmit p iWhole-patch!
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Figure 4. The details of our Patch Refining Module follow-
ing painting generator, which replaces similar whole patches by
matching part patches then fuses them with previous patches.

reuse part-feature for refining the painting, via part-patch
transmit then whole-patch fusion, to respectively trans-
mit part-patch to whole-patch then learn to fuse transmit-
ted patches with whole-patches adaptively, constituting our
Patch Refining Module (PRM) shown in Figure 4.

We first downscale the repainted whole feature maps p,,
generated by painting generator to p,,, to reduce the compu-
tational complexity and to represent patches as pixels. Then
we use the part-location pixels p,, (part region in p,,) to re-
place exclusion-of-part-location pixels p, (repainted region
in p,,), i.e., part-patch transmit.

Part-patch Transmit. We transmit p, to p, by finding
the most similar pixel sequence p, for p!, where i and j
represent spatial locations, and each pixel sequence is com-
posed of pixels at the same location across all channels (see
p, and pJ, in Figure 4). Then we replace p, with p?, via:

p; = argmax cos(p), p,), 4)
Pp

where p! represents transmitted pixel sequence at location
i. After replacing all locations in p,, we get output p; and
upscale p, to p, which represents transmitted part-patches.
By this way, we actually utilize part-patches to refine the
repainted result for further making better use of the part.

Whole-patch Fusion. However, the patch refining car-
ried out by finding and replacing is some kind of rough, es-
pecially for the cases that unknown region and part region
have large differences. Therefore, we finally seek to learn
a fusion of transmitted part-patches and whole-patches re-
painted by painting generator, so that the final painting re-
sult will adaptively keep effective information from local
domain (the part) and global domain (the dataset). And the
learnable fusion can be expressed as:

Dr :wl*ﬁw +w2*ﬁt7 (5)

where x indicates convolution, w; and ws are learnable
weights, p,, and p, represent input whole-patches and trans-
mitted part-patches respectively, and p, denotes final re-
fined whole patches. At last, we adopt a convolution layer
after PRM to output whole part-painting result W .
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3.4. Loss Design

Our total loss includes KL-Divergence loss, adversarial
loss, reconstruction loss, perceptual loss, and style loss.

KL-Divergence Loss. Referring to [23], we adopt a KL-
Divergence loss term to maintain similar part-noise distri-
bution: Ly, = Dgr(¢(Z, | P) || p(Z)) where Z,, ~
Fepe(P) = q(Z, | P), Z ~ N(0,1) = p(Z) and Dk,
means the Kullback-Leibler divergence.

Adpversarial Loss. We devise a whole discriminator Dyy
and a painting discriminator D, to distinguish whole result
W, and painting region R, from corresponding real ones
W, and R; respectively, where R, = W, © M, so the
adversarial losses are:

Ly, (F, Dy ) =Ew,, [log(Dw (Wg,))]

+ Ew, [log(1 — Dw(W,))], (6)
L, (F, D) =Er,,[log(Dr(Ry:))]

+ Eg,[log(1 = Dr(Ro))], (1)

where F' is the painting function, which is trained to min-
imize this objective against Dyy and Dpg that try to maxi-
mize it. Our total adversarial loss is:

‘Cadv = (‘Cg‘c/lv + ‘Ct}jdv) /2 (8)

Reconstruction Loss. Inspired by SpiralNet [17], we
combine Hue-Color loss with L1 loss to reconstruct W, by
W, in pixel-wise color and intensity:

1 A . »
e =1 g L [GIWe = Wil

minfcos(W2, W), cos(1 — W2, 1 — W;t)]}, )
Total Loss. The total loss of our network is:

L :)\klﬁkl + )\advcadv + /\recﬁrec + )\perc‘cperc
+ )\style»cstylea (10)

where Lpere and Ly denote perceptual loss [20] and
style loss [14] respectively, As are weights to balance dif-
ferent losses. We empirically set A\g; = 0.001, Ayq, = 0.1,
Arec = 10, Apere = 10 and A4y = 250 in experiments.

4. Experiments

We conduct experiments to compare our method with
state-of-the-art inpainting and outpainting methods respec-
tively. Particulary, for outpainting, we build a new mask
dataset for painting from an irregular part, i.e., irregular out-
painting. We further conduct ablation studies to validate the
efficacy of three stages on CelebA-HQ [21] in regular out-
painting. Please refer to supplementary file for implemen-
tation details, dataset splitting and more compared results.

