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Abstract

Cross-modality person re-identification is a challeng-
ing task due to large cross-modality discrepancy and intra-
modality variations. Currently, most existing methods fo-
cus on learning modality-specific or modality-shareable
features by using the identity supervision or modality la-
bel. Different from existing methods, this paper presents
a novel Modality Confusion Learning Network (MCLNet).
Its basic idea is to confuse two modalities, ensuring that
the optimization is explicitly concentrated on the modality-
irrelevant perspective. Specifically, MCLNet is designed to
learn modality-invariant features by simultaneously mini-
mizing inter-modality discrepancy while maximizing cross-
modality similarity among instances in a single framework.
Furthermore, an identity-aware marginal center aggrega-
tion strategy is introduced to extract the centralization fea-
tures, while keeping diversity with a marginal constraint.
Finally, we design a camera-aware learning scheme to en-
rich the discriminability. Extensive experiments on SYSU-
MM01 and RegDB datasets show that MCLNet outperforms
the state-of-the-art by a large margin. On the large-scale
SYSU-MM01 dataset, our model can achieve 65.40 % and
61.98 % in terms of Rank-1 accuracy and mAP value.

1. Introduction

Person re-identification (ReID) is a technique that uses
computer vision technology to determine whether there is
a specific person from a gallery set captured by surveil-
lance cameras [17]. It has gained increasing attention in
computer vision area for both research and application.
However, there are relatively few works paying attention
to the ReID between visible images and infrared images.
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Figure 1. Idea illustration. (a) is the modality confusion learning
process. After that, the two modalities are difficult to be correctly
classified, narrowing the modality discrepancy. (b) and (c) are the
designed identity-aware and camera-aware marginal constrained
center aggregation for person ID and camera ID prediction.

This cross-modality visible-infrared person re-identification
(cm-ReID) [40] problem is also an important issue in night-
time surveillance application. Compared to the widely stud-
ied single-modality ReID [5, 52], the cm-ReID is much
more challenging due to large visual differences between
the two modalities and different camera environments.

To narrow the gap between two modalities, existing
methods mainly focus on learning shareable common fea-
ture representations, via either one [37, 40] or two-stream
networks [45, 9]. [15] designs a spectrum dispelling branch
to eliminate the influence of the spectrum. Besides, some
methods generate a common intermediate modality [16] to
eliminate the influences caused by modality discrepancy. A
similar approach adopts GAN technique [10] to generate
cross-modality images for person matching. However, gen-
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erating common modality or generating cross-modality im-
ages is unavoidably accompanied by noises. Worse still, the
generated images greatly increase the computational burden
and add more uncertainty for the cross-modality learning,
limiting the applicability for practical model deployment.

To address the above limitations, we propose a
novel end-to-end Modality Confusion Learning network
(MCLNet), which aims to learn modality-invariant features.
Our network neither needs the prior information of input
nor generates additional subspace features, which ensures
the maximization of input information without additional
noise. The basic idea is to confuse the modality discrimi-
nation in the feature learning process, making the optimiza-
tion explicitly focusing on modality-irrelevant perspective
(Fig. 1 (a)). MCLNet minimizes inter-modality discrep-
ancy while maximizing cross-modality similarity among in-
stances through the min-max game [27]. Incorporated with
a partially shared two stream network, our MCLNet can si-
multaneously learn the modality-specific features and ex-
tract the modality-invariant features. In a confusion learn-
ing manner, it achieves a balance between the modality con-
fusion and the general cross-modality feature learning.

Furthermore, we introduce an identity-aware marginal
center aggregation strategy to reinforce the representation
invariance against modality discrepancy (Fig. 1 (b)). The
basic idea is to constrain that samples belonging to the same
identity across two modalities are invariant. While encour-
aging the extraction of centralized features, a marginal con-
straint is incorporated to make sure that the samples are
not too concentrated. This keeps the feature diverse, but
it greatly enhances the generalization ability. In addition,
based on the observation that person images are captured
in totally different camera environments, we further inte-
grate a camera-aware marginal center aggregation scheme
(Fig. 1 (c)). This component fully utilizes the camera labels,
capturing the camera-specific information for the learned
representation. This constraint enhances the robustness
against camera variations. The proposed components might
be easily integrated into other advanced learning models.

