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Abstract

An event camera detects the scene radiance changes and
sends a sequence of asynchronous event streams with high
dynamic range, high temporal resolution, and low latency.
However, the spatial resolution of event cameras is limited
as a trade-off for these outstanding properties. To recon-
struct high-resolution intensity images from event data, we
propose EvIntSR-Net that converts Event data to multiple
latent Intensity frames to achieve Super-Resolution on in-
tensity images in this paper. EvIntSR-Net bridges the do-
main gap between event streams and intensity frames and
learns to merge a sequence of latent intensity frames in
a recurrent updating manner. Experimental results show
that EvIntSR-Net can reconstruct SR intensity images with
higher dynamic range and fewer blurry artifacts by fusing
events with intensity frames for both simulated and real-
world data. Furthermore, the proposed EvIntSR-Net is
able to generate high-frame-rate videos with super-resolved
frames.

1. Introduction

Event cameras with bio-inspired silicon retina sensors
work radically different from conventional frame-based
cameras. The unconventional sensor design enables them to
measure scene radiance changes in an asynchronous man-
ner [12, 31], instead of capturing images at a fixed frame
rate. Event cameras detect brightness changes in a scene in
log scale, and send a stream of event data that are binary-
signed recordings of brightness changes (“+1” for bright-
ness increase and “-1” for brightness decrease). The partic-
ular properties of event sensors include: very high dynamic
range (HDR, up to 140 dB), high temporal resolution (in the
order of us), low latency, and low power consumption. The
latest Dynamic and Active Pixel Vision Sensor (DAVIS [4])
combines a conventional Active Pixel Sensor (APS) with
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Figure 1: An example of 4 super-resolution results from
eSL-Net [40] and our reconstruction on real-world data.
Both of them take APS and event data as inputs.

the event sensor, which can capture intensity frames simul-
taneously with event data. However, most of the available
event cameras bear low spatial resolution (e.g., 240 x 180
for DAVIS240, 346 x 260 for DAVIS346) partially due to
the consideration of data transmission efficiency.

Event data contains visual information that can be uti-
lized for reconstructing high-quality intensity images. Pre-
vious reconstruction approaches [32, 35, 41] can only
achieve low-resolution (LR) intensity reconstruction that is
restricted by the spatial resolution of event cameras. How-
ever, high-resolution (HR) intensity images with higher
quality (more structural details, higher dynamic range,
less blurry artifacts) significantly contribute to many other
event-based vision tasks (e.g., object recognition [6],
detection[3], tracking[2], etc.). It is therefore of practical
interest to conduct super-resolution (SR) for event-guided
intensity image reconstruction.

Super-resolving intensity images for event cameras can
be achieved in several ways. One kind of approach is
first converting event data E to intensity images I [32, 35,
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] at the same spatial scale, then using existing SR ap-
proaches [19, 39, 48] to get the SR results S. Such an ap-
proach can be expressed as:

S =1 (N(E)), (1

where T () and I'() represent SR operation and conver-
sion from events to intensity images, respectively. Another
method is directly super-resolving LR event streams to re-
construct HR intensity images without the assistance of in-
tensity frames [7, 42], which is expressed using the follow-
ing expression:

S =1 (E). )

Moreover, hybrid signals (e.g., APS images I and event data
E) can be taken as input to realize spatial resolution en-
hancement of intensity images [40]:

S =T+ (LE), 3)

where I'y () denotes jointly reconstructing and super resolv-
ing operation.

However, the three types of event-based intensity image
SR described as Eq. (1)~Eq. (3) have some disadvantages.
Firstly, Eq. (1) relies heavily on the performance of I'() due
to the domain gap between upsampling events and inten-
sity data independently. Secondly, Eq. (2) does not take
intensity information into account. Ignoring the intensity
information from APS frames that faithfully record scene
radiance with less motion results in fewer details and unsta-
ble intensity for video reconstruction. Thirdly, method [40]
like Eq. (3) jointly achieving image deblurring, denoising,
and SR may not produce high-quality images because dif-
ferent degradation problems are caused by various reasons,
as shown in Fig. 1.

