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Abstract

Most recent transformer-based models show impressive
performance on vision tasks, even better than Convolu-
tion Neural Networks (CNN). In this work, we present a
novel, flexible, and effective transformer-based model for
high-quality instance segmentation. The proposed method,
Segmenting Objects with TRansformers (SOTR), simplifies
the segmentation pipeline, building on an alternative CNN
backbone appended with two parallel subtasks: (1) predict-
ing per-instance category via transformer and (2) dynami-
cally generating segmentation mask with the multi-level up-
sampling module. SOTR can effectively extract lower-level
feature representations and capture long-range context de-
pendencies by Feature Pyramid Network (FPN) and twin
transformer, respectively. Meanwhile, compared with the
original transformer, the proposed twin transformer is time-
and resource-efficient since only a row and a column at-
tention are involved to encode pixels. Moreover, SOTR is
easy to be incorporated with various CNN backbones and
transformer model variants to make considerable improve-
ments for the segmentation accuracy and training conver-
gence. Extensive experiments show that our SOTR performs
well on the MS COCO dataset and surpasses state-of-the-
art instance segmentation approaches. We hope our sim-
ple but strong framework could serve as a preferment base-
line for instance-level recognition. Our code is available at
https://github.com/easton-cau/SOTR.

1. Introduction

Instance segmentation, a fundamental task in computer
vision, requires the correct prediction of each object in-
stance and its per-pixel segmentation mask in an image.

*Equal contribution.
Corresponding author. E-mail: lizb@cau.edu.cn

Figure 1: Selected output of SOTR. We combine CNN
with transformer and obtain competitive qualitative results.
Notice that not only are larger objects well delineated, tar-
gets with elaborate shapes can also get nice segmentation.

It becomes more challenging because of the contiguously
increasing demands for precise separation of instances in
complicated scenes with dense objects and accurate predic-
tion of their masks at the pixel level. Modern instance seg-
mentation approaches [24, 15] are typically built on CNN
and follow the detect-then-segment paradigm, which con-
sists of a detector used to identify and locate all objects,
and a mask branch to generate segmentation masks. The
success of this segmentation philosophy is attributed to the
following favorable merits, i.e. translation equivariance and
location, but faces the following obstacles: 1) CNN rela-
tively lacks features’ coherence in high-level visual seman-
tic information to associate instances due to the limited re-
ceptive field, leading to the sub-optimal results on large ob-
jects; 2) Both the segmentation quality and inference speed
rely heavily on the object detector, incurring inferior perfor-
mance in complex scenarios.

To overcome these drawbacks, many recent studies tend
to escape from the detect-then-segment manner toward
bottom-up strategy [29, 31], which learns per-pixel em-
bedding and instance-aware features, and then uses post-
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processing techniques to successively group them into in-
stances based on the embedding characteristics. Therefore,
these methods can well retain position and local-coherence
information. However, the main shortcomings of bottom-up
models are unstable clustering (e.g., fragmented and joint
masks) and poor generalization ability on the dataset with
different scenes. Our SOTR (Figure 1 and 2) effectively
learns position-sensitive features and dynamically generates
instance masks following the basic principle of [37], with-
out the post-processing grouping and the bound of bounding
box’s locations and scales.

Furthermore, inspired by the power of transformer in
natural language processing (NLP) [4, 10, 35], dozens of
works try to entirely substitute the convolution operation or
combine the CNN-like architectures with transformers for
feature extraction in vision tasks [1 1, 8, 5], which can eas-
ily capture global-range characteristics and naturally mod-
els long-distance semantic dependencies. In particular, self-
attention, the key mechanism of transformers, broadly ag-
gregates both feature and positional information from the
whole input domain. Thus transformer-based models can
better distinguish overlapped instances with the same se-
mantic category, which makes them more suitable than
CNN on high-level vision tasks. Nevertheless, insufficien-
cies still exist in these transformer-based approaches. On
the one hand, the typical transformer does not behave well
in extracting low-level features, leading to erroneous pre-
dictions on small objects. On the other hand, due to the
extensive feature map, a large amount of memory and time
are required, especially during the training stage.