Our main contributions can be summarized as follows:
We propose a novel Modality Confusion Learning Network
(MCLNet) for cm-ReID. It is an effective learning structure
to extract modality irrelevant representation, reinforcing the
robustness of the learned representation against modality
variations. We introduce an identity-aware marginal con-
strained center aggregation strategy. It extracts the central-
ization features, while keeping the diversity for better gen-
eralization ability with a marginal constraint. We design a
camera-aware learning scheme that applies the camera la-
bel supervision, enriching the discriminability via camera-
aware representations. Extensive experimental results show
that our novel framework outperforms the state-of-the-art
methods on two cm-ReID datasets.

2. Related Work

2.1. Single-Modality Person Re-Identification

Single-modality person re-identification aims at match-
ing the person images captured by different cameras in
the daytime, while all the images are from the same vis-
ible modality. Existing works have shown desirable per-
formance on the widely-used datasets with deep learning
technique [50, 18, 58, 14, 32, 2, 59, 20]. A few methods
propose to solve person re-identification as ranking prob-
lems [25, 3]. Some methods are aware of local informa-
tion and global information [35, 31, 30, 53], which can im-
prove the performance when they are combined. Besides,
[59, 5, 36, 42, 53] focused on the loss functions designed
for deep learning. [51, 4, 54, 41] utilize attention infor-
mation to enhance representation learning. Some methods
attempt to solve person re-identification problems using do-
main adaptation methods [57, 8], since images from each
camera can be regarded as an independent domain. How-
ever, in practical applications, most cameras switch modes
between visible and infrared during the day and night. Due
to the large cross-modality discrepancy, single modality so-
lutions are no longer competent for cm-ReID task, leading
to poor generalization performance.

2.2. Cross-Modality Person Re-Identification

To reduce cross-modality discrepancy, [40] proposes
a deep zero-padding network to extract useful embed-
ding features. Two-stream networks [45, 47, 44, 46] can
learn both the modality-shared features and the modality-
specific information. [26] applies a dual Gaussian-
based variational auto-encoder, to disentangle an identity-
discriminable and an identity-ambiguous cross-modality
feature subspace. [19] proposes a cross-modality shared-
specific feature transfer algorithm to explore the potential
of both the modality-shared information and the modality-
specific characteristics. [13] exploits the intra-modality
sample similarities to circumvent the cross-modality image
matching. A modality-aware learning method [43] handles
the modality discrepancy at the classifier level. [16] designs
an auxiliary X-modality to mitigate the influence of modal-
ity discrepancy. Generative adversarial networks have been
adopted in cm-ReID, by generating data to mitigate the
modality discrepancy. [37] generates cross-modality im-
ages from two different modality images, and combines the
generated images and the real images to bring about mixed
multi-spectral images. An end-to-end alignment generative
adversarial network [33] exploits pixel alignment and fea-
ture alignment jointly. [7] applies GAN to handle the lack
of insufficient discriminative information and the issue of
large scale cross-modality metric learning. [34] generates
cross-modality paired-images and performs both global set-
level and fine-grained instance-level alignments.

16404



Feature maps

e

m

io

it

Shared 
weights

Confused modality
labels

Real modality
labels

0.5
0.5
0.5
0.5
0.5
0.5

0
0
0
1
1
1

update

update e

m

ee

Modality Confusion Learning Identity-aware Marginal Center Aggregation

Camera-aware Marginal Center Aggregation

iy

ir

Identity labels

Camera labels

g gg g

1y
2y

3y
4y

1r
2r

3r
4r

l b l

M

Figure 2. Illustration of the modality confusion Learning network (MCLNet). The cross-modality images are fed into a feature extractor,
which confuses the modality feedback through a confusion learning mechanism. We also incorporate an identity-aware and a camera-aware
marginal center aggregation strategy to further enhance the discriminability by using both the identity and camera labels (labels with the
same color mean they have the same person ID, and those with the same shape mean they have the same camera ID).

