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Abstract

Language bias is a critical issue in Visual Question An-
swering (VQA), where models often exploit dataset bias-
es for the final decision without considering the image in-
formation. As a result, they suffer from performance drop
on out-of-distribution data and inadequate visual explana-
tion. Based on experimental analysis for existing robust
VQA methods, we stress the language bias in VQA that
comes from two aspects, i.e., distribution bias and shortcut
bias. We further propose a new de-bias framework, Greedy
Gradient Ensemble (GGE), which combines multiple biased
models for unbiased base model learning. With the greedy
strategy, GGE forces the biased models to over-fit the bi-
ased data distribution in priority, thus makes the base mod-
el pay more attention to examples that are hard to solve
by biased models. The experiments demonstrate that our
method makes better use of visual information and achieves
state-of-the-art performance on diagnosing dataset VQA-
CP without using extra annotations.

1. Introduction
Visual Question Answering (VQA) is a challenging task

that requires both language-aware reasoning and image un-
derstanding. With advances in deep learning, neural net-
works [37, 34, 6, 13, 18, 17, 19, 29] that model the correla-
tions between vision and language have shown remarkable
results on large-scale benchmark datasets [3, 15, 23, 20].

However, recent studies have demonstrated that most
VQA methods tend to rely on existing idiosyncratic biases
in the datasets [15, 24, 43]. They often leverage superfi-
cial correlations between questions and answers to train the
model without considering exact vision information. For
example, a model may blindly answer “tennis” for the ques-
tion “What sports ...” just based on the most common textual
QA pairs in the train set. Unfortunately, models exploiting
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Figure 1. Two aspects of language bias in VQA. (a) Distribution
Bias: The answer distribution for certain question type is sig-
nificantly long-tailed. (b) Shortcut Bias: The correct answers
produced by the model may rely on the question-answer shortcut
rather than proper visual grounding.

statistical shortcuts during training often show poor gener-
alization ability to out-of-domain data, and hardly provide
proper visual evidence for a certain answer.

Currently, the prevailing solutions for this problem can
be categorized into ensemble-based [36, 7, 10], grounding-
based [39, 42, 22] and counterfactual-based [8]. Similar to
re-weighting and re-sampling strategies in traditional long-
tailed classification [45, 25, 16, 31], ensemble-based meth-
ods re-weight the samples by the question-only branch.
Grounding-based models stress a better use of image in-
formation according to human-annotated visual explana-
tion [11, 21]. Newly proposed counterfactual-based meth-
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ods [8, 33] further combine these two lines of work and
achieve better performance.

Nevertheless, it has been shown that existing methods
have not fully leveraged both vision and language informa-
tion. For example, Shrestha et al. [40] argue that improved
accuracy in grounding-based methods [39, 42] does not ac-
tually emerge from proper visual grounding but some un-
known regularization effects. Similar to [40], we further
analyse all the three categories of existing work by control
experiments in Section 3.2. We found that language bias in
VQA is actually two-fold: (a) the statistical distribution gap
between train and test, i.e., distribution bias shown in Fig-
ure 1(a), and (b) the semantic correlation between specific
QA pairs, i.e., shortcut bias shown in Figure 1(b). Although
long-tailed distribution in train set is usually considered to
be one of the factors that increase shortcut bias, we exper-
imentally demonstrate that they are actually two aspects of
the language bias. Grounding supervision in [39] or ensem-
ble regularization in [7, 10] does not necessarily force the
model to focus on visual information as expected. To en-
courage the model to pay attention to the images, we need
to explicitly model bothbiases and reduce them step by step.

Inspired by our empirical findings, we propose Greedy
Gradient Ensemble (GGE), a new model-agnostic de-bias
framework that ensembles biased models and the base mod-
el like gradient descent in functional space. The key idea of
our method is to make use of the over-fitting phenomenon in
deep learning. The biased part of data is greedily over-fitted
by biased features, as a result, the expected base model can
be learned with more ideal data distribution and focus on
examples that are hard to solve with biased models.