To cope with these weaknesses, we propose an innova-
tive bottom-up model called SOTR that ingeniously com-
bines the advantages of CNN and transformer. More specif-
ically, we adopt a new transformer model inspired by [20]
to acquire global dependencies and extract high-level fea-
tures for predictions in subsequent functional heads. Fig-
ure 2 shows the overall pipeline of our SOTR. It is com-
posed of three parts, a CNN backbone, a transformer, and
a multi-level upsampling module. An image is first fed to
FPN to generate feature maps in multi-scale. After patch
recombination and positional embedding, the transformer
takes the clip-level feature sequences or blocks as inputs
and further grasps the global-level semantic features as the
powerful complement of the backbone. Then, part of the
output feature is input to functional heads for the category
and convolution kernel prediction. Finally, the multi-level
upsampling module fuses the multi-scale features to a uni-
fied one to generate instance masks with the assistance of
the dynamic convolution operation.

The focus of SOTR is to investigate ways to better utilize
the semantic information extracted by the transformer. With
the aim to reduce the memory and computational complex-
ity of the conventional self-attention mechanism, we put

forward twin attention, which adopts a sparse representa-
tion of the traditional attention matrix. We carry out a great
deal of ablation experiments to explore the optimal architec-
ture and hyper-parameters. In summary, not only does our
SOTR provide a new framework for instance segmentation,
but also it outperforms most of the CNN approaches on the
MS COCO [27] dataset. Specifically, the overall contribu-
tions of our work are listed as follows:

e We introduce an innovative CNN-transformer-hybrid
instance segmentation framework, termed SOTR. It
can effectively model local connectivity and long-
range dependencies leveraging CNN backbone and
transformer encoder in the input domain to make them
highly expressive. What’s more, SOTR considerably
streamlines the overall pipeline by directly segment-
ing object instances without relying on box detection.

e We devise the twin attention, a new position-sensitive
self-attention mechanism, which is tailored for our
transformer. This well-designed architecture enjoys a
significant saving in computation and memory com-
pared with original transformer, especially on large in-
puts for a dense prediction like instance segmentation.

e Apart from pure transformer based models, the pro-
posed SOTR does not need to be pre-trained on large
datasets to generalize inductive biases well. Thus,
SOTR is easier applied to insufficient amounts of data.

e The performance of SOTR achieves 40.2% of AP
with the ResNet-101-FPN backbone on the MS COCO
benchmark, outperforming most of state-of-the-art ap-
proaches in accuracy. Furthermore, SOTR demon-
strates significantly better performance on medium
(59.0%) and large objects (73.0%), thanks to the ex-
traction of global information by twin transformer.

2. Related work

2.1. Instance segmentation

Top-down instance segmentation. This approach deals
with the problem by segmenting after detecting, which takes
the inspiration of object detection tasks [33]. As the repre-
sentative of anchor-based and two-stage methods, Mask R-
CNN [15] added an extra branch for the instance segmen-
tation in the proposed potential bounding boxes on the base
of Faster R-CNN [33]. Also as one of the anchor-based
methods, YOLACT [3] segmented instances in one-stage
but two parallel subtasks: generating prototype masks and
predicting mask coefficients for each instance. The final in-
stance mask is the linear combination of the two. On the
other hand, some works devoted to generating the segmen-
tation masks within the anchor-free framework. Many of
them derived from FCOS [34]. For example, CenterMask
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Figure 2: Model overview. SOTR builds on the simple FPN backbone with minimal modification. The model flattens
FPN features P2-P6 and supplements them with positional embeddings before feeding them into the transformer model. Two
heads are added after the transformer model to predict instance classes and produce dynamic convolution kernels. Multi-level
upsampling module take P2-P4 features from FPN and P5 feature from transformer as inputs to generate final masks with

dynamic convolution operation by ®.

[24] added a novel spacial attention-guided mask branch to
FCOS to predict each detected box’s segmentation mask.

Bottom-up instance segmentation. Different from top-
down segmentation, this approach generates masks by clus-
tering the pixels into each instance in an image. The typ-
ical methods include SSAP, SGN, etc. SGN [28] solved
the problem by decomposing the clustering of instances
with three sub-networks. In addition, the latest bottom-
up method SOLO [36, 37] segmented the instance more
directly. Instead of exploiting the relations between pixel
pairwise, SOLO handled the clustering problem with clas-
sification. It categoried each grid and predicted the mask for
each grid end-to-end without clustering. When the scenes
are very complicated and dense objects exist in one image,
lots of the computation and time will inevitably be lost on
background pixels. However, our proposed SOTR takes an
image as input, combines CNN with transformer module to
extract the features, and directly makes predictions for class
probabilities and instance masks.