In this paper, we propose to fuse intensity frames with
event data to achieve high-quality super-resolution of inten-
sity images by utilizing the information provided by hybrid
types of input data. The APS frames record spatial irra-
diance with rich semantic information of a scene at each
pixel, while event data encode the rapid temporal irradiance
changes along the edges of objects. The static intensity val-
ues and dynamic events are complementary to each other.
We turn the SR problem into a better-posed multiple image
version, as described in Eq. (4):

s =1y (PALEY), 4)

where Ty,() denotes the multi-image super-resolution
(MISR) operator. T'() differs from I'() in that the conver-
sion from event data to multiple latent intensity frames is
provided with the assistance of APS, and ¢ is the index of
different batches of events.

We therefore propose EvintSR-Net, a neural network that
learns to convert Event data to multiple latent Intensity

frames to achieve SR for reconstructing high-resolution in-
tensity images. As described Eq. (4), such a merging pro-
cess can be described as two steps: 1) The events repre-
sent residuals from low-quality APS frame to high-quality
latent frames. Given APS frame and its preceding and/or
following event streams, we can reconstruct multiple latent
frames with higher dynamic range and sharper details. 2)
The reconstructed latent frames could then be treated as
a sequence of video frames, which benefit from MISR to
enhance the resolution of a target APS frame. EvIntSR-
Net is composed of two sub-networks: latent frame recon-
struction network (LFR-Net), which estimates the residu-
als between intensity frames and reconstructs multiple la-
tent frames; and multi-image fusion network (MIF-Net),
which solves the misalignment issue among latent frames
first, then learns to effectively merge them in a recurrent
updating manner.

Extensive experiments on synthetic data, as well as real-
world data (e.g., DAVIS346) demonstrate EvIntSR-Net can
successfully reconstruct 2x and 4x super-resolved inten-
sity images with higher fidelity comparing to state-of-the-
art approaches. An example is shown in Fig. 1, compared
to eSL-Net [40], which also takes I and E as input data,
EvIntSR-Net (ours) recovers much sharper edges and richer
structural details in 4x SR on images captured by a real
event camera. In addition to image SR, EvIntSR-Net can
generate high-frame-rate (HFR) videos with SR frames.

2. Related Work
2.1. Intensity Image Super-resolution

Intensity image SR algorithms can be divided into two
categories: single image super-resolution (SISR) and mul-
tiple image super-resolution (MISR) methods. We focus on
MISR approaches in this section since our method belongs
to this category. Please refer to comprehensive surveys in
[30, 44] for a summary of SISR methods.

MISR methods aim to extract temporal information
along with contextual features in a series of frames, which
are generally more successful in recovering missing details.
Previous approaches [5, 13, 20, 25, 26, 46] usually compute
optical flow and perform image warping based motion com-
pensation to get well-aligned frames, then use convolutional
neural networks (CNNs) to fuse them for HR results. How-
ever, these optical flow-based approaches still have lim-
ited performance because they rely on accurate motion es-
timation and the motion compensation will introduce un-
desired artifacts around image structures. Besides, several
methods [23, 38] take advantage of 3D convolutions to ex-
tract features from concatenated frames without any explicit
alignment. However, the noise introduced by misalign-
ment especially on the edges impacts the reconstruction re-
sults. And 3D convolutions require huge computational re-
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sources. Apart from that, some MISR approaches [39, 43]
conduct implicit motion compensation by using deformable
convolutional filters [9], which reshape the configuration of
filters with computed offsets to handle the geometric trans-
formations. The EDVR [43] extracts features of two frames
at multiple levels and computes the offsets between feature
maps for deformable convolutional filters, then warps the
adjacent frame to the target frame with deformable convo-
lutions.

2.2. Event-based Super-resolution

Since event cameras are restricted by their low spatial
resolution, some works focus on the super-resolution of
event streams in both spatial and temporal domains. Li et
al. [22] used Poisson point process to model the event se-
quence, and sample the events according to a nonhomoge-
neous Poisson process. EventZoom [ 1] collected a multi-
resolution event dataset and used a noise-to-noise fashion
to learn the denoising and upsampling mapping of event
signals. Wang et al. [45] proposed guided event filtering
(GEF), which built a hybrid camera and took advantage of
HR RGB signals to guide the upsampling of events. In-
tensity image reconstruction from event data has been ex-
ploited in many ways [1, 8, 18, 32, 41]. All of them re-
construct intensity images in the same spatial resolution
as event data. To achieve higher resolution intensity im-
ages, Mohammad et al. [7] used a recurrent neural net-
work to iteratively add details to intensity frames for SR.
Wang et al. proposed a three-phase reconstruction network
named EventSR [42], which used unsupervised adversar-
ial learning to upsample the enhanced intensity image. To
recover high-quality HR images, Wang et al. proposed eSL-
Net [40], an event-enhanced sparse learning network, to ad-
dress deblurring, denoising, and super-resolution simulta-
neously.