In the experiments, variants of GGE models are provided
in ablation study, which demonstrates the generalization a-
bility of our method and further supports our claim that dis-
tribution bias and question shortcut bias are complementary
in VQA. To verify if a model can really use visual informa-
tion for the answer decision, we further study the language
bias in VQA from a visual modelling perspective. Quantita-
tive and qualitative evaluations show that GGE can provide
better visual evidence accompanied with predictions.

The major contributions are:

• We provide analysis for the language bias in VQA task
and decompose the language bias into distribution bias
and shortcut bias.

• We propose a new model-agnostic de-bias framework
Greedy Gradient Ensemble (GGE), which sequentially
ensembles biased models for robust VQA.

• On VQA-CP, our method makes better use of visual
information and achieves state-of-the-art performance,
with 17.34% gain against simple UpDn baseline with-
out extra annotations. Code is available at https:
//github.com/GeraldHan/GGE.

2. Related work

2.1. De-bias with dataset construction

The most straightforward way to remove the dataset bias
is to construct a balanced dataset. For instance, Zhang
et al. [43] collect complementary abstract scenes with op-
posite answers for all binary questions. Similarly, VQA
v2 [15] is introduced to weaken language priors in the VQA
v1 dataset [3] by adding similar images with different an-
swers for each question. Agrawal et al. [1] introduce a
diagnosing VQA dataset under Changing Prior (VQA-CP)
constructed with different answer distributions between the
train and test splits. Most of the models that perform well
on VQA v2 significantly drop on VQA-CP in Accuracy.

2.2. De-bias with model design

Collecting new large-scale datasets is costly. It is cru-
cial to develop models that are robust to biases. Along with
VQA-CP dataset [1], Agrawal et al. propose GVQA mod-
el that disentangles the visual concept recognition from the
answer space prediction. LDP [22] and GVQE [27] exploit
different information in questions for better question rep-
resentation. These models require a pre-defined question
parser, making them hard to implement.

Another line of work starts from visual grounding. Early
works [35, 44] directly apply human grounding [11, 21] as
supervision to attention maps, but the improvement is lim-
ited. HINT [39] and SCR [42] change supervised attention
maps to Grad-CAM, which directly encourages the contri-
bution of each object to be consistent with human anno-
tations. Recent work [40] experimentally challenges the ef-
fectiveness of visual grounding in [39, 42], but does not find
a good way to test if systems are actually visually grounded.

The most effective solution so far is ensemble-based,
which formulates a question-only branch as explicit mod-
elling for language bias. Ramakrishnan et al. [36] introduce
an adversarial regularization to remove answer discrimina-
tive feature from the questions. RUBi [7], LMH [10] and
PoE [28] re-weight samples based on the question-only pre-
diction. Niu et al. [33] further improve ensemble strate-
gies from a causal-effect perspective. CSS [8] combines
grounding-based and ensemble-based methods with coun-
terfactual samples synthesizing. Gat et al. [14] introduce a
regularization by maximizing functional entropies (MFE),
which forces the model to use multiple sources of informa-
tion in multi-modal tasks. Nam et al. [32] propose a general
framework LfF, which trains the de-biased classifier from a
biased classifier. Compared to our work, they mainly focus
on single-modality classification problems and their Gener-
al Cross-Entropy (GCE) re-weighting strategy is less flexi-
ble, which relies on hyper-parameter in GCE and can only
handle one pair of attributes in de-bias learning.
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3. Revisiting Language Bias in VQA
3.1. Problem Definition

For base model, we consider the common formulation of
VQA task as a multi-class classification problem. Given a
dataset D = {vi, qi, ai}Ni=1 consisting of an image vi ∈ V ,
a question qi ∈ Q and a labelled answer ai ∈ A, we need to
optimize a mapping fV Q : V ×Q → RC which produces a
distribution over the C answer candidates. Without loss of
generality, the function is composed as following:

ãi = fθ(vi, qi) = c (m (ev(vi), eq(qi))) , (1)

where ev : V → Rnv×dv is an image encoder, eq : Q →
Rnq×dq is a question encoder, m(.) denotes the multi-modal
fusion or reasoning module, and c(.) is the multi-layer per-
ception classifier. The output is a vector ã ∈ RC indicating
the probability belonging to each answer candidate.