2.2. Transformer in vision

Inspired by the great success of transformer in NLP,
researchers propose to apply transformers to solve com-
puter vision problems [14, 21, 18]. Following the standard
transformer paradigms, Dosovitskiy et al. [I1] presented
a pure transformer model called Vision Transformer (ViT),
which achieved state-of-the-art results on image classifica-
tion tasks. To make the architecture of ViT as similar as the
original transformer, the input image was reshaped into a
sequence of flattened 2D patches and mapped to the corre-
sponding embedding vectors with a trainable linear projec-
tion and position embeddings. The pure transformer model

could be naturally generalized to produce semantic segmen-
tation by adding a FCN-based mask head. In Segmentation
Transformer (SETR) [43], the framework built upon ViT
with minimal modification and applied a progressive up-
sampling strategy as the decoder to generate final masks.

While the above results are encouraging, transformer
meets difficulties in extracting low-level features and lacks
some inductive biases, so pure transformer models are
overly dependent on pre-training on large datasets. These
problems can be effectively solved by a combination with
CNN backbone. Detection Transformer (DETR) [5] con-
sisted of a standard CNN backbone and an encoder-decoder
transformer for object detection. The former learned a 2D
representation of the input image and generated the lower-
resolution feature map. The latter predicted N objects (box
coordinates and class labels) in parallel from the above flat-
ten features with position information. However, two issues
exist in DETR. Due to the feature mapping before the rela-
tion modeling in transformer, DETR not only suffers from
the high computational cost but also performs poorly on
small objects. Furthermore, DETR requires a longer train-
ing schedule to tune attention weights and focus on mean-
ingful sparse locations.

For instance segmentation, DETR can be extended by
appending a mask tower on top of the decoder outputs. Un-
like these methods, we rethink the instance segmentation in
a different manner and contribute a novel instance segmen-
tation approach assembling CNN and transformer, called
SOTR. The differences are apparent. First, SOTR follows
standard FCN design and utilizes learnable convolutions to
delineate each object region by location, directly segment-
ing instances in a box-free manner. Second, we adopt twin
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Figure 3: Schematic illustration of three different transformer layer designs. (a) The original transformer encoder from
[35]. To better model long-range dependencies and improve computation efficiency, we introduce different transformer layer
designs: (b) pure twin transformer layer and (c) hybrid twin transformer layer. Both layers are based on our designed twin
attention that sequentially consists of (1) column- and (2) row-attention.

attention, an alternative self-attention autoregressive block,
to significantly decrease computation and memory by de-
composing the global spatial attention into independent ver-
tical and horizontal attentions.

3. Methods

SOTR is a CNN-transformer hybrid instance segmenta-
tion model, which can simultaneously learn 2D represen-
tations and capture long-range information at ease. It fol-
lows a direct-segment paradigm, first dividing input fea-
ture maps into patches and then predicting per-patch class
while dynamically segmenting each instance. Concretely,
our model mainly consists of three parts: 1) a backbone
to extract image features, especially lower-level and local
features, from the input image, 2) a transformer to model
global and semantic dependencies, which is appended with
functional heads to predict per-patch class and convolution
kernel respectively, and 3) a multi-level upsampling module
to generate the final segmentation mask by performing dy-
namic convolution operation between the generating feature
map and the corresponding convolution kernel. The overall
framework is depicted in Figure 2.

3.1. Transformer

Twin attention. The self-attention mechanism is a key
component of transformer models, which inherently cap-
tures full-image contexts and learns long-distance interac-
tions between each element in the input sequence. How-
ever, self-attention has both quadratic time and memory
complicity, incurring higher computational costs on high-

dimensional sequences such as images and hindering model
scalability in different settings.