3. Proposed Method

In Sec. 3.1, we first formulate the physical model of
event data generation and the relationship between inten-
sity frames and event data. Then we describe the event-
guided image super-resolution model that can be viewed as
a two-stage process: 1) latent frame reconstruction, and 2)
multi-image fusion. In the first stage, we reconstruct multi-
ple latent frames from the current APS frame with its neigh-
boring event data. Then we merge latent images to achieve
high-resolution intensity image reconstruction. To realize
high-quality event-guided image super-resolution, we pro-
pose the EvIntSR-Net in Sec. 3.2, which is designed accord-
ing to the two-stage process. Sec. 3.3 and Sec. 3.4 describes
the details of dataset generation and training strategy, re-
spectively.

3.1. Formulation
3.1.1 Physical model of event data and intensity frame

An event data e;(x;, y;, t;, p;) is triggered when the log
intensity change exceeds the dispatched threshold 6, where
1 represents the index of the event in a stream, x and y are
the spatial coordinates of the event, ¢ denotes the triggering
time stamp, p € {—1,+1} is the polarity that indicates the
increase or decrease of intensity changes. The output of
event sensor E’ can be represented using

L +€
Et,. ) — q) 10 (T7y) 79 9 5
(z,y) { g (Iley) 4 et ®)

where I! is the captured intensity values, and € is an off-
set value that prevents division by zero. ®{«, 0} represents
the condition of events generation. When o > 6, positive
events are generated, while o« < —6 will trigger negative
events.

Given two consecutive captured intensity values I and
I'7, the events triggered by intensity changes between them
during a time slot ¢; — t; are represented as E" 7%, Ac-
cording to the physical model of event generation, the rela-
tionship between I and I’/ can be formulated as

I =1 - exp (H/Eti_)tj dt)

=TI". Res" ™", (6)

where Res'i % is the residual between two intensity
frames, which is computed from the integral events in the
time slot.

Therefore, given the current intensity frame and its
neighboring event streams, the latent frames can be recon-
structed using Eq. (6).

3.1.2 Image super-resolution guided by event data

We aim to super-resolve the intensity image I with
the information provided by neighboring event data. The
event streams represent the log intensity changes, which are
sparse and in quite different type of data format. There-
fore, it is difficult to bridge the domain gap by directly fus-
ing event data with intensity images. As Eq. (4) stated,
we divide the process into two steps. We firstly improve
the quality of the APS frame, which is blurry and in low
dynamic range (LDR). Then we convert the neighboring
event streams into latent frames that are in the intensity
domain by estimating the residuals between latent frames
and current I'. The number of latent frames depends on
the number of events and the time slot we choose. With
the reconstructed latent frames, we can treat this problem
as the MISR process. To avoid ghosting artifacts, the latent
frames are warped to the improved I" at first. Then we fuse
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Figure 2: The pipeline of EvIntSR-Net. Left: the MISR process of our proposed method, which is composed of latent frames
reconstruction and multi-image fusion. The inputs are the central APS frame I, which is in low-quality (LDR and blur), and
its neighboring event streams E*. /+- The output is the SR result S* of the enhanced APS frame, which is improved in spatial
resolution, dynamic range, and sharpness. Right: the detailed architectures of LFR-Net and MIF-Net.

the stack of frames in an iterative manner to get the super-
resolved reconstruction results.

3.2. Network Architecture

The network architecture of EvIntSR-Net is shown in
Fig. 2. EvIntSR-Net takes an LR intensity frame I' and its
neighboring event stream E*. . as the input, where “—” and

+” represent the foregoing and following event streams of
the intensity frame.

3.2.1 Latent frame reconstruction

The latent frames are reconstructed using intensity resid-
uals estimated from neighboring event data. However, di-
rectly stacking the event data and multiplying with I" leads
to ringing artifacts in edges.

