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Abstract

Few-shot object detection (FSOD) aims to detect never-
seen objects using few examples. This field sees recent im-
provement owing to the meta-learning techniques by learn-
ing how to match between the query image and few-shot
class examples, such that the learned model can general-
ize to few-shot novel classes. However, currently, most of
the meta-learning-based methods perform parwise match-
ing between query image regions (usually proposals) and
novel classes separately, therefore failing to take into ac-
count multiple relationships among them. In this paper, we
propose a novel FSOD model using heterogeneous graph
convolutional networks. Through efficient message passing
among all the proposal and class nodes with three differ-
ent types of edges, we could obtain context-aware proposal
features and query-adaptive, multiclass-enhanced prototype
representations for each class, which could help promote the
pairwise matching and improve final FSOD accuracy. Ex-
tensive experimental results show that our proposed model,
denoted as QA-FewDet, outperforms the current state-of-the-
art approaches on the PASCAL VOC and MSCOCO FSOD
benchmarks under different shots and evaluation metrics.

1. Introduction

With abundant annotated training examples of objects,
deep neural networks are tailored to extract commonalities
and detect object instances accordingly. However, such meth-
ods tend to over-fit when there are only a few examples avail-
able. On the other hand, having seen many similar objects,
humans can recognize a novel object when shown only a
few examples of it. Inspired by humans’ outstanding ability
to generalize knowledge, few-shot object detection aims to
detect novel object instances in an image given a few ex-
amples of the novel object (a.k.a novel class) and abundant
examples of other objects (a.k.a base classes).

Although object detection methods like Faster-RCNN
[31] work extremely well on data-abundant base classes, it

Figure 1. Overview of our proposed few-shot object detection
(FSOD) method. (a) Previous meta-learning-based FSOD method.
These methods aim to learn how to match between the regions
(usually proposals) in the query image and few-shot class exam-
ples. Note that the key module, the matching network, will be
repeatedly applied on each proposal and class pair. (b) Built upon
the meta-learning-based approach, our method proposes a novel
heterogeneous GCNs module with three different types of edges,
allowing efficient message passing among all the nodes. (c) Three
types of edges used in our model.

is non-trivial to adapt the model to few-shot novel classes.
This is mainly because the softmax classifier used in R-CNN
is tasked to perform classification among foreground classes
and reject background regions at the same time. However,
the notion of background changes when we adapt the model
to novel classes. Typically, there are two approaches address-
ing this problem. One approach [37, 40] is to use long-tailed
learning methods for training on the unbalanced dataset, but
the generalization ability of such model is still limited. The
other approach [3, 29, 39, 14] is to use meta-learning method
to learn a class-agnostic few-shot detector on base classes,
which can be easily adapted to novel classes without addi-
tional training. The simple framework and high detection
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accuracy make the meta-learning-based approach a promis-
ing choice for FSOD.

The key of these meta-learning approaches is to learn how
to match between the regions (usually RPN proposals [31])
in the query image and few-shot class examples. This is
achieved by learning a class-agnostic matching network with
a binary classifier. The two inputs are the proposal feature
extracted from an image [6] and the prototype representation
[32] of a few-shot class. The matching network will then be
repeatedly applied on every proposal and class pair. How-
ever, there are three potential limits in this approach. Firstly,
this kind of method turns out to be a ‘single-class’ detector,
without modeling multi-class relations. This is important
especially when there are base classes similar to the novel
class as we could ‘borrow’ robust features from these classes.
Secondly, since the class prototype is extracted only from
the few-shot examples, there could potentially be a huge dis-
crepancy between the extracted prototype and the proposal
feature, considering the wide variety of objects and their
different image statistics. Thirdly, proposals could be noisy
and may not contain complete objects. Current methods
do not consider the contextual information in the image for
matching.

To address these three challenges, we propose a novel
GCN-based FSOD model, denoted as QA-FewDet (Query-
Adaptive Few-Shot Object Detection), which utilizes graph
propagation to learn context-aware proposal features and
query-adaptive, multiclass-enhanced class prototypes. As
shown in Fig. 1, we construct a graph among the proposal
and class nodes for efficient class-class, class-proposal, and
proposal-proposal communications. Firstly, by connecting
different classes (including base classes) through the class-
class edge, our method can model multi-class relations and
enhance novel-class prototypes with prototypes from other
similar classes. Secondly, the class-proposal edge provides
mutual adaptation between class prototypes and proposal
features and therefore reduces the distribution discrepancy
between the two features. Meanwhile, it could provide addi-
tional examples of the class from proposals belonging to that
class. Thirdly, the proposal-proposal edge provides both
local and global contextual information to help classification
and bounding box localization.