Differently, we propose a modality confusion learning
network, which can learn modality-invariant features by
minimizing inter-modality discrepancy while maximizing
cross-modality similarity among instances. Compared with
above methods, it does not need to generate cross-modality
images, and simultaneously takes into account the modal-
ity robustness features. In addition, our method uses only
global features to achieve the best performance.

3. Proposed Method
The Modality Confusion Learning Network (MCLNet)

consists of three major components as shown in Fig. 2.
It is designed on top of a partially shared two-stream net-
work for modality-invariant feature learning (§ 3.1). First,
modality confusion learning module confuses the modality
discrimination feedback for better modality-irrelevant prop-
erty (§ 3.2). Then, we present an identity-aware marginal
center aggregation strategy (§ 3.3) to improve the identity-
centralized representation learning. Finally, camera-aware
marginal center aggregation constraint (§ 3.4) is presented
by exploiting the camera label information to learn camera-
aware representations.

3.1. Feature Extractor

We adopt a generic framework of person ReID, named
AGW [47], as our baseline. Our feature extractor is a two-
stream network successively extracting modality-specific
and modality-shared features. Specifically, to handle the
discrepancy of two heterogeneous modalities, in the first
convolutional block, the visible and the infrared images

are processed independently, aiming at learning low-level
features. After that, the following four blocks of the two
streams share parameters and extract high-dimensional fea-
tures in common. This architecture benefits from a uniform
structure that simultaneously captures the cross-modality
information and generates common used features that can
be processed in our single framework.

3.2. Modality Confusion Learning

From the baseline, the extracted features may depend on
the modalities, such as color or spectrum. Therefore, the
visible and the infrared samples have different feature dis-
tributions and will not be well aligned for comparison. To
reduce the discrepancy between the visible and infrared im-
ages, our network is designed to ignore the information of
the modality and learn common representations for person.
However, “common” is not equal to “useful”. If we merely
mystify the network about the sample modality during train-
ing, the network may focus on trivial features and overlook
the particular features of different persons, which leads to
the failure of useful information collection.

Considering the above two points, we design a confu-
sion learning mechanism, the inter-modality discrepancy is
minimized and the cross-modality similarity is maximized
via the min-max game. Thus, while learning the modality-
irrelevant features, the network is constrained to pick up
discriminative component to predict person identities. Dif-
ferent from existing methods utilizing GAN [7, 37, 33, 34]
to transfer sample domains between modalities by generat-
ing cross-modality images, we apply the confusion learn-
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ing mechanism for deceiving the network into confound-
ing the visible modality with the infrared one. This mecha-
nism avoids the risk of poor quality and noises of the gen-
erated cross-modality images, and operates on the embed-
dings of the two modalities directly. Specifically, our goal
is to achieve a confusion that the modality classifier cannot
distinguish the modality of an input image.

Formally speaking, for each sample image xi, there is
an identity label yi, a real modality label ti and a confused
modality label oi. Specifically, we use a two-dimensional
vector to define the one-hot modality label. For each in-
put sample xi, the real modality label ti is set to [1, 0] for
visible image and [0, 1] for the infrared image. For the con-
fused modality label oi, it is set to [0.5, 0.5] for all the sam-
ples from two different modalities. Our modality confusion
learning requires two components: feature extractor and
modality confusion module M . We represent M with pa-
rameters θm to act as Modality Confusion Module (MCM).
It is essentially a two-layer classifier and its purpose is to ac-
curately distinguish the input images into a certain modal-
ity. For sample xi with extracted feature fxi

, M outputs the
modality prediction probability pm(fxi

), and we compare it
with the real modality label ti. The loss function of M can
be formulated as:

Lm(θm) = − 1

N

∑N

i=1
ti · log pm(fxi

, θm; θe), (1)

where N denotes the sample number in a batch, xi is the
ith input sample. Given a learned feature extractor θe and
the modality classifier θm, the probability of sample xi be-
ing correctly classified is represented by pm(fxi

, θm; θe),
normalized by a softmax function.