3.2. Experimental Analysis for Language Bias

In recent work, Shrestha et al. [40] experimentally chal-
lenge the way grounding-based methods [42, 39] work on
VQA-CP [1]. However, they did not provide insights into
the language bias itself. In this section, from a new de-bias
method perspective, we provide three control experiments
for baseline model UpDn [2], grounding-based method
HINT [39], ensemble-based method RUBi [7] LMH [10]
and counterfactual-based method CSS [8] on VQA-CP and
VQA v2 to discuss the language bias in VQA.

Inverse Grounding Annotation. To analyse the contri-
bution of visual-grounding, we first experiment with HINT
and CSS-V that use human attention as extra information.
Following [40], we change human-annotated region impor-
tance scores [11] Sh to irrelevant grounding S′

h = 1 − Sh.
As shown in Table 1, the performance of HINTinv and CSS-
Vinv is almost the same as the original models. This indi-
cates that the Accuracy gains are not necessarily from look-
ing at relevant regions [4]. Although the models correct-
ly answer some hard questions, they still make predictions
based on language information regardless of images. We
refer to this unexpected solution as “inverse language bias”.

Vision-only Model. The second experiment aims to
analyse the function of the ensemble branch in RUBi and
LMH. For the base model, we only feed the vision feature
without multi-modal fusion to the answer classifier:

ãi = c (ev(vi)) . (2)

There is no question information for classification in base
model, and thus obviously no shortcut between QA pairs to
reduce. As shown in Table 1, RUBivo degrades a lot, but
LMHvo still surpasses UpDnvo by a large margin in Accu-
racy. Apart from restraining shortcuts between question-
answer pairs, we think the improved Accuracy in LMH

Table 1. Experimental analysis for representative methods on
VQA-CP and VQA v2. Footnote inv stands for Inverse Grounding
Annotation, vo for Vision-only, and is for Inverse-Supervision.

Method VQA-CP VQA 2.0
UpDn [2] 39.89 63.79
HINT [39] 47.50 63.38
RUBi [7] 45.42 58.19
LMH [10] 52.73 56.35
CSS [8] 58.11 53.15
HINTinv 47.20 60.33
CSS-Vinv 58.05 54.39
UpDnvo 33.18 45.67
RUBivo 23.53 46.11
LMHvo 43.68 27.18
UpDnvo,is 39.44 40.03
UpDnis 42.12 60.85
RUBiis 48.42 59.10
LMHis 58.12 43.29

mainly comes from penalizing the most common answers
in the train set, which leads to a more balanced classifier
according to inverse distribution. This means the distribu-
tion bias in LMH plays a different role compared with the
question shortcut in RUBi.

Inverse Supervision for Balanced Classifier. To direct-
ly verify if such “inverse distribution bias” can improve Ac-
curacy, inspired by the two-round training in CSS [8], we
design a simple “inverse supervision” strategy. For each
iteration, the parameters are updated two rounds with dif-
ferent supervisions. In the first round, we train the model
supervised by ground-truth label A and get the prediction
P (a). The top-N answers with the highest predicted prob-
abilities are selected as a+. In the second-round training,
the label is defined as Â = {ai|ai ∈ A, ai /∈ a+}. This
strategy is actually a simplified version of CSS [8] with-
out object/question masks. In this way, the model con-
tinuously penalizes the most confident answers in the first
round training, thus formulates a more balanced classifier
according to inverse distribution bias. The Accuracy im-
provement in UpDnvo,is reveals the existence of distribu-
tion bias. The result of RUBiis further indicates that distri-
bution bias and shortcut bias are complementary. LMHis is
even comparable to CSS that uses extra annotations. How-
ever, this method leads to catastrophic degradation on the
in-distribution dataset VQA v2 as shown in Table 1.

According to the above experiments, we obtain the fol-
lowing valuable insights: 1) Good Accuracy can not guar-
antee that the system is really visually grounded for answer
classification. Grounding supervision or question-only reg-
ularization may encourage models to make use of inverse
language bias rather than better visual information for high-
er Accuracy. 2) Distribution bias and shortcut bias are com-
plementary aspects of language bias in VQA. A single en-
semble branch is unable to model such two types of biases.
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4. Method
Based on the above findings, we propose GGE, a new

model-agnostic de-bias learning paradigm, which removes
distribution bias and shortcut bias step by step, thus forces
the model to focus on images.