The naive way of graph construction is to include all pro-
posals and classes in a single graph. However, such a graph
is memory-expensive and inefficient for message passing.
To better incorporate these three types of edges in our model,
as shown in Fig. 1, we propose a novel heterogeneous graph
consisting of a query-agnostic Inter-Class Subgraph, and
multiple class-specific Intra-Class Subgraphs for each query
image. The two subgraphs are processed sequentially for
efficient message passing among all the nodes.

The entire network can be learned end-to-end using
episode-based training on the abundant base-class data. To

show the effectiveness of our model, we conduct compre-
hensive experiments on two widely-used FSOD benchmarks.
The results show that our QA-FewDet surpasses the current
SOTAs by a huge margin under different shots and metrics.

Our contributions are 1) To our knowledge, we are the
first to propose a graph model that considers class-class,
class-proposal, and proposal-proposal relations in few-shot
object detection, 2) we propose a novel heterogeneous graph
structure that allows efficient message passing among all the
nodes, 3) our model achieves significantly better results than
current state-of-the-art methods on the PASCAL VOC and
MSCOCO FSOD benchmarks across various settings.

2. Related Works
Object Detection. Current DCNNs-based object de-

tection methods can mainly be grouped into two cate-
gories: proposal-based methods and proposal-free methods.
Proposal-based methods [31, 11, 8, 10] divide object de-
tection into two sequential stages by firstly generating a
set of region proposals and then performing classification
and bounding box regression for each proposal. Proposal-
free methods [30, 23, 34, 9] directly predict the bounding
boxes and the corresponding class labels on top of CNN
features. We choose to use one of the most representative
proposal-based methods, Faster R-CNN [31], in our model
as it usually has better detection accuracy than proposal-free
detectors due to the cascade design and improving detection
accuracy is still the top priority for FSOD.

Few-Shot Learning and Meta-Learning. Few-shot
learning aims to recognize novel classes using only few
examples. Meta-learning has been demonstrated a promis-
ing learning paradigm for few-shot learning tasks by trans-
ferring meta-knowledge learned from data-abundant base
classes to data-scarce novel classes. Current meta-learning
based few-shot learning methods can be roughly divided into
three categories: optimization-based methods [4], parameter-
generation-based methods [5] and metric-learning-based
methods [36, 32, 33, 25]. Most of the few-shot learning
methods are developed for the image classification task.

Few-Shot Object Detection. Different from few-shot
image classification, few-shot object detection needs to not
only recognize objects with an arbitrary appearance, pose
and scale using few-shot examples as references, but also
localize (multiple) objects in the image and reject numerous
background regions. Existing works can be mainly grouped
into the following two categories: (1) Long-tailed-learning-
based methods [37, 40]. These methods attempt to learn ob-
ject detection by using training data from both data-abundant
base classes and data-scarce novel classes. To deal with the
unbalanced training set, re-sampling [37] and re-weighting
[21] are the two main strategies [17]. However, the models
trained on the joint dataset are inflexible for adding never-
seen few-shot classes. (2) Meta-learning-based methods
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[18, 16]. Meta-learner [16, 3, 29, 43] is introduced to ac-
quire class-level meta knowledge via feature re-weighting
and helps the model to generalize to novel classes. Meta-
learning based methods [39, 18, 41, 3, 44, 7, 14, 28] has
been demonstrated to be successful for FSOD. Moreover,
meta-learning based methods can be efficient for incremen-
tally adding new few-shot classes during network inference.
Our method belongs to this category.

Graph Convolutional Networks. First proposed by Kipf
et al. [19], graph convolutional networks (GCNs) and their
variants like Graph Attentional Networks (GAT) [35], have
seen massive applications in Computer Vision, including
modeling video proposal relations in action localization
[27, 45], object relations in visual relation reasoning [26],
joint relations in skeleton-based action recognition [42], and
object proposal relations in object detection [1]. Liu et al.
[24] inject a GNN into a Faster R-CNN framework to con-
textualize the features of region proposals before the R-CNN
classifier. This improves the results but it only shows results
under traditional many-shot setting. Some methods [38] uti-
lize GNNs on graphs that represent the ontology of concepts,
which could enable generalization to unseen concepts by
considering their relations with frequently-seen concepts.
Different from previous works, we propose a novel hetero-
geneous GCNs in this paper that considers various relations
within and between proposals and classes for FSOD.