The purpose of feature extractor is to extract features
that are modality-invariant and discriminative. Similarly,
we construct E with parameters θe to act as feature extrac-
tor. To achieve modality confusion, we compare the pre-
dicted probability of the feature extractor with the confused
modality label oi. And the loss function can be formulated
as:

Le(θe) = −
1

N

∑N

i=1
oi · log pm(fxi

, θe; θm), (2)

In the training stage, we update θm and θe alternately un-
til they reach equilibrium. θe represents the feature extrac-
tor, which aims to maximize the loss of the modality con-
fusion module by making the feature distributions as simi-
lar as possible. θm means the modality confusion module,
which aims to minimize the loss of the modality classifier
to help the network distinguish modality. θm and θe can be
optimized as follows:

L(θm, θe) = Lm(θm) + Le(θe)

θ̂m = argmin
θm
L(θm, θ̂e)

θ̂e = argmin
θe
L(θ̂m, θe).

(3)

σ

(a) Center loss (b) Identity-aware marginal center aggregation

Figure 3. Comparison between (a) center loss and (b) identity-
aware marginal center aggregation. Different colors represent em-
bedding features from different identities. σ is the predefined hy-
perparameter for the margin.

In the optimization process, one module will be updated at
each step while the other component will be fixed [18]. This
strategy will ensure that the network updates in the correct
gradient. Our target is that the embeddings extracted by
feature extractor can not be correctly classified into the cor-
responding modality, achieving the modality confusion.

3.3. Identity-aware Marginal Center Aggregation

Similar to single-modality person re-identification, the
appearance of persons in cm-ReID is also easily affected by
clothing, scale, shielding, attitude and viewpoints [49, 29],
which makes the ReID task more difficult. To handle this
problem, most existing methods adopt center loss [21] to
simultaneously learn a center of each class for feature em-
beddings, and penalize the distances between the samples
and their corresponding classes. Center loss [38] can be
represented as:

Lc =
1

N

∑N

i=1
‖fxi

− cyi‖
2
2 , (4)

where xi denotes the ith input sample, cyi is the yith class
center, fxi

is the embedding extracted by feature extractor.
Center loss was firstly applied to solve the face recog-

nition problem [38] and achieved good performance. The
main reason is that faces have strong centrality. However,
person characteristics are influenced by many factors, espe-
cially when cm-ReID suffers from large cross-modality gap.
Strictly concentrating the images of the same identity from
two modalities will sacrifice the diversity of varying per-
son images, leading to limited generalization ability on the
testing set. Considering it, we propose an Identity-aware
marginal Center Aggregation strategy (ICA) to extract the
centralized features temperately and take the discriminative
information into account.

As demonstrated in Fig. 3, each color corresponds to a
certain identity. Center loss draws all the samples close to
the center of corresponding class (Fig. 3 (a)). Differently,
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ICA constrains features of the same identity within a cer-
tain range (Fig. 3 (b)). A constraint margin σ is applied
to ensure the samples belonging to the same class not too
close to the center, preventing the features from overfitting
to the feature center, to moderately keep the diversity of
the identity description, even in different modalities. This
diversity can provide more sample-specific information for
the network to distinguish different person identities. ICA
encourages features of the same identity distributed on a
high-dimensional sphere uniformly, rather than blindly pur-
suing representation similarity. The loss of ICA for identity
prediction can be represented as:

Lica =
1

N

∑N

i=1
[||fxi

− cyi ||22 − ||foyi − cyi ||
2
2 − σ]+

+
1

N

∑N

i=1
[ρ− min

yj 6=yi
||cyi − cyj ||22]+

(5)
where xi denotes the ith sample, yi is the identity label of
xi, cyi is the class center of yith identity, foyi is the feature
embedding which is the closest to center cyi , N is the sam-
ple number in a batch, σ is the hyper-parameter denoting
the radius of the sphere of a certain class. In Eq. 5, on the
right side of the equation, the first element in the first term
is a general form of center loss, which indicates the outer
circle (in gray color) constraint in Fig. 3 (a) and (b). The
second element is the minimum distance between samples
and center cyi . It is subtracted in order to push the sample
features gradually away from center cyi by a small margin.
The hyper-parameter σ forces a sample to keep a reasonable
distance from its identity center. σ can be viewed as the ra-
dius of the inner circle (in red color) in Fig. 3 (b). This
design avoids too strict center concentration. The second
term calculates the minimum distance of a different identity
center. By applying multiple constraints between different
identity centers, the network compares identity similarity
rather than sample similarity.

3.4. Camera-aware Marginal Center Aggregation

Considering the large camera difference, this section
presents a strategy to exploit the camera label information
for further improvement, reinforcing the modality-invariant
features learning.

In real life, cm-ReID tasks are usually captured by multi-
ple cameras. This motivates us to model camera differences
for the following reasons: 1) Different camera internal pa-
rameters are different. 2) Different cameras have different
backgrounds and viewing angles. 3) There is usually no
overlapping area between cameras. As a result, we pro-
pose a Camera-aware marginal Center Aggregation strategy
(CCA). Our goal is to let the network learn discriminative
information about different cameras. Specifically, we ex-
pect the network to also pay attention to the differences in
images from different cameras, due that these cameras usu-

1r 2r

iy
c

ir
c
i

(a) Identity center (b) Camera center

Figure 4. Comparison pictures of identity-aware marginal center
aggregation and camera-aware marginal center aggregation. (a) is
the images from the different cameras within the same identity. (b)
is the images from the different identities within the same camera.
cyi is the yith identity center, cri is the rith camera center.

ally work in different modes or in different environments.
With the common constraint of ICA and CCA, the network
is encouraged to mine the implicit identity association infor-
mation between the same person under different cameras.
The camera-aware marginal center aggregation loss can be
represented as:

Lcca =
1

N

∑N

i=1
[||fxi

− cri ||22 − ||fori − cri ||
2
2 − σ]+

+
1

N

∑N

i=1
[ρ− min

rj 6=ri
||cri − crj ||22]+,

(6)
where ri denotes the camera label of ith sample and cri is
the rith camera center. fori represents the closest sample to
the camera center. Other elements are similar to Eq. 5.

Identity-aware and camera-aware marginal center aggre-
gation strategy extract discriminative information in differ-
ent ways. As shown in Fig. 4, on the one hand, ICA con-
strains the same identity image from different cameras. On
the other hand, CCA constrains the same camera image
from different identities. These two components work to-
gether to explicitly apply identity-specific information and
camera-specific information.

Overall. Certainly, a conventional loss function consist-
ing of identity loss (ID loss [55]) Lid and weighted regu-
larization triplet (WRT) loss [47] Lwrt is designed to learn
dicriminative representation:

Lb = Lid + Lwrt. (7)

Identity loss utilizes cosine distance to separate the embe-
ded space into different subspaces. Triplet loss enhances the
intra-class compactness and inter-class separability in the
Euclidean space. Distribution in the embedding space is su-
pervised by ID loss and triplet loss in different dimensions,
so that the model could learn more discriminative features.
After feature extraction, feature embeddings achieving de-
sirable performance are obtained. We have adopted ICA
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and CCA for person identity prediction and camera identity
prediction, respectively. In summary, the final loss is:

Ltotal = Lb + Le + λ(Lica + Lcca), (8)

where λ is a predefined trade-off parameters. It is worth
noting that Lm is not included in total loss since the up-
dates of Le and Lm are separated. They are updated alter-
nately through adversarial training, supervising the network
to achieve modality confusion. When the modality confu-
sion is achieved, we can ignore Lm.

4. Experiment and Analysis
In this section, we evaluated our model on two public

cm-ReID datasets, SYSU-MM01 [40] and RegDB [24].