Hence, we propose to estimate the intensity residuals and
reconstruct latent frames by the latent frame reconstruction
network (LFR-Net). Because of the sparsity in spatial do-
main of event streams, we need to bridge the relationship
between intensity frames and event data. So we convert the
stream-like events into a frame-like representation, which
can be easily processed by the convolutional filters. How-
ever, simply stacking a series of events to form a frame-
like tensor is not a rational representation. Whether the
event streams are time-based (SBT) or number-based (SBN)
stacking proposed in [41], they ignored the important time-
stamp information and the polarities may be counteracted in
a pixel. To maintain the temporal information and encode
it into event tensors, we choose to use the spatial-temporal

voxel grid [49] as the representation format with temporal
bins B of 10.

The LFR-Net takes a sequence of voxel grids V(E" /0/+)
and the APS frame I as the input, where V(E}) represents
the combination of both preceding and following events
around APS frame. The basic architecture of LFR-Net is
a U-Net [33] with different encoders for I' and V(E ),

respectively. The feature maps extracted from I’ are con-
catenated at different scales with those from V(E" /0/ )
and activated by SE blocks [14] to estimate more accurate
intensity residuals.

The skip-connections help the decoder of LFR-Net to
fuse the feature maps from encoders and output a 1-channel
intensity residual Res’ /o/+ for each of the voxel grids
V(EL Jo/+)- Then the latent frames L' /0/+ could be re-

constructed by element-wise multiplication ® of I' and
Res’ /0/+- Finally, the product is activated by a Sigmoid()
function that restrains the intensity values to the range of
[0, 1], as expressed in Eq. (7):

L' o/ = LFR (I V(E )

= Sigmoid (' @ Res' 15, ). (]
Note that L} is the enhanced APS frame I, which is de-
blurred and includes HDR information due to the HDR
property and high temporal resolution of event data. The
intensity residuals Res’ here hold different mathematical
meaning from that in Eq. (6), because of the Sigmoid() acti-
vation function added in the final layer for network training.
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3.2.2 Multi-image fusion

The structural information encoded in APS frames and
event data is converted to intensity values of latent frames.
Given a sequence of reconstructed latent intensity frames
{L" L, Li} the super-resolution problem can be treated
as the MISR process. Therefore, we propose the multi-
image fusion network (MIF-Net) to merge latent frames.

Firstly, the L” /0/+ are concatenated in channel axis. We
can regard the concatenated tensor as a sequence of high-
frame-rate video frames. Since there are multiple frames
taken into consideration, the temporal alignment plays a
crucial role to avoid blur artifacts for the next step of fusion.
We use the deformable convolutional layers[9] to accom-
plish alignment between frames. We follow the EDVR [43]
network that extracts feature maps of different frames in
multiple pyramid levels, and compute the offsets between
them for conducting alignment. The deformable convolu-
tional layers can be easily embedded into our networks and
trained end-to-end without any additional supervision. The
aligned latent frames are expressed as:

L, =DC (L, L), ®)

where DC'(z, y) denotes the deformable convolution block,
which warps image x to the target image y with the com-
puted offsets.

The aligned multiple frames {I:i, L{, I:i} are fed into
the fusion layers in the following process, which merges
them in a channel-wise manner and reconstructs the high-
resolution images. To reconstruct finer details of upsam-
pled results, we use recurrent convolutional networks in
this stage. Recurrent structure maintains a hidden state that
is modulated by the input feature maps in each iteration
to reconstruct finer detailed images. We apply feedback
block [24] with dense connections, which retains the recon-
structed details of the previous iteration in a hidden state
and fuses with the feature maps in the next iteration. The
feedback block outputs the residuals between the SR result
S and the LR enhanced APS frame L. So the final super-
resolved intensity image S’ is the summation of residuals
and the interpolated enhanced frame LBT, which can be rep-
resented as:

S'=MIF (L' L., L)

=FB (LU L, L) e L, ©)

where F'B() and @ denote the feedback block and element-
wise addition, respectively. Here we use bilinear interpo-
lation to get L, from L{. The residual feature maps from
FB() are rearranged by a periodic shuffling operator [36]
to match the size of L.

Since EvIntSR-Net reconstructs SR intensity images in a
frame-by-frame manner, it naturally extends to video recon-
struction. The frame rate of SR videos is determined by the

number of merged events. So we can generate high-frame-
rate videos in high resolution by interpolating more latent
frames.