3. Task Formulation
In few-shot object detection (FSOD), we split object

classes C into Cbase and Cnovel such that C = Cbase ∪
Cnovel and Cbase∩Cnovel = ∅. For each class c ∈ C, its an-
notations Tc contain the object instances’ labels and bound-
ing boxes inside the image. Formally, Tc = {(c, u, I)|u ∈
U, I ∈ RHI∗WI∗3}, and U ⊆ R4 = {(xi, yi, wi, hi)} repre-
sents bounding boxes in the image.

For each class c ∈ Cbase, we have plenty of annotated
instances. For each class c ∈ Cnovel, we only have limited
K examples, also known as support images, (e.g., |Tc| = K
for K = 1, 5, 10). FSOD aims to detect novel-class object
instances with few annotated object instances. Formally,
given a query image Iq ∈ RHq∗Wq∗3, FSOD outputs a set of
detections Sq = {(c, u)|c ∈ Cnovel, u ∈ U}.

4. The Baseline FSOD Model
As shown in Fig. 2, we mainly follow Fan et al.’s work [3]

to build our baseline FSOD model, which adopts a siamese
Faster R-CNN (with ResNet [12]) with two branches. In one
branch, a query image Iq is fed into the feature extraction
network to extract its feature r(Iq) (output of res4 block)
for the detection head. Similarly, the other branch extracts
the feature r(Is) given an input support image Is.

Then the Attention-RPN [3] is used to produce N

Figure 2. The baseline FSOD model [3].

(N = 100 by default following [3]) class-specific proposals
Pc = {{pci}Ni=1, p

c
i ∈ U} for the novel class c ∈ Cnovel. Af-

ter that, we use the res5 block and RoIpooling [6] to extract
the feature f(pci ) ∈ RH×W×C(H = W = 7, C = 2048)
for proposal pci from the query image feature r(Iq). We
apply the same layers to r(Is), and take the average feature
of all support images belonging to the novel class c as the
class prototype f(c). After that, a multi-relation network [3]
is used to calculate similarity score between the proposal
feature and the class prototype, and then produce the final de-
tection results for class c following [31]. The above process
will be applied to each novel class independently.

The reason we use [3] as our baseline model is as follows.
Firstly, the whole framework is simple and elegant, and is a
natural extension of the original Faster R-CNN to the few-
shot setting. Secondly, as shown in the Section 6.3, it has
achieved SOTA accuracy in major FSOD benchmarks.

Although [3] has been demonstrated to be a promising
FSOD model, there are three potential limits as discussed
in the Section 1, and the primary cause is the separate clas-
sification of each proposal and class pair. To deal with this
problem, we propose a novel FSOD model with heteroge-
neous GCNs in the following section.

5. Our Method with Heterogeneous GCNs
The ultimate goal of our proposed heterogeneous GCNs is

to enable efficient message passing among all the proposals
and classes before pairwise classification. To this end, we
first generate class-specific proposals and extract proposal
features and class prototypes following the baseline model.
Then we establish a novel heterogeneous graph using the
generated proposal and class nodes, and use GCN layers to
update features for each node in our graph in a sequential
manner. After that, we use the updated features for the final
pairwise classification.

5.1. Overview of Our Heterogeneous Graph

We aim to construct a graph to capture various types of
relations within and between proposals and classes. One way
to construct the graph is to include all proposals and classes
in a single graph. However, such a construction is memory-
expensive as the number of proposals increases significantly
with the number of classes, and the edge between cross-class
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Figure 3. Our proposed heterogeneous graphs.

proposals incurs redundant and noisy information.
Considering the class-specific proposals generated in our

model, we build a heterogeneous graph G that consists of
two types of nodes, three types of edges, and two types of
subgraphs as illustrated in Fig. 3. Specifically, we build
a graph G = (V,E), where V and E denote the node
sets and edge sets respectively. The two types of nodes
in V are the proposal nodes Vp = ∪c∈Cnovel

{Pc}, namely
the class-specific proposals for each novel class, and the
class nodes Vc = C including all novel and base classes.
E has three components: the class-class edges Ec−c, the
proposal-proposal edges Ep−p, and the class-proposal edges
Ec−p. Our heterogeneous graph G has two types of sub-
graphs: a query-agnostic Inter-Class SubgraphGinter shared
among all query images, and multiple Intra-Class Subgraphs
Gintra = {Gc, c ∈ Cnovel} for each query image, where
Gc represents the class-specific subgraph for novel class c.