4.1. Greedy Gradient Ensemble

Let (X,Y ) denote the train set, where X is the space of
observations, and Y is the space of labels. Following pre-
vious VQA methods, we mainly consider the classification
problem with binary cross-entropy (BCE) loss

L(P, Y ) = −
C∑
i=1

yi log(pi) + (1− yi) log(1− pi), (3)

where C denotes the number of classes. pi = σ(zi) where
zi is the predicted logit for class i and σ(.) is the sigmoid
function. Baseline methods directly minimize the loss be-
tween the prediction f(X; θ) and label Y

min
θ

L (σ(f(X; θ)), Y ) . (4)

Since f(.) is over-parametrized DNNs, the model is easy to
over-fit the dataset biases and suffers from poor generaliza-
tion ability.

For our method, we make use of this kind of over-fitting
in deep learning. Assume B = {B1, B2, . . . , BM} to be
a set of bias features that can be extracted based on prior
knowledge. This time we fit the ensemble of bias models
and base model to label Y

min
φ,θ

L

(
σ

(
f(X; θ) +

M∑
i=1

hi(Bi;φi)

)
, Y

)
, (5)

where hi(.) is a biased model for certain biased feature. Ide-
ally, we hope the biased part of data is only over-fitted by
the bias models, thus the base model can be learned with
unbiased data distribution. To achieve this goal, we pro-
pose GGE in which biased models have a higher priority to
over-fit the dataset with greedy strategy.

Viewing in the functional space, suppose we have Hm =∑m
i=1 hi(Bi) and we wish to find hm+1(Bm+1) added to

Hm so that the loss L (σ(Hm + hm+1(Bm+1)), Y ) de-
creases. In theory, the desired direction of hm+1 is the neg-
ative derivative of L at Hm, where

−∇L(Hm,i) :=
∂L (σ(Hm), Y )

∂Hm,i
= 2ym,iσ (−2ym,iHm,i) .

(6)
For a classification problem, we only care about the prob-
ability for class i: σ(fi(x)) ∈ {0, 1}. Therefore, we treat
the negative gradients as pseudo labels for classification and
optimize the new model hm+1(Bm+1) with BCE loss:

Lm+1 = L (σ(hm+1(Bm+1;φm+1)),−∇L(Hm)) . (7)

After integrating all biased models, the expected base
model f is optimized with

Lb(θ) = L (σ(f(X; θ)),−∇L(HM )) . (8)

In the test stage, we only use the base model for predictions.
More intuitively, for a sample that is easy to fit by biased

models, the negative gradient of its loss −∇L(HM ) (i.e.,
the pseudo label for the base model) will become relatively
small. f(X; θ) will pay more attention to samples that are
hard to solve by previous ensemble biased classifiers HM .

In order to make the above paradigm adaptive to Batch S-
tochastic Gradient Decent (Batch SGD), we implement two
optimization schedules GGE-iteration and GGE-together,
as shown in Algorithm 1 and Algorithm 2 in Supplemen-
tary. GGE-tog jointly optimizes biased models and the base
model with

L(Θ) = Lb(θ) +

M∑
m=1

Lm(φm). (9)

For GGE-iter, each model is iteratively updated within a
certain data-batch iteration. More details for GGE are pro-
vided in Section A in Supplementary.

4.2. GGE Implementation for Robust VQA

Following analysis in Section 3, we define two biased
features for VQA, i.e., distribution bias and shortcut bias.

Distribution Bias. We define the distribution bias as an-
swer distribution in the train set conditioned on question
types

Bi
d = p(ai|ti), (10)

where ti denotes the type of question qi. The reason
for counting samples conditioned on question types is to
maintain type information when reducing distribution bias.
Question type information can only be obtained from the
questions rather than the images, which does not belong to
the language bias to be reduced.

Shortcut Bias. Shortcut bias is the semantic correlation
between specific QA pairs. Similar to [7], we compose the
question shortcut bias as a question-only branch

Bi
q = cq (eq(qi)) , (11)

where cq : Q → RC .
To verify our claim that distribution bias and shortcut

bias are complementary, we design three versions of GGE
for ensembles of different language biases.