3.3. Dataset Preparation

Considering the end-to-end training of the proposed net-
work, we need a sufficient dataset with the inputs of LR in-
tensity images I” = {I’, ..., '} and the neighbouring event
sequences E” ;. = {E? ,E}...,E’ ,E! }. The ground truth
are HR intensity images H” = {H°,...,H'}.

However, there is no public large-scale dataset that con-
sists of LR event data with the corresponding HR intensity
images. What’s more, the spatial resolution of APS and
event data in a DAVIS sensor are both in low-resolution.
So we cannot acquire the HR intensity images as ground
truth if we collect the dataset with a real event sensor.
Therefore, we use synthetic dataset to train our network as
done in previous works [7, 32]. We choose event simulator
V2E [10] to generate event data in arbitrary spatial resolu-
tion. V2E [10] synthesizes realistic event data from any real
or synthetic conventional frame-based video using an accu-
rate DVS model, which optionally uses Super-SloMo [15]
to upsample the temporal resolution of a standard camera
video. Since the synthetic frames interpolated from Super-
SloMo [15] rely heavily on the pretrained model, we use
high frame rate (240 FPS) and high-resolution (1280 x 720)
videos (e.g., Need for Speed [17] and GoPro [29] datasets)
as input sources without frame interpolation.

Consequently, the high-resolution intensity images H”
are readily available. To simulate the real APS frames 17,
we downsample the frame size of videos to 128 x 128 to
generated LR event streams EX /4 using V2ZE [10]. Then we
introduce LDR and blurry artifacts to the sharp frames by
multiplying random exposures and averaging several con-
secutive frames. The corresponding sharp HR intensity im-
ages H” are simply downsampled to 256 x 256 or 512 x 512
based on the training upscale factors (2x or 4x). A 240 FPS
source video is viewed as a video that has 30 APS frames
per-second. The other frames are regarded as latent frames’
ground truth, as shown in Fig. 3.

The synthetic dataset has 3828 {I”, EX /4 H”} data tu-
ples generated from 132 video sequences. To improve the
generalization ability of EvIntSR-Net to real event data, we
randomly set the positive and negative contrast thresholds
when generating events by sampling according to a normal
distribution with mean 0.15 and standard deviation 0.03.

3.4. Training Strategy
3.4.1 Loss functions

There are three basic loss functions during the training
process. {1 loss Ly,, {2 loss Ly,, and perceptual loss [16]
Loperc. Lo, and L, compute the mean absolute error (MAE)
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Figure 3: Top row: latent frames from a high-frame-rate
video [17]. Bottom row: event streams generated from
V2E [10] and the simulated APS frames by degrading (LDR
and blur) some of these latent frames.

and mean square error (MSE) between the output of net-
works and the ground truth, respectively. The £, is de-
fined based on the feature maps of images extracted by the
VGG-16 network [37] pre-trained on ImageNet [34]:

Acperc = Z (||¢h(s) - ¢h<H)|‘§

h
+lags) - crmlly) (10)

where ¢;, denotes the feature map convoluted from h-th
layer of VGG-16, Gf is the Gram matrix of feature maps ¢,
of two input images. Both of the two parts are computed by
f5 norm. The layers we use to compute £, are ‘relu4_3’
and ‘relu5_3" of VGG-16 network in our experiments.

For LFR-Net, we aim to output intermediate latent
frames with more additional details for multi-frame fusion.
The loss function is a combination of £;, and Lpey.:

Lrrr = a1Ly + a2lpere, (11)

where o1 and «y are weights for different losses, which are
set to 100.0 and 5.0, respectively. As for MIF-Net, using /o
norm as the regularizer makes the SR results smoother. So
we choose Ly, and L., as the loss function for MIF-Net:

£1V11F = ﬂ1£€2 + BQ‘Cperca (12)

where 31 and 35 are 200.0 and 3.0, respectively.

3.4.2 Implementation details

The proposed network is implemented by PyTorch with
an NVIDIA 2080 Ti GPU. Our framework is an end-to-end
learning approach. Instead of training the whole network
simultaneously, we perform phase-to-phase training for bet-
ter learning efficiency. The LFR-Net was pre-trained firstly
with the supervision of latent frame ground truths. In the
second phase, we fix the parameters of LFR-Net and use
the output of LFR-Net to train the MIF-Net. Each of the
sub-networks is trained for 200 epochs. We use the ADAM

optimizer [21] with an initial learning rate of 1075, After
the first 160 epochs, the learning rate linearly decays to 0
over the last 40 epochs.