5.2. The Inter-Class Subgraph

Inspired by previous works [13, 5], modeling multi-class
relationships could help enhance the prototype representa-
tion of few-shot classes and perform robust classification. In
this paper, we first establish an Inter-Class Subgraph among
all classes. Given the set of all classes C = {c1, c2..., c|C|},
we construct Ginter = (Vinter, Einter), where Vinter = C
and Einter = {(ci, cj) : 1 ≤ i, j ≤ |C|}. Ainter is the
adjacency matrix of Ginter with edge weights for Einter.
Ginter is a graph with only class nodes, and considers rela-
tions among all base classes and novel classes for enhancing
novel class prototypes.

The Class-Class Edge. To efficiently aggregate valuable
information from other classes, we compute the class-wise
correlation between every class pair. The key idea is that if
two classes are similar, it would be meaningful to update one
class’s prototype using that of the other class. Therefore, the
edge weight between the two should increase correspond-
ingly. Formally, given a class pair (ci, cj), we use cosine

similarity to estimate their correlation by 1

e(ci, cj) =
f(ci)

T f(cj)

‖f(ci)‖2 · ‖f(cj)‖2
(1)

We then apply softmax for each class ci to normalize its
pairwise correlation

Aij
inter =

exp(e(ci, cj))∑
k∈C exp(e(ci, ck))

, (2)

5.3. The Intra-Class Subgraph

Considering the class-specific proposals generated in our
model, we build an Intra-Class Subgraph for each novel
class. Each subgraph consists of one class node and the
corresponding class-specific proposals. Formally, for each
novel class c, we construct Gc = (Vc, Ec), where Vc =
P̂c ∪{c}, and P̂c = Pc ∪{g}. Here, g denotes the ‘proposal’
containing the entire image I , and we obtain its featuref(g)
by performing RoI-pooling from the whole image feature.
Ac is the adjacency matrix of Gc with edge weights for Ec.

To model the different types of relations within an Intra-
Class Subgraph, we break Ec into two components:

The Proposal-Proposal Edge. Contextual information
has been demonstrated to be crucial for traditional many-
shot object detection [45, 15, 24]. In this paper, we apply
this idea to the few-shot setting to obtain context-aware pro-
posal features. To be specific, we establish an edge between
proposal pi 2 and proposal pj if IoU (pi, pj) > θ, where
θ is a fixed threshold for determining meaningful overlaps
(θ = 0.7 by default following [45]), and IoU is defined as

IoU (pi, pj) =
∩(pi, pj)
∪(pi, pj)

, pi, pj ∈ Pc (3)

At the same time, we also provide image-level contextual
information by connecting the aforementioned global image
node g to each proposal.

By building edges with nearby proposals and with the
global scene-context, the proposal-proposal edges enrich the
original proposal features with both local and global con-
textual information, leading to better classification accuracy
and more precise bounding box locations. The weight of the
proposal-proposal edge in Ac is calculated and normalized
as in Eq. 1 and Eq. 2.

The Class-Proposal Edge. Traditional methods [3, 41,
43] usually use the K-shot support images to extract the
prototype of a novel class. However, the extracted proto-
type cannot represent the novel class well using very few
examples. Moreover, it is challenging to extract robust novel-
class prototypes using the feature backbone trained only on

1As in section 4, we use f(c) to represent the prototype of class c. The
same rule applies for the proposal feature.

2We use novel class c as an example in the rest of this section, and
remove the class label c in pci for simplicity reason.
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base classes. To calibrate the different statistical distribu-
tion between the proposal feature and the class prototype,
we introduce the class-proposal edge for dynamic mutual
adaptations. Moreover, if the query image contains instances
of the novel class, the class-specific proposals should cover
these regions, and thus contributing extra-shots from the
query image. This could help extract accurate novel-class
prototype that is more suitable for the query image.

In practice, we establish bidirectional edges between the
class node c and all the class-specific proposal nodes Pc. We
show in Section 6.2 that mutual adaptation is better than
adaption with only a single direction. Furthermore, since we
only want to connect relevant proposals to the class node,
we compute the cosine similarity as in Eq. 1 to estimate
the correlation between the class-proposal pair and filter out
noisy relations. Then, for the class node c, we normalize the
weights of all the incoming class-proposal edges similar to
Eq. 2. For the proposal nodes, we use the original cosine
similarity as the weight of the incoming class-proposal edge.