GGE-D only models distribution bias for ensemble,
shown in Figure 2(b). The loss for the base model is

L = L(σ(Ã),−∇L(Bd, A)), (12)

where Ã is the predictions, and A is the labelled answers.
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Figure 2. Different versions of GGE. V,Q and Ã denote image, question, and answer prediction respectively. A is the human-annotated
labels. Bd and Bq indicate the prediction from distribution bias and question shortcut bias respectively.

GGE-Q only uses a question-only branch for short-
cut bias. As shown in Figure 2(c), we first optimize the
question-only branch with labelled answers

L1 = L(σ(Bq), A). (13)

The loss for base model is

L2 = L(σ(Ã),−∇L(σ(Bq), A)). (14)

GGE-DQ uses both distribution bias and question short-
cut bias. As shown in Figure 2(d), the loss for Bq is

L1 = L(σ(Bq),−∇L(Bd, A)). (15)

The loss for base model is

L2 = L(σ(Ã),−∇L(σ(Bq) +Bd, A)). (16)

We test both GGE-iter or GGE-tog for L1 and L2.

4.3. Connection to Boosting

Boosting [12, 38, 38, 9] is a widely used ensemble strat-
egy for classification problems. The key idea of boosting is
to combine multiple weak classifiers with high bias but low
variance to produce a strong classifier with low bias and low
variance. Each base learner has to be weak enough, other-
wise, the first few classifiers will easily over-fit to the train-
ing data [5]. However, the neural networks’ fitting ability is
too strong to be “high bias” and “low variance” for boosting
strategy, making it hard to use deep models as weak learn-
ers. In this paper, our method exploits this over-fitting phe-
nomenon, making biased weak features to over-fit the bias
distribution. In the test stage, we only use the base model
trained with the gradient of biased models, thus removing
language bias in VQA.

On the other hand, the idea of approximating negative
gradients is very similar to Gradient Boost [30]. Howev-
er, Gradient Boost has to greedily learn weak learners in

turn. This will be costly for complicated neural network-
s via back-propagation. We design two strategies, GGE-
iteration and GGE-together, in which the learners are up-
dated along with Batch SGD.

5. Experiments
The experiments are conducted on both language-bias

sensitive VQA-CP v2 [1] and standard VQA v2 [15]. Con-
sidering there is no validation set for VQA-CP, we simply
choose the model in the last training epoch for comparison
in consequent experiments. More implementation details
can be found in Section C in the Supplementary.

5.1. Evaluation Metrics

For each model, we compare Accuracy, the standard
VQA evaluation metric [3]. Moreover, a robust VQA mod-
el is expected to leverage both visual and language informa-
tion, but good Accuracy is not enough to indicate the system
is well visually grounded according to analysis in Sec. 3.

In [40], a new metric Correctly Predicted but Improperly
Grounded (CPIG) is proposed to quantitatively assess visu-
al grounding in VQA. An instance is regarded as correctly
grounded if the ground-truth regions for the right answer
(e.g., HAT [21]) are within the model’s top-N most sensi-
tive visual regions. For convenience, we define 1− CPIG
as CGR (Correct Grounding for Right prediction):

%CGR =
Nrg,rp

Nrp
× 100%, (17)

where Nrp is the total number of right predictions, Nrg,rp is
the number of instances that are correctly answered with
correct visual grounding. However, similar to results in
[40], we find that CGR is not very discriminative across
different methods as shown in Table 2 in Supplementary.
The model with high CGR (e.g., UpDn) may not actually
use enough visual information for classification. If a model
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Table 2. Experimental results on VQA-CP v2 test set and VQA v2 val set of state-of-the-art methods. Best and second performance are
highlighted in each column. Methods with * use extra annotations (e.g., human attention (HAT), explanations (VQA-X), or object label
information). Methods with CGD are our reimplementation using released codes. Other results are reported in the original papers.