4. Experimental Results

We compare the proposed method to several state-of-the-
art image super-resolution approaches. Since there are just a
few works aiming to reconstruct SR images for event cam-
eras, we also compare with some image-based SR meth-
ods [13, 24]. The comparing approaches are listed below:

1) eSL-Net [40], which reconstructs HR intensity images
from APS and event data.

2) E2SRI [7], which directly uses the pure event data as
input to reconstruct HR intensity images.

3) EV [32]+SISR [24], which reconstructs the intensity
images from event streams by E2VID [32] at first, then
super-resolves using a trained SISR network [24].

4) APS+MISR [13], which is a multiple images super-
resolution algorithm, the input are the target APS with
its adjacent 7 intensity frames.

We can regard method 1) as the implementation of
Eq. (3). Method 2) directly reconstructs SR intensity im-
ages from event streams, which is the same as the category
of Eq. (2). Method 3) divides the SR process into 2 steps
as described in Eq. (1). The non-learning-based reconstruc-
tion methods from events to images [ |, 28] are omitted since
they have been compared in [32] and shown lower-quality
reconstruction.

4.1. Evaluation on Synthetic Dataset

Since there are ground truth HR images in the syn-
thetic dataset, we conduct quantitative evaluation using
peak-signal-to-noise (PSNR), structural-similarity (SSIM),
and learned perceptual image patch similarity (LPIPS) [47]
on the synthetic test dataset. The total test dataset con-
sists of 841 intensity images and the event streams between
two consecutive frames from 19 high-frame-rate video se-
quences [17, 29]. Table 1 shows the comparison of different
methods on the evaluation metrics. Our model outperforms
other comparing methods in all the metrics. Compared with
the approaches listed above, quantitative evaluation shows
that the proposed EvIntSR-Net is able to reconstruct 2 x and
4x HR intensity images with higher quality on experiments
of synthetic data.

Fig. 4 shows 2x and 4x SR results of EvIntSR-Net and
other comparing approaches. Visual quality comparisons
reveal that the fusion of intensity images and event data can
achieve higher-quality image super-resolution with much
more structural details. The APS frames lose HDR informa-
tion and sharp details, which are encoded in event frames,
as shown in the second column of Fig. 4. The event data
capture much more details of a scene and contributes to the
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Figure 4: Visual quality comparison of 2x SR (top part) and 4 x SR (bottom part) on synthetic dataset between EvIntSR-Net
and other state-of-the-art super-resolution methods, including both event-based approaches: eSL-Net [40], E2SRI [7] (2%
SR model weights of eSL-Net and 4x SR model weights of E2SRI are unavailable) and EV [32]+SISR [24], as well as
the image-based MISR method: APS+MISR [13]. The APS frames (first column) and event stacks (second column) are

upsampled with bicubic interpolation to the corresponding scale for reference.

APS frame 4x bicubic

Ours 4x SR

eSL-Net 4x SR

Figure 5: 4x SR comparisons between EvIntSR-Net (Ours) and eSL-Net [40] on real-captured data by event cameras. The
APS frames are upsampled with bicubic interpolation for reference.

final SR results. For example, the letter “T/”” in 2x SR and
the number “5” in 4x SR comparing results of Fig. 4 can be
restored finer by the EvIntSR-Net. However, eSL-Net [40]
did not take advantage of using multiple latent frames.
E2SRI [7] and produce blurry edges. EV [32]+SISR [24]
take pure event data as input without the assistance of inten-
sity images, the super-resolved results are estimated from
high-frequency events densely distributed at the edges of
the objects. The reconstructed images are unstable and
highly influenced by the number of events collected in the
stacks. Because few events cannot provide sufficient infor-
mation for reconstruction, while too many events stacked on
edges can easily induce blur artifacts. The MISR [13] ap-
proach merges the adjacent 7 APS frames to reconstruct the

central target APS frame, while our EvIntSR-Net just takes
advantage of the event data generated between the adjacent
2 APS frames. We use the central APS frame as the base
image and do not need any additional intensity information
from other APS frames. Compared with other methods,
EvIntSR-Net can reconstruct much more structural details
and clearer edges of objects. Our method outperforms both
SISR and MISR approaches in qualitative comparisons and
quantitative evaluations.