5.4. Our Heterogeneous GCNs

After building our heterogeneous graph, we first perform
message passing on the query-agnostic Inter-Class Subgraph
for enhancing novel-class prototypes before processing any
query image. With the enhanced novel-class prototypes, we
then build multiple Intra-Class Subgraphs for each query
image, and apply message passing for facilitating the com-
munication among the proposal and class nodes.

For each graph, we sequentially perform L-layer GCNs
(L = 1 as shown in section 6.2), which take in feature X0

and output feature XL of the same size (R7×7×2048). In
practice, we implement the lth GCN layer (1 ≤ l ≤ L) by

X l = AX l−1W l (4)

In this equation, X l ∈ RH∗W∗dl is the output feature
of the lth GCN layer. Ainter and Ac are the respective
adjacency matrix of the Inter-Class and class c’s Intra-Class
Subgraph. W l ∈ Rdl−1∗dl is a learnable parameter matrix.
Each layer is followed by a residual block.

Note that to keep a consistent feature space between the
class and proposal nodes, we apply the same number of
learnable transformation layers to both of them as a siamese
network. Therefore, we do not use W l in any GCN layer in
the Inter-Class Subgraph. A detailed discussion about this
can be found in section 6.2. For each class ci, the effect of
each layer is equivalent to a weighted sum of other class
prototypes by 3

f̃(ci) =
∑
j∈C

Aji
inter · f(cj) + f(ci) (5)

3For simplicity reason, we use f(ci) and f̃(ci) to denote the input and
output of the lth layer GCN respectively. The similar strategy applies for
Eq. 6 and Eq. 7.

In the Intra-Class Subgraph, for each proposal pi of novel
class c, let Ppi = {g}∪{pj ∈ Pc | IoU (pi, pj) > θ} denote
the set of its overlapping proposals and the global ‘proposal’.
We aggregate pi’s feature from the enhanced class prototype
and proposal features of Ppi

using a GCN layer by

f̃(pi) =
(
Acpi

c · f(c) +
∑

p∈Ppi

Appi
c · f(p)

)
W + f(pi), (6)

Acpi
c is the edge weight of class c and propoal pi in Gc.

Appi
c is defined similarly. We update class c’s prototype by

f̃(c) =
(
f(c) +

∑
pk∈Pc

Apkc
c · f(pi)

)
W + f(c), (7)

After obtaining the updated proposal features and the
class prototype, we feed them into the pairwise matching
network [3] for the final classification.

5.5. Training Framework

To transfer knowledge from the base classes to the novel
classes, we adopt a two-stage training strategy.

Meta-learning with Base Classes. With a pretrained
feature extractor, we perform episode-based training on base
classes. To simulate the few-shot scenario, each episode con-
sists of one annotated query image andK randomly sampled
shots for each base class. The whole model is supervised
under a binary cross-entropy loss for classification and a
smooth L1 loss for bounding box regression. During meta-
testing, we can adapt our model to novel classes by simply
calculating their prototype representations.

Fine-tuning with Novel Classes (Optional). We can fur-
ther fine-tune the class-agnostic few-shot detector on novel
classes following previous works [3, 41, 43, 37]. The dif-
ference between fine-tuning and meta-learning-only is that
during fine-tuning, we use positive and negative proposals
generated from the original novel class images to train our
few-shot detector, while in meta-learning-only there is no
training over novel classes. We study the performance of our
model both with and without fine-tuning in section 6.2.

6. Experimental Results
6.1. Datasets

We use two widely-used few-shot object detection bench-
marks MSCOCO 2014 [22] and PASCAL VOC 2007 and
2012 [2] for model evaluation, and follow the same FSOD
settings as previous works [16, 37] for fair comparison.

MSCOCO. We set the 20 PASCAL VOC categories as
novel classes and the remaining 60 categories as base classes.
We use the same few-shot support images as [16]. We report
detection accuracy with AP, AP50, and AP75 under shots
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1, 2, 3, 5, 10 and 30. Note that 30-shot is considered as
few-shot in MSCOCO dataset because the accuracy still
largly falls behind the many-shot setting [16]. We use the
MSCOCO dataset for ablation study in Section 6.2.

PASCAL VOC, The 20 PASCAL VOC categories are
split into 15 base classes and 5 novel classes. We follow [16]
and use the same base/novel splits and support images. We
report AP50 results under shots 1, 2, 3, 5, and 10.

More implementation details are included in the Supple-
mentary file.