Method Base
VQA-CP test VQA v2 val

All Y/N Num. Others CGD All Y/N Num. Others
GVQA [1] - 31.30 57.99 13.68 22.14 - 48.24 72.03 31.17 34.65
UpDn [2] - 39.89 43.01 12.07 45.82 3.91 63.79 80.94 42.51 55.78
S-MRL [7] - 38.46 42.85 12.81 43.20 - 63.10 - - -
HINT* [39] UpDn 47.50 67.21 10.67 46.80 10.34 63.38 81.18 42.14 55.66
SCR* [42] UpDn 49.45 72.36 10.93 48.02 - 62.2 78.8 41.6 54.4
AdvReg. [36] UpDn 41.17 65.49 15.48 35.48 - 62.75 79.84 42.35 55.16
RUBi [7] UpDn 45.42 63.03 11.91 44.33 6.27 58.19 63.04 41.00 54.43
LM [10] UpDn 48.78 70.37 14.24 46.42 11.33 63.26 81.16 42.22 55.22
LMH [10] UpDn 52.73 72.95 31.90 47.79 10.60 56.35 65.06 37.63 54.69
DLP [22] UpDn 48.87 70.99 18.72 45.57 - 57.96 76.82 39.33 48.54
GVQE* [27] UpDn 48.75 - - - - 64.04 - - -
CSS* [8] UpDn 41.16 43.96 12.78 47.48 8.23 59.21 72.97 40.00 55.13
CF-VQA(Sum) [33] UpDn 53.69 91.25 12.80 45.23 - 63.65 82.63 44.01 54.38
GGE-DQ-iter (Ours) UpDn 57.12 87.35 26.16 49.77 16.44 59.30 73.63 40.30 54.29
GGE-DQ-tog (Ours) UpDn 57.32 87.04 27.75 49.59 15.27 59.11 73.27 39.99 54.39
RUBi [7] S-MRL 47.11 68.65 20.28 43.18 - 61.16 - - -
GVQE* [27] S-MRL 50.11 66.35 27.08 46.77 - 63.18 - - -
CF-VQA(Sum) [33] S-MRL 54.95 90.56 21.88 45.36 - 60.76 81.11 43.48 49.58
MFE [14] LMH 54.55 74.03 49.16 45.82 - - - - -
CSS* [8] LMH 58.21 83.65 40.73 48.14 8.81 53.15 61.20 37.65 53.36

locates the right object but still produces a wrong answer, it
is a safe bet that it heavily relies on language bias instead
of images for prediction. To quantitatively assess whether a
model uses visual information for answer decision, we in-
troduce CGW (Correct Grounding but Wrong prediction):

%CGW =
Nrg, wp

Nwp
× 100%, (18)

where Nwp is the number of wrong predictions, and Nrg,wp
is the number of instances for which the model provides the
right visual evidences but wrong prediction. Bad cases like
example 2 and 3 from UpDn in Fig. 4 are ignored by CGR
but can be identified by high CGW.

For clearer comparison, we denote the difference of CGR
and CGW as CGD (Correct Grounding Difference):

%CGD = %CGR−%CGW. (19)

CGD only evaluates whether the visual information is taken
in answer decision, which is parallel with Accuracy. The
key idea for CGD is that a model actually makes use of
visual information should not only provide the right pre-
dictions based on the correct visual-groundings but also a
wrong answer due to improper visual evidence as well. De-
tailed CGR and GCD for all experiments are provided in
Table 2 in Supplementary. It shows that UpDn, HINTinv

and CSS-Vinv achieve comparable performance on Accu-
racy but significantly degrade on CGD. This meets our in-
tuitive analysis that these methods do not fully exploit vi-
sual information for the answer decision. Although the

visual-grounding annotations are not so reliable for some
instances1, CGD can offer statistically better distinction
from the whole dataset level. More details for CGD are
provided in Section B in the Supplementary.

5.2. Comparison with State-of-the-art Methods

We compare our best performed model GGE-DQ with
existing state-of-the-art bias reduction techniques, includ-
ing visual grounding-based methods HINT [39], SCR [42],
ensemble-based methods AdvReg. [36], RUBi [7], LM
(LMH) [10], MFE [14], new question encoding-based
methods GVQE [27], DLP [33], counterfactual-based meth-
ods CF-VQA [33], CSS [8] , and recent proposed regular-
ization method MFE [14].