4.1. Datasets and Evaluation Protocol

SYSU-MM01 [40] is the first large-scale benchmark
dataset for cm-ReID collected by 6 cameras, consisting of
4 visible and 2 infrared cameras. Specially, four cameras
are placed in the outdoor environments and two are in the
indoor environments. SYSU-MM01 contains 491 persons
with a total of 287,628 visible images and 15,792 infrared
images. 395 persons including 22,258 visible images and
11,909 infrared images for training, another 96 persons in-
cluding 3803 infrared images for query and 301 randomly
selected visible images as gallery set. Meanwhile, it con-
tains two different testing modes, all-search and indoor-
search modes. Detailed description of the experimental set-
tings can be found in [40].

RegDB [24] is collected by a dual-camera system, in-
cluding one visible and one infrared camera. This dataset
includes 412 persons, for each of them, there are 10 visible
images and 10 infrared images. Following the evaluation
protocol proposed by [44], we randomly select 206 identi-
ties for training and another 206 identities for testing. The
testing stage contains two modes, visible-to-infrared and
infrared-to-visible, which means that the images from one
modality were used as the gallery set while the remaining
as the query set. The results are averaged for 10 trials to
obtain stable performance [37].

Evaluation Protocol. The cumulative matching char-
acteristics (CMC) [23], mean average precision (mAP) and
mean inverse negative penalty [47] (mINP) are used as eval-
uation metrics.

4.2. Implementation Details

This work is supported by Huawei MindSpore [1].
MCLNet adopts AGW [47] as feature extractor. Before the
training stage, batchsize is set to 64, containing 32 visible
and 32 infrared images from 8 identities. For each identity,
4 visible and 4 infrared images are selected randomly. Both
modalities images are from the original three channels. The

Table 1. Analysis of the effectiveness of modality confusion learn-
ing on SYSU-MM01 dataset under the all-search mode. Rank-
1 accuracy (%), mAP (%) and mINP (%) are reported. AGW*
means AGW uses random erasing [56].

Methods Rank-1 mAP mINP
Base 49.40 49.02 35.82
Base+MCM 51.46 49.84 36.73
AGW 47.50 47.65 35.30
AGW+MCM 49.29 49.26 37.08
AGW* 59.82 56.07 40.50
AGW*+MCM 62.74 58.83 43.15
MCLNet 65.40 61.98 47.39

input images are first resized to 288 × 144, then we adopt
random crop with zero-padding, random horizontal flipping
and random erasing for data augmentation [56]. The finally
cropped image sizes are 256 × 128 for both modalities. In
the training stage, MCM updates one time while feature ex-
tractor updates once. In addition, we use the SGD optimizer
for optimization, and the momentum parameter is set to 0.9.
The warm-up learning rate is adopted which is initially set
to 0.1. We decay it by 0.1 and 0.01 at 20 and 50 epochs.
The whole training process consists of 200 epochs. We set
the predefined parameter λ = 0.0005 for Lica and Lcca, λ
is used to balance the contributions of different losses due
to its large value.

4.3. Ablation Study

In this subsection, we evaluate the effectiveness of each
component of our proposed method.

Effectiveness of Modality Confusion Module. Firstly,
we evaluate how much improvement can be made by modal-
ity confusion mechanism on the SYSU-MM01 dataset un-
der the all-search mode. It is worth noting that our feature
extractor could be replaced with most existing cm-ReID
embedding features extraction networks. We study this nice
property by applying modality confusion mechanism to
Base and AGW [47]. Base uses ResNet-50 [12] pre-trained
on ImageNet [28] as backbone. For a fair comparison, we
change ResNet-50 to have the same two-stream structure
as AGW. Meanwhile, they use only Lid and Lwrt in the
training stage. As Table 1 shows, the performance results
are improved when both feature extractor and MCM are
incorporated. Meanwhile, our modality confusion mecha-
nism is still effective after using data augmentation. AGW*
+ MCM achieves a rank-1 accuracy of 62.74%, a mAP
of 58.83% and a mINP of 43.15% which are higher than
AGW* by 2.92%, 2.76% and 2.65%, respectively.