To mitigate the above-mentioned problems, we propose
the twin attention mechanism to simplify the attention ma-
trix with a sparse representation. Our strategy mainly lim-
its the receptive field to a designed block pattern of fixed
strides. It first computes the attention within each column
while keeping elements in different columns independent.
This strategy can aggregate contextual information between
the elements on a horizontal scale (see Figure 3 (1)). Then,
similar attention is performed within each row to fully ex-
ploit feature interactions across a vertical scale (shown in
Figure 3 (2)). The attention in the two scales is sequentially
connected to be the final one, which has a global receptive
field and covers the information along the two dimensions.

Given feature maps F; € RF*XWXC at Jayer i of FPN,
SOTR first splits the feature maps into N %= N patches
P, € RN*NXC and then stacks them into fixed blocks
along with the vertical and horizontal directions. Position
embeddings are added to the blocks to retain positional in-
formation, meaning that the position embedding spaces for
the column and row are 1% N xC and N %1% C. Both of the
attention layers adopt the multi-head attention mechanism.
To facilitate multi-layer connection and post-processing,
all sub-layers in the twin attention produce N x N x C
outputs. Twin attention mechanism can effectively reduce
the memory and computational complexity from standard
O((H x W)} to O(H x W? + W x H?)!.

'"The memory and computational complexity here is expressed in a
more general form of H and W instead of N since the twin attention can
process the input of any resolution, not limited to the square tensor.
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Transformer layer. In this section, we introduce three
different transformer layers based on encoder as our ba-
sic building block (as illustrated in Figure 3). The origi-
nal transformer layer resembles the encoder used in NLP
[35] (Figure 3 (a)), which comprises two parts: 1) a multi-
head self-attention mechanism after a layer normalization
[1], and 2) a multi-layer perception after a layer normaliza-
tion. In addition, a residual connection [17] is employed to
connect these two parts. Finally, a multi-dimensional se-
quence feature can be obtained as the output of the K serial
connection of such transformer layers for subsequent pre-
dictions in different functional heads.

In order to make an optimal trade-off between the com-
putational cost and the feature extracting effect, we follow
the original transformer layer design and only substitute the
multi-head attention with twin attention in the pure twin
transformer layer (see Figure 3 (b)). In order to further
boost the performance of twin transformer, we also design
the hybrid twin transformer layer shown in Figure 3 (c). It
adds two 3 x 3 convolution layers connected by a Leaky
ReLU layer to each twin attention module. It is supposed
the added convolution operation can be a useful comple-
ment to the attention mechanism, better capturing the local
information and enhancing the feature representation.

Functional heads. The feature maps from transformer
modules are input to different functional heads to make sub-
sequent predictions. The class head includes a single linear
layer to output a NV x N x M classification result, where M
is the number of classes. Since each patch only assigns one
category like YOLO [32] for one individual object whose
center falls into the patch, we utilize multi-level prediction
and share the heads across different feature levels to further
improve the model performance and efficiency on objects
of different scales. The kernel head is also composed of
a linear layer, in parallel with the class head to output a
N x N x D tensor for subsequent mask generation, where
the tensor denotes the N x N convolution kernels with D
parameters. During training, Focal Loss [26] is applied
to classification while all supervision for these convolution
kernels comes from the final mask loss.

3.2. Mask

To construct mask feature representations for instance-
aware and position-sensitive segmentation, a straightfor-
ward way is to make predictions on each feature map of
different scales ([36, 12] and etc.). However, it will increase
time and resources. Inspired by the Panoptic FPN [22],
we design the multi-level upsampling module to merge the
features from each FPN level and transformer to a unified
mask feature. First, the relative low-resolution feature maps
PS5 with positional information are obtained from the trans-
former module and combined with P2-P4 in FPN to execute
the fusion. For feature maps in each scale, several stages of

3 x 3 Conv, Group Norm [39] and ReL.U are operated. Then
P3-P5 are bilinear upsampled 2x, 4x, 8x, respectively to
(%,%) resolution. Finally, after the processed P2-P5 are
added together, a point-wise convolution and upsampling
are executed to create final unified H x W feature maps.

For instance mask prediction, SOTR generates the mask
for each patch by performing dynamic convolution opera-
tion on the above unified feature maps. Given predicted
convolution kernels K € RYNXNXD from the kernel head,
each kernel is responsible for the mask generation of the in-
stance in the corresponding patch. The detailed operation
can be expressed as follows:

FHXWXN? _ pHXWxC  eNXNxD (1)

Where * indicates the convolution operation, Z is the fi-
nal generated mask with a dimension of H x W x N2, It
should be noted that the value of D depends on the shape of
the convolution kernel, that is to say, D equals A2C, where
A is kernel size. The final instance segmentation mask can
be produced by Matrix NMS [37] and each mask is super-
vised independently by the Dice Loss [30].