6.2. Ablation Study

How do the graph convolutional layers help for
FSOD? As shown in the Table 1 and Figure 4, we ana-
lyze the impact of each component in our model. We first
verify the effectiveness of the GCN layers. To this end, we
replace the GCN layers with fully-connected layers (MLP).
Specifically, if we only consider a one-layer GCN, Eq. 4
becomes Y = AXW , where A is the adjacency matrix,
and W is the learnable parameter. Notice that the MLP
baseline shares the same structure as GCN except that we
remove the adjacency matrix A. In other words, the MLP
can be formulated as Y = XW . Compared with the GCN
layer, the MLP baseline only uses self-connected edges in
the graph, and as a result, each node updates its features
independently. Comparing the MLP baseline in Table 1 (b)
with the vanilla baseline model in Table 1 (a) and our het-
erogeneous GCNs in Table 1 (g), we can conclude that the
additional learnable modules are useful, and the message
passing among different nodes in the graph is crucial for the
final performance.

How do the three types of edges help for FSOD? We
then analyze the roles of the three types of edges in our het-
erogeneous graph. Firstly, we experiment on using only one
type of edges as shown in Table 1 (c-e). We notice that all
three types of edges can improve the baseline model’s per-
formance in Table 1 (b). This demonstrates the effectiveness
of multi-class modeling, class-proposal mutual adaptation,
and learning context-aware proposal features in our model.
Among all three types of edges, we observe that the class-
proposal edge is the most important. This is because the
objective of FSOD is to calculate the similarity score be-
tween the proposal feature and class prototype, thereby pre-
ferring that both sides adapt to each other. By further adding
proposal-proposal edges, we obtain the full Intra-Class Sub-
graph, which, as shown in Table 1 (f), further improves the
performance owing to context-aware proposal features. Fi-
nally, our full model, shown in Table 1 (g), achieves the best
results after introducing the Inter-Class Subgraph.

The effectiveness of meta-learning and fine-tuning.
We show the comparison results between meta-training-
only and fine-tuning in Table 1 (g) and (h). We find that
fine-tuning improves the performance in 10/30 shot settings.

However, when examples are extremely scarce, e.g., 2-shot
as in Table 1, the performance hardly improves as fine-tuning
tends to over-fit with small samples. This demonstrates
the strong generalization ability of our meta-learning-based
model, and fine-tuning needs large number of samples to
perform well.

The roles of local and global context in the proposal-
proposal edge. We show the ablation study of using local
and global context in Table 2. We find that both local and
global contextual information contributes to the model’s
performance. Local context can provide missing features
and help refine bounding boxes, especially when proposals
are not accurate. Global scene-context, on the other hand,
can provide complementary information from the global
view. Using both context produces the best results.

The efficacy of the bidirectional class-proposal edge.
We show in Table 3 the results of using bidirectional class-
proposal edges against using solely uni-directional edges.
We observe that the model with mutual adaptation achieves
better results than with any of the two types of uni-directional
edges.

The comparison between the class-proposal edge and
non-local attention in [14]. We compare our proposed
method with Hsieh et al.’s work [14] in Table 3. Hsieh et al.
[14] proposes to use non-local attention (a.k.a co-attention)
between the query image and the support image for fea-
ture enhancement. To compare its performance with our
class-proposal edge, we use the official codebase of [14] and
perform training/testing in our FSOD pipeline. Our model
outperforms Hsieh et al.’s method [14] significantly. The
main difference is that in [14], each ‘pixel’ in the feature
maps is regarded as a basic unit for co-attention. In contrast,
the category-specific proposal is used as the basic node in our
model. Compared with the ‘pixels’ in the feature maps used
in [14], the category-specific proposals could provide richer
semantics related to the target object in the query image, and
therefore are more suitable for mutual adaptation.

The advantage of using base class memory in the
Inter-Class Subgraph. We show in Table 6 the results of
using different numbers of base classes in our Inter-Class
Subgraph. If we only use novel classes, the model gains
little advantage from multi-class modeling. However, the
Inter-Class Subgraph sees massive improvement when intro-
duced with all base-class prototypes, which could enhance
novel-class prototypes with more robust features from base
classes. In practice, we deploy all 60 base classes by default
in our Inter-Class Subgraph.

The analysis on different numbers of GCN layers in
the Inter-Class and the Intra-Class Subgraphs. We show
in Table 4 and 5 the results of applying different numbers of
GCN layers in the two Subgraphs. (1) We first emphasize
that proposal and class nodes should go through the same
number of transformation layers in a siamese network before
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Table 1. Ablation study on each component in the our model.