Effectiveness of ICA and CCA. Secondly, we per-
formed a comparative experiment on the ICA and CCA on
the SYSU-MM01 dataset (all-search mode) to verify its va-
lidity. As the Table 2 shows, MCLNet with ICA and CCA
achieve 4.31%, 4.60% and 5.56% improvements in Rank-
1, mAP and mINP, respectively. When the ICA and CCA
are respectively used for person ID prediction and camera
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Table 2. Analysis of the effectiveness of ICA and CCA on SYSU-
MM01 dataset under the all-search mode. Rank-1 accuracy(%),
mAP(%) and mINP(%) are reported.

Methods Rank-1 mAP mINP
AGW* 59.82 56.07 40.50
AGW* + ICA 63.56 59.77 44.45
AGW* + CCA 63.42 59.19 44.13
AGW* + ICA, CCA 64.13 60.67 46.06
MCLNet 65.40 61.98 47.39

Table 3. Effectiveness of ICA and CCA over different baselines
on SYSU-MM01 dataset under the all-search mode. Rank-1 ac-
curacy(%), mAP(%) and mINP(%) are reported.

Methods Rank-1 mAP mINP
Base 49.40 49.02 35.82
Base + ICA, CCA 52.13 50.89 37.96
DDAG [46] 54.75 53.02 39.62
DDAG + ICA, CCA 57.27 54.32 40.03
AGW* [47] 59.82 56.07 40.50
AGW* + ICA, CCA 64.13 60.67 46.06
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Figure 5. The t-SNE [22] visualization of features on SYSU-
MM01 dataset. We randomly select 10 identities of testing set and
extract person descriptors use AGW* and MCLNet, respectively.
Different colors represent different identities.

ID prediction, the results are improved, and the results are
better when they are combined. It can be observed that
ICA and CCA have more improvements on mAP and mINP,
which indicates it is easier for the framework to find the im-
ages of the same identity, validating that ICA and CCA are
suitable for cm-ReID task.

Visualization Analysis. To further analyze the effec-
tiveness of MCLNet, we use t-SNE [22] to transform high-
dimensional features vectors into two-dimensional vectors.
As shown in Fig. 5, compared to the visualization results of
AGW*, the features extracted from MCLNet are better clus-
tered together. The distance between the centers and bound-
aries among different identities are more obvious, verifying
that our work is more discriminating.

4.4. Parameters Analysis

The proposed MCLNet involves two key parameters, in-
cluding ICA/CCA balanced weight λ and ICA/CCA margin
σ. The two parameters are studied by setting them to dif-
ferent values as shown in Fig. 6 and Fig. 7, respectively.
On the one hand, due to the large value of Lica and Lcca,
the value of λ is set to match well with Lid and Ltri to
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Figure 6. The effect of parameter λ on SYSU-MM01 dataset un-
der the all-search mode. λ is used to balance the contributions of
different losses due to its large value.
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Figure 7. The effect of parameter σ on SYSU-MM01 dataset under
the all-search mode. Rank-1, mAP and mINP (%) are reported.

balance the contributions and ensure that they converge to-
gether. On the other hand, the value of σ indicates how far
the embeddings need to be from the centers. It ensures the
samples belonging to the same class not too close to the cen-
ter. We can observe that the introduction of σ has improved
mAP and mINP, verifying our conjecture that σ can main-
tain feature diversity, and make the network stronger ability
to retrieve the hardest correct match. However, σ should be
a reasonable margin to prevent the sacrifice of Rank-1 accu-
racy. Experiments show that MCLNet performs optimally
when λ = 0.0005, σ = 8.

4.5. Comparison With the State-of-the-art Methods

In this section, the proposed MCLNet is compared with
state-of-the-arts on two different datasets, including more
than ten competing methods publsihed in recent two years.
The results are listed in Table 4 and 5, respectively.