4. Experiments

We conduct experiments on the challenging MS COCO
dataset [27], which contains 123 K images with 80-class in-
stance labels. All models are trained on train2017 sub-
set and evaluated on test—dev subset. We also report the
standard COCO metrics including average precision (AP),
AP at IoU 0.5 (AP5g), 0.75 (AP75) and AP for objects at
different sizes APg, AP, and AP.

Implementation details. We train SOTR with SGD set-
ting the initial learning rate of 0.01 with constant warm-up
of 1k iterations and using weight decay of 10~* and mo-
mentum of 0.9. For our ablation experiments, we train for
300K iterations with a learning rate drop by a factor of 10 at
210K and 250K, respectively. Unless specified, all models
are trained on 4 V100 GPUs of 32G' RAM (take about 3-4
days), with batch size 8. The Python language is used for
programming and the deep learning frameworks used are
PyTorch and Detectron2 [40].

4.1. Ablation experiments

We carry out a number of ablation experiments on the ar-
chitectures and hyper-parameters to verify the effectiveness
of parameter choice.

Table 1: Backbone comparison results. Better backbone
brings expected gains: deeper neural network does better.

Backbone AP APs APy APp

Res-50-FPN 375 95 55.7  70.8
Res-101-FPN 402 103 59.0 73.0
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Backbone architecture. We compare the performance
of the different backbones on extracting features as shown
in Table 1. We surprisingly find that SOTR with Res-50-
FPN can already get 37.5% AP on the COCO and 70.8%
AP on large objects. We note that our SOTR automatically
benefits from deeper or advanced CNN backbones. In this
ablation, results also show that the performance could be
further improved by using a better backbone.

Table 2: SOTR incorporating different transformers on
COCO test—-dev. Note that all models are trained with
same manners including 30K iterations, 8 batch size, etc.
Under the same ResNet-101-FPN backbone, the hybrid
transformer outperforms all other counterparts.

Transformer AP APs APy AP

Original 37.1 9.0 56.1 71.0
Pure Twin ~ 39.7 9.9 59.1 73.6
Hybrid Twin  40.2 103 59.0 73.0

Transformer for feature encoding. We measure the
performances of our model with three different transform-
ers. Results of these variants are shown in Table 2. Our pro-
posed pure and hybrid twin transformers surpass the orig-
inal transformer by a large margin in all metrics, meaning
that twin transformer architecture not only successfully cap-
tures long-range dependencies across vertical and horizon-
tal dimensions but also is more suitable to be combined with
CNN backbone to learn features and representations for im-
ages. For pure and twin transformers, the latter works much
better. We assume the reason is that 3 x 3 Conv can extract
the local information and improve feature expression to en-
hance the rationality of the twin transformer.

Table 3: Comparison of different depth. Performance
with Res-101-FPN backbone. Original and Twin denote the
original transformer and the hybrid twin transformer.

Transformer Depth AP  Time(ms) Memory
Oricinal 6 36.2 147 6907M
et 12 371 199 10696M
Twin 6 37.6 113 3778M
12 40.2 161 5492M

Transformer depth. To verify the effect of transformer
depth on SOTR, we conduct ablation experiments on the
original transformer and the hybrid twin transformer, re-
spectively. As shown in Table 3, both sets of experiments
show that by increasing the depth of the transformer, we
can increase AP while sacrificing inference time and mem-
ory. Also, the twin transformer brings 3.1% AP gains in
contrast to the original transformer and reduces the mem-
ory footprint by about 50%, which shows the superiority

of this structure. However, as the transformer goes deeper,
the attention maps gradually become similar, i.e., attention
collapse. So transformer fails to learn more effective fea-
tures and hinders model from getting expected performance
gain. In further ablation experiment, we use hybrid twin
transformer with depth=12 for our baseline model if not
specified.

Table 4: Feature map substitution on multi-level upsam-
pling process. The check mark indicates whether to sub-
stitute P4 or PS5 layer with feature maps generated by the
12-layer hybrid twin transformer.