Experiments on VQA-CP test set aim to evaluate
whether VQA models effectively reduce language bias. As
shown in Table 2, GGE-DQ achieves state-of-the-art perfor-
mance without extra annotation. It outperforms the baseline
model UpDn by 17% higher in Accuracy and 13% higher in
CGD, which verifies the effectiveness of GGE on both an-
swer classification and visual-grounding ability. Under the
same base model UpDn, our method achieves the best per-
formance in both Accuracy and CGD, with ∼ 5% gain com-
paring to all other methods, even competitive with methods
that use stronger base models.

For the comparison of question-type-wise results, incor-

1Not all examples in VQA v2 are annotated in VQAX [11]. Moreover,
visual grounding for some instances are hard to evaluate (e.g., questions
that require global image information or without referring objects)
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Figure 3. Predicted distribution for three variants of GGE.

porating GGE reduces the biases and improves the perfor-
mance for all the question-types, especially the more chal-
lenging “other” question type [41]. CF-VQA [33] performs
the best in Y/N, but worse than our methods in all other
metrics. LMH [10], LMH-MFE [14] and LMH-CSS [8]
surpass other methods in Num., and LMH-CSS even slight-
ly outperforms GGE-DQ in overall Accuracy due to high
performance in Num. (40.73%). Comparing LM and LMH,
it is obvious that the performance gains in Num. are due to
the additional regularization for entropy. However, method-
s with entropy regularization drop nearly 10% on VQA v2.
This indicates that these models may over-correct the bias
and largely use “inverse language bias”.

5.3. Ablation Studies

In this section, we design various ablations to verify the
effectiveness of greedy ensemble and our claim that distri-
bution bias and question shortcut bias are two aspects of
language bias. More results on VQA v2 are provided in
Section D in the Supplementary.

The first group of ablations is to verify if the greedy en-
semble can guarantee biased data is learned with biased
models. We compare with other two ensemble strategies.
SUM-DQ directly sums up the outputs of biased models
and the base model. LMH+RUBi combines LMH [10] and
RUBi [7]. It reduces distribution bias with LMH and short-
cut bias with RUBi. The implementation details for these
two ablations are provided in Section C in Supplementary.

As shown in Table 3, SUM-DQ performs even worse
than baseline. Meanwhile, the Accuracy of LMH+RUBi is
just similar to that of LMH, and about 6% worse than GGE-
DQ. This shows that GGE can really force the biased data to
be sequentially learned with biased models. Instances that
are easy to predict based on distribution or shortcut bias will
be well fitted by the corresponding biased model. As a re-
sult, the base model has to pay more attention to hard exam-
ples and consider more visual information for final decision.

In the second group of experiments, we experimentally
compare distribution bias and shortcut bias. The case anal-
ysis in Figure 3 shows that GGE-D only uniforms predic-

Table 3. Ablation study for different versions of GGE on VQA-CP
v2 test set. Best results are highlighted in the columns.

Method All Y/N Others Num. CGD
Baseline 39.89 43.01 45.80 11.88 3.91
SUM-DQ 35.46 42.66 38.01 12.38 3.10
LMH+RUBi 51.54 74.55 47.41 22.65 6.12
GGE-D 48.27 70.75 47.53 13.42 14.31
GGE-Q-iter 43.72 48.17 48.78 14.24 6.70
GGE-Q-tog 44.62 47.64 48.89 14.34 6.63
GGE-DQ-iter 57.12 87.35 49.77 26.16 16.44
GGE-DQ-tog 57.32 87.04 49.59 27.75 15.27

tions, which mainly improves Y/N as shown in Table 3. Bq

works like “hard example mining” but will also introduce
some noise (e.g. “mirror” and “no” in this example) due to
inverse distribution bias. Reducing Bd at the first stage can
further encourage the discovery of the hard examples and
force the base model to capture visual information. In Fig-
ure 3, the correct answer has higher confidence and the top
predictions are all based on the image. As shown in Ta-
ble 3, GGE-DQ surpasses single-bias versions by ∼10%.
This well verifies our claim that distribution bias and short-
cut bias are two complementary aspects of language bias.