4.1. Image Inpainting

We conduct experiments on CelebA-HQ and Places2
with the commonly used mask dataset [28] for image in-
painting. We compare our method with three state-of-the-
art inpainting methods: PC [28], GC [55], and MEDEFE [29]
with output resolution of 256 x 256. Following [55, 29], we
adopt PSNR, SSIM, FID, mean ¢; error and mean {5 error
for quantitative evaluation. Table | and Figure 5 show the
quantitative and qualitative comparison results respectively,
demonstrating the superiority of our method.

CelebA-HQ Places2
PC GC MEDFE Ours | PC GC MEDFE Ours

PSNRT|27.19 27.44 26.82 27.97|26.62 27.36 27.17 28.24
SSIM1(0.9283 0.9347 0.9265 0.9364|0.8635 0.8813 0.8755 0.8957
FID| | 6.23 5.83 548 529 |41.57 30.49 35.57 30.16
£y err.}|0.0716 0.0735 0.0786 0.0687(0.0865 0.0778 0.0802 0.0706
£2 err.}|0.0111 0.0106 0.0118 0.0100(0.0149 0.0142 0.0140 0.0110

Metric

Table 1. Quantitative comparison of image inpainting. The 1 indi-
cates the higher the better, and | indicates the lower the better.

4.2. Image Outpainting

Regular Image Outpainting. Following previous
outpainting studies [48, ], we evaluate our method
on both object datasets (CelebA-HQ [21], CUB [46],
AFHQ Cat [7], Flowers [33]) and scene datasets (Paris
StreetView [ 1], Cityscapes [8], Places2 Desert Road [59]),
using Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity (SSIM), and Frechet Inception Distance (FID) as met-
rics. Besides, we append Learned Perceptual Image Patch
Similarity (LPIPS) [57] to measure the perceptual similar-
ity between real images and painting images for evaluating
reasonability. Similar to [48, 17], we also consider three
different cases: (1) four-side outpainting of 128 x 128 —
256 x 256 on CelebA-HQ, CUB, AFHQ Cat and Flowers;
(2) two-side outpainting of 256 x 256 — 512 x 256 on
Cityscapes and Paris StreetView; and (3) one-side outpaint-
ing of 256 x 256 — 512 x 256 on Places2 Desert Road. We
compare our method with state-of-the-art outpainting meth-
ods: Boundless [43] in one-side case, SRN [48] and Spi-
ralNet [17], as well as an inpainting method MEDFE [29]
retrained for outpainting in all three cases.

Irregular Image Outpainting. To supplement painting
whole image from an irregular part, we build a new mask
dataset and compare our method with state-of-the-art in-
painting method MEDFE [29] on object dataset CelebA-
HQ and scene dataset Places2, using the same evaluation
metrics as regular outpainting. Our irregular outpainting
mask dataset consists of 15672 masks for training and 2600
masks for testing, with resolution of 256 x 256, covering
mask ratio of 50% — 90%. We produce masks mainly con-
sidering (1) random overlap of diverse shapes (e.g., circle,
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PC GC

MEDFE Ours

Figure 5. Qualitative comparison results of image inpainting on CelebA-HQ (top) and Places2 (bottom).

CelebA-HQ (Four-side) Cub (Four-side)

Method | psNRt SSIMT FID| LPIPS| | PSNRT SSIMt FID|

AFHQ Cat (Four-side) Flowers (Four-side)

LPIPS] | PSNRt SSIMt FID] LPIPS)|PSNR{ SSIM{ FID| LPIPS|

MEDFE | 15.00 0.6424 18.24 0.2977 | 15.11 0.4971 58.38
SRN 15.17 0.6752 32.25 0.2839 | 15.31 0.5112 80.13
SpiralNet | 16.05 0.6815 21.17 0.2910 | 16.22 0.5313 56.50
Ours 15.76  0.6820 18.20 0.2652 | 16.16 0.5326 39.83

0.3969 | 14.13 0.4971 23.63 0.4306 | 14.57 0.4818 41.13 0.3877
0.3858 | 14.43 0.5380 25.48 0.3578 | 13.49 0.4660 66.01 0.4245
0.3807 | 15.49 0.5488 21.62 0.3594 | 15.67 0.5078 52.14 0.3894
0.3737 | 15.50 0.5709 19.62 0.3286

15.80 0.5193 39.40 0.3698

Method Paris StreetView (Two-side)

Cityscapes (Two-side)