4.2. Evaluation on Real Dataset

Reconstruction results on real-world data are shown in
Fig. 5. The testing samples are captured using a real event
camera DAVIS346 on various scenarios. We compare our
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Table 1: Quantitative evaluation of 2x and 4x SR (note
the 2x SR results of eSL-Net are unavailable, which are
downsampled from 4 X results using bicubic interpolation.
The 4x SR of E2SRI model are also unavailable, so its 4 x
results not provided.) results on synthetic dataset among
ours and the comparing methods. 1(J) means the higher
(lower) the better results throughout this paper.

Scale Method | PSNRT  SSIM?  LPIPS|

eSL-Net [40] 1499 0587 0354
E2SRI [7] 1535 0547 0320
oy EVIRWSISR[2] | 1473 0555 0422
APS+MISR [13] 1569 0673  0.303
Ours 2312 0776  0.130
eSL-Net [40] 1494 0583  0.465
E2SRI [7] . . .
4 EV2MSISR[2] | 1473 0582 0516
APS+MISR [13] 15.18  0.609  0.427
Ours 2325 0745 0231

30FPS

Ours
240FPS

eSL-Net
240FPS

Figure 6: HFR video (240 FPS) generation with 4x SR
frames. The first row is a 30 FPS LR video from [27]. The
bottom two rows are interpolated SR frames from EvIntSR-
Net (Ours) and eSL-Net [40].

reconstruction results with eSL-Net [40]. The SR results
demonstrate the effectiveness of EvIntSR-Net’s ability to
reconstruct sharper edges with more details and handle
challenging SR reconstruction of real-world scenarios, such
as HDR scenes (our reconstruction on roof tiling recovers
better texture details than eSL-Net in under-exposed area).
Our method supports HFR video generation by recon-
structing a sequence of SR latent frames,' as shown in
Fig. 6. The number of latent frames depends on the number
of event bins. We can reconstruct a 240 FPS video from
a 30 FPS video by dividing the events between 2 consecu-
tive frames into 8 bins. We put the target latent frame to be
super-resolved in the central position of a sequence of latent
frames. Then the other latent frames are merged to the tar-
get frame by deformable convolutional filters to achieve SR.

!' More HFR videos and SR images are provided in the supplement.

Table 2: Quantitative evaluation of ablation study.

‘ PSNR?T SSIM?T LPIPS|
W/o LFR-Net 2297 0.769 0.134
W/o DC align 23.08 0.774 0.131
W/o FB block 23.08 0.766 0.151
Complete model 23.12 0.776 0.130

The 240 FPS SR videos look smoother and restore more re-
alistic details compared to eSL-Net [40] and the original 30
FPS LR videos.

4.3. Ablation Study

To demonstrate the effectiveness of the proposed model
design, we ablate different modules from the complete
model and evaluate it quantitatively in Table 2. Firstly, the
latent frames can be computed directly from the APS frame
and event stacks using Eq. (6). To prove the necessity of
LFR-Net, we remove LFR-Net and use the latent frames re-
constructed from Eq. (6) to achieve MISR (W/o LFR-Net).
In addition, we remove the deformable convolution block
(W/o DC align) and feedback block (W/o FB block) to ver-
ify the significance of latent frames alignment and recurrent
manner in MIF-Net, respectively.

5. Conclusion

This paper presents how to fuse event data with multi-
ple latent intensity frames of event cameras to achieve re-
construction of SR intensity images. The SR process is
separated into two steps: latent frame reconstruction and
multi-frame fusion, which bridges the domain gap between
event streams and intensity images, and achieves SR recon-
struction from the MISR fusion manner, which is achieved
by the proposed EvIntSR-Net. Extensive experiments on
synthetic data and real-world data demonstrate that the pro-
posed method can deal with HDR scenes and blurry arti-
facts, and outperforms various state-of-the-art comparing
methods.

Limitations and future work. We focus on reconstruct-
ing SR intensity images using event data. However, when
there is too fast camera motion, the APS frames are prone
to have severe blurry artifacts. The proposed EvIntSR-Net
has limited ability to handle huge blur, which is left as our
future fork.
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