Class-class Class-proposal Proposal-proposal 2-shot 10-shot 30-shot
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Meta-training the model on base classes, and meta-testing on novel classes

(a) w/o heterogeneous GCNs 5.4 11.6 4.6 7.6 15.4 6.8 8.9 17.8 8.0
(b) Using MLP instead of GCN layers (only self-connected edges) 5.9 12.5 5.1 8.4 17.0 7.6 9.8 20.3 8.8

(c) X 6.3 13.3 5.5 9.0 17.7 8.1 10.6 20.9 9.6
(d) X 7.6 16.0 6.5 9.8 19.7 8.8 11.2 22.8 10.1
(e) X 6.7 14.0 5.8 9.3 18.5 8.3 10.8 21.5 9.7
(f) X X 7.6 16.2 6.5 10.0 20.1 8.9 11.3 23.1 10.1
(g) X X X 7.8 16.4 6.6 10.2 20.4 9.0 11.5 23.4 10.3

Fine-tuning the model on novel classes, and testing on novel classes

(h) X X X 7.6 16.1 6.2 11.6 23.9 9.8 16.5 31.9 15.5

Table 2. Ablation study on the proposal-proposal edge.

Local Global 2-shot 10-shot
AP AP50 AP75 AP AP50 AP75

X 6.6 13.8 5.7 9.0 17.9 8.1
X 6.4 13.2 5.7 9.1 17.9 8.2

X X 6.7 14.0 5.8 9.3 18.5 8.3

Table 3. Ablation study on the class-proposal edge.

Model 2-shot 10-shot
AP AP50 AP75 AP AP50 AP75

class→proposal 6.4 13.2 5.9 8.6 17.1 7.9
class←proposal 7.2 15.7 5.7 9.4 19.1 8.6
class↔proposal 7.6 16.0 6.5 9.8 19.7 8.8

Non-local attention [14] 6.0 12.8 5.3 8.3 17.3 7.4

Table 4. Ablation study on the number of GCN layers for the Inter-
Class Subgraph.

#GCN Layer 2-shot 10-shot
AP AP50 AP75 AP AP50 AP75

1 w/ W 5.0 10.4 4.3 7.2 14.2 6.5

1 w/o W 6.3 13.3 5.5 9.0 17.7 8.1
2 w/o W 6.1 13.0 5.3 8.8 17.6 8.0
3 w/o W 5.8 12.2 4.9 8.6 17.3 7.8

Table 5. Ablation study on the number of GCN layers for the Intra-
Class Subgraph.

#GCN Layer 2-shot 10-shot
AP AP50 AP75 AP AP50 AP75

1 w/o W 7.2 15.6 6.0 9.4 19.3 8.4

1 w/ W 7.6 16.2 6.5 10.0 20.1 8.9
2 w/ W 7.4 15.9 6.3 9.8 19.7 8.8
3 w/ W 6.9 14.5 5.5 9.2 18.6 8.1

the final pairwise matching. If we learn W for the inter-
class subgraph, the few-shot classes would have one more
learnable layer than the proposals, and we show in Table 4
that the performance is worse. But for intra-class subgraphs,
the GCN layers are applied to both proposals and few-shot

Table 6. Ablation study on base class memory in the Inter-Class
Subgraph.

#Base Classes 2-shot 10-shot
AP AP50 AP75 AP AP50 AP75

0 6.0 12.8 5.1 8.5 17.0 7.7
20 6.1 13.1 5.2 8.6 17.3 7.7
40 6.3 13.4 5.4 8.9 17.5 8.0
60 6.3 13.3 5.5 9.0 17.7 8.1

Figure 4. The average accuracy and standard deviation result of
models in Table 1 over 10 runs.

classes. As shown in Table 5, learning W does not violate
the siamese structure, and could help improve performance.
(2) As shown in both Table 4 and 5, using one GCN layer
is sufficient in both subgraphs as we already connect edges
to all neighbors that a node needs in our model. Using
more GCN layers are not helpful due to the over-smoothing
problem [20] in GCNs.

6.3. Comparison with State-of-the-arts

As shown in Table 7 and 8, we compare our QA-FewDet
with the STOAs on PASCAL VOC and MSCOCO FSOD
benchmarks. We draw the following three conclusion. (1)
Our final model significantly outperforms previous STOAs
by more than 4.0% on AP50 in most of the shots and metrics
of the PASCAL VOC. We achieve similar improvement on
the MSCOCO. (2) Fine-tuning does not help too much in
extreme few-shot settings because it is prone to over-fitting
with very few samples (e.g., 1-shot in the PASCAL VOC,
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Table 7. Few-shot object detection performance (AP50) on the PASCAL VOC dataset. †We re-evaluate the methods following the standard
procedure in [16, 37]. Our approach with only meta-learning could achieve competitive results compared with other methods on extreme
few-shot setting. After finetuning our model consistently outperforms other state-of-the-art methods in almost all settings.