Places2 Desert Road (One-side)
LPIPS|

PSNRT  SSIMf  FID{  LPIPS|| PSNRt SSIMt  FID) PSNRT  SSIMf  FID|  LPIPS|

MEDFE 17.08 0.6361 24.44 0.3193 20.26 0.6967 23.89 0.2111 19.40 0.6798 85.79 0.2485
Boundless - - - - - - - - 19.04 0.6825 86.10 0.2423
SRN 17.08 0.6457 21.53 0.2993 20.33 0.6980 28.90 0.2171 19.45 0.6877 85.59 0.2357
SpiralNet 17.20 0.6480 27.56 0.2789 20.43 0.7125 22.34 0.2141 20.22 0.7026 80.66 0.2448
Ours 17.63 0.6677 20.88 0.2711 20.59 0.7141 19.89 0.1963 20.56 0.7080 78.03 0.2264

Table 2. Quantitative comparison of regular image outpainting.
Method CelebA-HQ Places2 4.3. Efficacy of Part-noise Restarting
PSNR1 SSIM7 FIDJ. LPIPS||PSNRT SSIM1 FID| LPIPS| ) ) )

To validate the efficacy of part-noise restarting, we con-

MEDFE| 16.27 0.6911 14.23 0.2493| 17.87 0.6360 60.54 0.3235 d blati dv: (1 h . d FC 1
Ours | 16.81 07093 13.98 0.2294| 18.77 0.6679 58.79 0.3099 uct ablation study: (1) remove the noise and FCs to result

Table 3. Quantitative comparison of irregular image outpainting.

ellipse, rectangular, and triangle) and (2) real object shapes
(e.g., person, dog, leaf, and plane).

Tables 2 and 3 show the quantitative comparison re-
sults of regular and irregular image outpainting respectively,
indicating that our method performs the best across all
datasets of painting from part. Noting that, although Spi-
ralNet obtains two better PSNR results, it has been sug-
gested that reconstruction-based metrics (e.g., PSNR) are
not true reflections of photo-realism due to multi-modal im-
age completion possibility [54, 28, 24]. We show qualitative
comparison of different methods across various datasets of
regular and irregular outpainting in Figures 6 and 7, respec-
tively. The results demonstrate that our method achieves to
paint more reasonable and realistic whole images.

in a normal cGAN [3 1] (w/o noise), (2) start to paint from a
standard normal noise instead, and (3) ours (part-noise).

Method ‘ PSNRT SSIM?T  FID]  LPIPS|

w/o noise 15.18 0.6580 22.78  0.2839
standard normal noise 15.49 0.6649 21.44  0.2816
part-noise (ours) 15.76 0.6820  18.20 0.2652

Table 4. Quantitative comparison about efficacy of part-noise
restarting on CelebA-HQ. Refer to Section 4.3 for details.

Table 4 indicates that painting from both standard normal
noise and part-noise outperforms painting without noise,
and painting from part-noise performs best. Figure 8 shows
that painting without noise has poor representation abil-
ity (see the ghosting glasses in Figure 8a), while painting
from standard normal noise generates incomplete result (see
glasses temples in Figure 8b). Obviously, part-noise restart-
ing attempt to leverage GAN’s representation ability on the
part-distribution, thus painting more reasonable and accu-
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Figure 6. Qualitative comparison of regular image outpainting in four-side, two-side and one-side cases (red boxes mark parts).

/ 4

Part MEDFE Ours GT

Figure 7. Qualitative comparison results of irregular image out-
painting on CelebA-HQ and Places2 with our designed masks.

() (b)

Figure 8. Qualitative comparison about efficacy of part-noise
restarting: (a) w/o noise, (b) standard normal noise, (c) part-noise
(ours). Refer to Section 4.3 for details.

Part

rate results. Besides, corresponding loss curves in Figure 9
demonstrate the part-noise also benefits our model for faster
convergence speed. Notably, different part-noises of same
part introduce very slight diversity to the output due to the
same part distribution and strong effect of following stages.

9 —— w/o noise

39 .
w3s standard normal noise
g™ .
Sz part-noise

1 5 9 13 17 21 25 29 33 37 41 45 49 53
Epochs

Figure 9. Curves of total loss during training on CelebA-HQ.

4.4. Efficacy of Part-feature Repainting

We first visualize features and illustrate distributions in
part-feature repainting stage. Figure 10a indicates that gen-
erated feature f,; is pulled closer to transferred/part fea-
ture fg with f, as reconstructed result, further Figure 10b
demonstrates that synthesized result approaches ground
truth rather part, thanks to part-feature repainting.

Besides, we conduct ablation study to validate the effi-
cacy of part-feature repainting: (1) without repainting layer
(w/o RL), (2) without part-feature transfer (w/o FT), (3)
without whole-feature reconstruction (w/o FR), replace RL
with IN to (4) normalize part region and painted region sep-
arately (SN) and (5) normalize part region and painted re-
gion together (TN), then (6) ours (w/ RL). IN means in-
stance normalization [45] being widely used in GANS.