P4 P5 AP APs APy APp

388 9.7 580 720
v 402 103 590 73.0
v vo399 101 591 737

Multi-level Upsampling Module. In this ablation ex-
periment, we explore the effect of feature maps generated
by transformer on the multi-level upsampling module. As
shown in Table 4, the model has the highest AP value when
only replacing the P5 layer from FPN with the feature map
generated by transformer. When replacing both the P4 and
P5 layers, the model’s AP value has a slight drop (—0.3%).
This shows that using generated feature maps on more lay-
ers does not bring noticeable improvement in overall AP,
and the P5 from transformer already enables predictions
to be well position-sensitive. The reason why AP,; and
APy, are slightly improved 0.1% and 0.7% is that the P4
from transformer carries more global and larger object fea-
tures than the P4 from FPN. In addition, SOLOV2 employs
Coordconv on P5 to add positional information for seg-
mentation, while SOTR substitutes it with transformers to
gain such information and generate position-sensitive fea-
ture maps as shown in Figure 4.

Figure 4: SOTR behavior. We show the visualization of
the mask feature. For each row, the left side is the original
picture, and the right side is the positional-sensitive mask
correspond to it.
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Figure 5: Detailed comparison with other methods. We compare the segmentation result of our method against Mask
R-CNN [15], Blendmask [6] and SOLOvV2 [37].The code and the trained model are provided by the original author. All
models use ResNet-101-FPN as the backbone and are based on Pytorch and Detectron2. Our masks are of typically

higher quality.

Table 5: Dynamic convolution kernel vs. Static convolu-
tion kernel. Learnable convolution kernel can considerably
improve the results.

TWiIl DCK AP APS APM APL

v 386 95 57.7 72
v 397 173 429 574
v v 40.2 103 59.0 73.0

Dynamic convolution. For mask generation, we have
two options: to directly output instance masks in the static
convolutional manner or to continually segment objects by
dynamic convolution operation. The former one does not
require the extra functional head to predict convolution ker-
nels, while the latter one includes convolution kernel to gen-
erate final masks with the assistance of the fused feature.
We compare these two modes in Table 5. As shown, SOTR
without twin transformer achieves an AP of 39.7%, indi-
cating the twin transformer brings 0.5% gains. In addition,
the dynamic convolution strategy could improve the perfor-
mance by almost 1.5% AP. We explain as follows. On the
one hand, dynamic convolution significantly boosts the rep-
resentation capability due to the non-linearity. On the other
hand, dynamic convolution contribute to better and faster

Table 6: Real-time setting comparison. Metrics for mod-
els are obtained using their official trained models. The
speed is reported on a single V100 GPU on COCO.

Model Backbone #param. FLOPs FPS AP

YOLACT-550 R-50-FPN 140.23M 61.59G 44.1 28.2
PolarMask-600 R-50-FPN 34.46M 81.83G 21.7 27.6
SOTR-RT-736 R-50-FPN 38.20M 60.31G 25.2 30.7

convergence in training than its static counterpart.

Real-time model and comparison. SOTR focuses on
boosting accuracy of instance segmentation while can be
modified to be a real-time (RT) model with some sacrifice
of the accuracy. The number of transformer layers of our
designed SOTR-RT is reduced to two and the input shorter
side is 736. Table 6 shows the performance of SOTR-RT
models compared with others.

4.2. Main result

Quantitative results We compare SOTR to the state-
of-the-art methods in instance segmentation on MS COCO
test-dev in Table 7. SOTR with ResNet-101-FPN
achieves a mask AP of 40.2%, which is much better
than other modern instance segmentation methods. Com-
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Table 7: Quantitative results. mask AP(%) on COCO test-dev. We compare our SOTR with state-of-the-art instance
segmentation methods, and all entries in the table are single-model results. We denote the backbone architecture with
network-depth-feature, where Res refer to ResNet [

mentation and longer training time(6 x).