Method / Shot Venue Backbone Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Meta-training the model on base classes, and meta-testing on novel classes

Fan et al. [3]† CVPR 2020 ResNet-101 32.4 22.1 23.1 31.7 35.7 14.8 18.1 24.4 18.6 19.5 25.8 20.9 23.9 27.8 29.0
QA-FewDet (Ours) This work ResNet-101 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.5

Fine-tuning the model on novel classes, and testing on novel classes

FSRW [16] ICCV 2019 YOLOv2 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [39] ICCV 2019 VGG16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [43] ICCV 2019 ResNet-101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA w/ fc [37] ICML 2020 ResNet-101 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos [37] ICML 2020 ResNet-101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Xiao et al. [41] ECCV 2020 ResNet-101 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
MPSR [40] ECCV 2020 ResNet-101 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
Fan et al. [3] † CVPR 2020 ResNet-101 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8
QA-FewDet (Ours) This work ResNet-101 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5

Table 8. Few-shot detection performance on COCO novel classes. †We re-evaluate the methods following the standard procedure in
[16, 37]. ‡The authors show these results at https://github.com/YoungXIAO13/FewShotDetection. Our method consistently outperforms
state-of-the-art methods in most of the shots and metrics.

1-shot 2-shot 3-shot 5-shot 10-shot 30-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Meta-training the model on base classes, and meta-testing on novel classes

Fan et al. [3]† 4.0 8.5 3.5 5.4 11.6 4.6 5.9 12.5 5.0 6.9 14.3 6.0 7.6 15.4 6.8 8.9 17.8 8.0
QA-FewDet (Ours) 5.1 10.5 4.5 7.8 16.4 6.6 8.6 17.7 7.5 9.5 19.3 8.5 10.2 20.4 9.0 11.5 23.4 10.3

Fine-tuning the model on novel classes, and testing on novel classes

FSRW [16] – – – – – – – – – – – – 5.6 12.3 4.6 9.1 19.0 7.6
MetaDet [39] – – – – – – – – – – – – 7.1 14.6 6.1 11.3 21.7 8.1
Meta R-CNN [43] – – – – – – – – – – – – 8.7 19.1 6.6 12.4 25.3 10.8
TFA w/ fc [37] 2.9 5.7 2.8 4.3 8.5 4.1 6.7 12.6 6.6 8.4 16.0 8.4 10.0 19.2 9.2 13.4 24.7 13.2
TFA w/ cos [37] 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5 8.3 15.3 8.0 10.0 19.1 9.3 13.7 24.9 13.4
Xiao et al. [41]‡ 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 8.1 20.1 4.4 10.7 25.6 6.5 15.9 31.7 15.1
MPSR [40] † 2.3 4.1 2.3 3.5 6.3 3.4 5.2 9.5 5.1 6.7 12.6 6.4 9.8 17.9 9.7 14.1 25.4 14.2
Fan et al. [3]† 4.2 9.1 3.0 5.6 14.0 3.9 6.6 15.9 4.9 8.0 18.5 6.3 9.6 20.7 7.7 13.5 28.5 11.7
QA-FewDet (Ours) 4.9 10.3 4.4 7.6 16.1 6.2 8.4 18.0 7.3 9.7 20.3 8.6 11.6 23.9 9.8 16.5 31.9 15.5

and 1/2/3-shot in the MSCOCO.), but could help in larger
shot settings. (3) Our meta-learning-only model improves
significantly compared with the strong baseline model [3],
and outperforms or at least attains comparable results com-
pared with other SOTAs using fine-tuning on 1/2-shot in the
PASCAL VOC and on 1/2/3/5/10-shot in the MSCOCO.

7. Conclusion

In this paper, we introduce a novel heterogeneous GCNs
that consider multi-relations among the proposal and class
nodes for FSOD. The Inter-Class Subgraph enhances novel-
class prototype representation via modeling multi-class re-
lations. The Intra-Class Subgraph provides query-adaptive
class prototypes and context-aware proposal features to fa-
cilitate pairwise matching. Our experiments show that our

model, QA-FewDet, with only meta-learning, can outper-
form or achieve competitive results especially on extreme
few-shot settings. After finetuning, our model outperforms
current SOTAs by a large margin across various settings.
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