5.4. Generalization of GGE

Self-Ensemble. The performance of GGE largely de-
pends on the predefined biased features, which requires pri-
or knowledge of the task or dataset.In order to further dis-
cuss the generalization of GGE, we test a more flexible Self-
Ensemble fashion (GGE-SF) on VQA-CP. GGE-SF takes
the joint representation ri = m (ev(vi), eq(qi)) itself as the
biased feature instead of predefined question-only branch,
the biased prediction is

Bsi = cs (ri) , (20)

where cs : r → RC is the classifier of the biased model.
The training process is the same as GGE-Q.

As shown in Table 4, GGE-SF still surpasses the base-
line even without predefined biased features. This means
that the base model itself can also be regarded as a biased
model, as long as the tasks or datasets are biased enough.
Moreover, if we first remove distribution bias with GGE-
D before Self-Ensemble, the performance of GGE-D-SF is
also comparable to existing state-of-the-art methods.

Generalization for Loss Function. For a fair compar-
ison with previous work, we adopt Sigmoid+BCE loss for
the above experiments. Actually, GGE is agnostic for clas-
sification losses. We provide extra experiments for Soft-
max+CE loss in Table 4. The implementation for GGEsxce

is provided in Section A in the Supplementary.
Generalization for Base Model. GGE is also agnostic

for base model choices. We provide extra experiments with
BAN [26] and S-MRL [7] as base model. The results are
provided in Section D in the Supplementary.
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Figure 4. Qualitative Evaluation for GGE-DQ. We provide a comparison between UpDn and GGE-DQ on the visualization of the most
sensitive regions and confidence of the top-5 answers. Red answers denote the ground-truth.

Table 4. Variants of GGE on VQA-CP v2. SF stands for Self-
Ensemble, sxce denotes models trained with softmax+CE loss.

Method All Y/N Others Num.
UpDn 39.89 43.01 45.80 11.88
UpDnsxce 41.37 45.96 46.90 12.46
GGE-SF-iter 44.53 50.98 48.90 18.24
GGE-SF-tog 43.10 49.90 47.33 17.74
GGE-D-SF-iter 56.33 86.43 49.32 24.37
GGE-D-SF-tog 52.86 76.25 49.46 20.56
GGEsxce-D 53.98 86.06 47.85 15.09
GGEsxce-Q-iter 52.98 82.27 48.06 14.97
GGEsxce-Q-tog 52.99 81.86 47.97 16.11
GGEsxce-DQ-iter 56.25 85.08 48.56 24.78
GGEsxce-DQ-tog 55.84 84.47 48.76 26.96

5.5. Qualitative Evaluation

Examples in Figure 4 illustrate how GGE-DQ makes
of visual information for inference. From top to bottom,
we provide three representative failure cases from baseline
UpDn. The first example is about shortcut bias. Despite
offering the right answer “yes”, the prediction from UpDn
is not based on the right visual grounding. On the contrary,
GGE correctly grounds the giraffe that is eating leaves. The
second example is about distribution bias. UpDn correctly
grounds the curtain but still answers the question based on
distribution bias (“flowers” is the most common answer for
“what pattern...” in the train set). The last example is a case
for reducing language prior apart from Yes/No questions.
UpDn answers “boat” just based on the language context “in
the water”, while GGE-DQ provides correct answers “tv”

and “television” with more salient visual grounding. These
examples qualitatively verify our improvement in both Ac-
curacy and visual explanation for the predictions. More ex-
amples and failure cases can be found in Supplementary.

6. Conclusion
In this paper, we experimentally analyse several methods

for robust VQA and propose a new framework to reduce the
language bias in VQA. We demonstrate that the language
bias in VQA can be decomposed into distribution bias and
shortcut bias and then propose a Greedy Gradient Ensem-
ble strategy to removes such two kinds of preferences step
by step. Experimental results demonstrate the rationality of
our bias decomposition and the effectiveness of GGE. We
believe the idea behind GGE is valuable and has the poten-
tial to become a generic method for dataset bias problems.
In the future, we will extend GGE to solve bias problems
for other tasks, provide a more rigorous analysis to guar-
antee model convergence, and learn to automatically detect
different kinds of bias features without prior knowledge.
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