]. Mask R-CNN* is the improved version with scale aug-

Method Backbone AP APs APz APg APy APy,
FCIS [25] Res-101-C5 295 515 30.2 8.0 31.0 49.7
MaskLab+ [7] Res-101-C4 373  59.8 39.6 16.9 39.9 53.5
Mask R-CNN [15] Res-101-FPN 357 58.0 37.8 15.5 38.1 52.4
Mask R-CNN* Res-101-FPN 37.8 59.8 40.7 20.5 40.4 49.3
RetinaMask [13] Res-101-FPN 347 554 36.9 14.3 36.7 50.5
MS R-CNN [19] Res-101-FPN 383 588 41.5 17.8 40.4 54.4
TensorMask [9] Res-101-FPN 37.1 59.3 39.4 17.4 39.1 51.6
ShapeMask [23] Res-101-FPN 374  58.1 40.0 16.1 40.1 53.8
YOLACT [3] Res-101-FPN 312  50.6 32.8 12.1 33.3 47.1
YOLACT++ [2] Res-101-FPN 346 53.8 36.9 11.9 36.8 55.1
PolarMask [41] Res-101-FPN 32.1 53.7 33.1 14.7 33.8 45.3
SOLO [36] Res-101-FPN 37.8 595 40.4 16.4 40.6 54.2
BlendMask [6] Res-101-FPN 384  60.7 41.3 18.2 41.5 53.3
CenterMask [38] Hourglass-104 345 56.1 36.3 16.3 374 48.4
MElnst [42] Res-101-FPN 339 562 354 19.8 36.1 42.3
SOLOV2 [37] Res-101-FPN 39.7  60.7 429 17.3 429 57.4
SOTR Res-101-FPN 40.2 61.2 43.4 10.3 59.0 73.0
SOLOV2 [37] Res-DCN-101-FPN  41.7  63.2 45.1 18.0 45.0 61.6
SOTR Res-DCN-101-FPN 421  63.3 45.5 11.5 60.8 74.4

pared with the traditional two-stage instance segmentation
method Mask R-CNN [15], SOTR has achieved better pre-
diction accuracy (+2.4% AP), and has achieved a consider-
able improvement in medium and large targets(+20.9% in
APy and +20.6% in APr). As one of the box-free algo-
rithms, SOTR also has a significant improvement compared
to SOLO [36] and PolarMask [41]. Furthermore, to the best
of our knowledge, SOTR is the first method to achieves
nearly 60% AP in medium objects and over 70% AP in
medium and large objects.

Qualitative results We compare SOTR with the official
Mask R-CNN [15], BlendMask [6] and SOLOvV2 [37] mod-
els with ResNet-101 backbone . The segmentation masks
are displayed in Figure 5. Our SOTR performs better than
Mask R-CNN and BlendMask in two cases: 1) objects with
elaborate shapes easy to be omitted by other models (e.g.
carrots in front of the train, recumbent elephants, drivers in
the small cars), Mask R-CNN and BlendMask fail to de-
tect them as positive instances. 2) objects overlapping with
each other (e.g. person in front of the train), the two can-
not separate them with accurate borders. SOTR is able to
predict mask with sharper borders, while SOLOv2 tends to
segment targets into separate parts (e.g. dividing the train
into the head and the body) and sometimes cannot exclude
the background from the image. Due to the introduction of

2To make a fair comparison with Mask R-CNN, BlendMask, and
SOLOV2, the code base we use is Detectron2. Recently released
Detectron?2 originates from maskrcnn_benchmark with significant
enhancements for performance.

transformer, SOTR can better gain a comprehensive global-
information to avoid such split on objects. Furthermore,
compared with SOTR, SOLOV2 has a high false positive
rate by assigning nonexistent objects as instance.

5. Conclusion

In this paper, we have proposed a new direct-segment
instance segmentation method built upon CNN and trans-
former, which dynamically predicts the segmentation mask
of each instance without object detectors, simplifying the
overall pipeline. In order to process large inputs that are
organized as multidimensional tensors, we design a trans-
former model variant based on the twin attention mecha-
nism, which successfully reduces the memory and compu-
tational complexity to O(H x W2+ W x H?). In addition,
it is efficient and easy to be integrated with different main-
stream CNN backbones. Extensive ablation studies are con-
ducted to verify the core factors of SOTR. Without bells and
whistles, SOTR with ResNet-101-FPN backbone performs
well and achieves 40.2% mAP on MS COCO dataset. We
believe that our SOTR is capable of serving as a fundamen-
tal and strong baseline for instance segmentation tasks.
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