Table 5 demonstrates the efficacy about our design of
RL (w/ RL performs best while w/o RL performs worst) as
well as its components (each of FT and FR improves perfor-
mance). Figure 11 draws the same conclusion, specifically,
background color in the part cannot be transferred to the
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—fg w/o part region
_,tq w/o part region
_fg w/o part region
Part

Result w/o part regiol
GT w/o part region

Figure 10. Feature visualization and statistical distribution (Gaus-
sian with (mean, variance)) for part-feature repainting: (a) gen-
erated feature fg, transferred/part feature fg, and reconstructed
feature f_g, (b) the part, painting result, and ground truth (GT).

whole painting if without FT (w/o RL, w/o FT, SN and TN),
while background color in the part will be unduly trans-
ferred to the face resulting in unreasonable content if with-
out FR (w/o FR), SN and TN produce unrealistic results,
especially, SN leads to inharmony between whole and part
due to their independent feature statistics, and TN messes
up image color due to direct mixup of part and whole fea-
ture statistics, yet our method (w/ RL) can transfer the fea-
ture from part to whole (both face and background) as well
as keep their independent characteristics, yielding more rea-
sonable and realistic results.

Metric ‘ w/oRL  w/oFT w/oFR SN TN w/ RL

PSNRT | 15.19  15.42 1540 1539 15.29 15.76
SSIM?T | 0.6530 0.6639 0.6623 0.6616 0.6538 0.6820

FID| 23.39 2218 2199 21.58 22.83 18.20
LPIPS] | 0.2967 0.2904 0.2855 0.2930 0.2917 0.2652

Table 5. Quantitative comparison about efficacy of part-feature re-
painting on CelebA-HQ. Refer to Section 4.4 for details.

SN w/ RL

Figure 11. Qualitative comparison about efficacy of part-feature
repainting. Refer to Section 4.4 for details.

4.5. Efficacy of Part-patch Refining

We first visualize features in Figure 12, where part-patch
information in generated feature p, is transmitted to sur-
rounding regions for producing p; that is further refined as
pr, demonstrating the refining efficacy.

We also conduct ablation study to validate the efficacy of
part-patch refining: (1) without patch refining module (w/o
PRM), insert PRM into painting generator (2) after the first
layer (PRMy,;) and (3) after the middle layer (PRM,;;q4),

Dy Result GT

Part ‘;79
Figure 12. Feature visualization for part-patch refining: generated
feature pgy, transmitted feature p;, and refined feature p,..

(4) replace cosine distance with L1 distance (PRMp1), (5)
replace cosine distance with L2 distance (PRM5), (6) re-
place PRM with self-attention [56], then (7) ours (w/ PRM).

Table 6 and Figure 13 demonstrate the efficacy of our
part-patch refining. Particularly, the painting looks coarse
if without PRM (w/o PRM) or with attention instead (At-
ten), and the synthesis seems unrealistic if inserting PRM
into the painting generator (PRMy,; and PRM,,;4), espe-
cially, PRM,,,;4 contributes a little for refining since it may
disorder high-level structural information of the feature,
and PRM¢,; does not work for refining at the beginning
of GAN’s generation due to noise property of the feature,
while, L1 distance and L2 distance achieve similar accept-
able performance, also our method (w/ PRM) helps to refine
the painting better (e.g., clear hairs).

Metric |w/o PRM|PRM ¢ PRM,,;q[PRM 11 PRMp| Atten |w/ PRM

PSNRT| 15.35 | 15.45 15.54 | 15.35 15.13 | 15.39 | 15.76
SSIMT| 0.6595 | 0.6695 0.6719 |0.6645 0.6629 |0.6664| 0.6820
FID] | 21.43 | 22.42 20.76 | 20.09 20.71 | 20.86 | 18.20
LPIPS]| 0.2868 | 0.2849 0.2729 |0.2875 0.2852|0.2856| 0.2652

Table 6. Quantitative comparison about efficacy of part-patch re-
fining on CelebA-HQ. Refer to Section 4.5 for details.

PRMy

PRM,,iq PRM;

w/ PRM

Figure 13. Qualitative comparison about efficacy of part-patch re-
fining. Refer to Section 4.5 for details.

PRMLQ Atten

5. Conclusion

In this paper, we propose an unified part-painting task to
paint a whole image from the free-form part, and devise a
novel method that includes three stages to fully and properly
take advantage of both the local domain (the part) and the
global domain (the dataset). Both extensive experiments
across various datasets of different part-painting tasks and
ablation studies demonstrate superiority of our method. We
hope that our work opens up new avenues for unifying free-
form image outpainting and inpainting.
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