The experiments on SYSU-MM01 dataset (Table 4)
show that MCLNet achieves competitive performance com-
pared with the state-of-the-arts. According to the experi-
mental results, the following observations can be made: 1)
Our method performs much better than the methods (cm-
GAN [7], AliGAN [33], XIV [16], Hi-CMD [6]) that gen-
erate cross-modality image pairs by GAN or utilize auxil-
iary modality. Meanwhile, MCLNet does not require time-
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Table 4. Comparison with the state-of-the-arts on SYSU-MM01 dataset. Rank-k accuracy (%), mAP (%) and mINP (%) are reported.
Settings All Search Indoor Search

Method Venue r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-Pad [40] ICCV17 14.80 54.12 71.33 15.95 - 20.58 68.38 85.79 26.92 -
HCML [44] AAAI18 14.32 53.16 69.17 16.16 - 24.52 73.25 86.73 30.08 -
cmGAN [7] IJCAI18 26.97 67.51 80.56 27.80 - 31.63 77.23 89.18 42.19 -
HSME [11] AAAI19 20.68 32.74 77.95 23.12 - - - - - -
AliGAN [33] ICCV19 42.40 85.00 93.70 40.70 - 45.90 87.60 94.40 54.30 -
CMSP [39] IJCV20 43.56 86.25 - 44.98 - 48.62 89.50 - 57.50 -
JSIA [34] AAAI20 38.10 80.70 89.90 36.90 - 43.80 86.20 94.20 52.90 -
XIV [16] AAAI20 49.92 89.79 95.96 50.73 - - - - - -
MACE [43] TIP20 51.64 87.25 94.44 50.11 - 57.35 93.02 97.47 64.79 -
MSR [9] TIP20 37.35 83.40 93.34 38.11 - 39.64 89.29 97.66 50.88 -
DDAG [46] ECCV20 54.75 90.39 95.81 53.02 - 61.02 94.06 98.41 67.98 -
Hi-CMD [6] CVPR20 34.94 77.58 - 35.94 - - - - - -
cm-SSFT [19] 1 CVPR20 47.70 - - 54.10 - - - - - -
AGW [47] TPAMI21 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23
MCLNet Ours 65.40 93.33 97.14 61.98 47.39 72.56 96.98 99.20 76.58 72.10
1 This paper reports a higher accuracy by using relation among all the gallery images. We use the results of single query for fair comparison.

Table 5. Comparison with the state-of-the-arts on RegDB dataset. Rank-k accuracy (%), mAP(%) and mINP (%) are reported.
Settings Visible to Infrared Infrared to Visible

Method Venue r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-Pad [40] ICCV17 17.75 34.21 44.35 18.90 - 16.63 34.68 44.25 17.82 -
HCML [44] AAAI18 24.44 47.53 56.78 20.08 - 21.70 45.02 55.58 22.24 -
HSME [11] AAAI19 50.85 73.36 81.66 47.00 - 50.15 72.40 81.07 46.16 -
AliGAN [33] ICCV19 57.90 - - 53.60 - 56.30 - - 53.40 -
CMSP [39] IJCV20 65.07 83.71 - 64.50 - - - - - -
JSIA [34] AAAI20 48.50 - - 48.90 - - - - - -
XIV [16] AAAI20 62.21 83.13 91.72 60.18 - - - - - -
DG-VAE [26] ACMMM20 72.97 86.89 - 71.78 - - - - - -
HAT [48] TIFS20 71.83 87.16 92.16 67.56 - 70.02 86.45 91.61 66.30 -
MSR [9] TIP20 48.43 70.32 79.95 48.67 - - - - - -
MACE [43] TIP20 72.37 88.40 93.59 69.09 - 72.12 88.07 93.07 68.57 -
DDAG [46] ECCV20 69.34 86.19 91.49 63.46 - 68.06 85.15 90.31 61.80 -
Hi-CMD [6] CVPR20 70.93 86.39 - 66.04 - - - - - -
AGW [47] TPAMI21 70.05 86.21 91.55 66.37 50.19 70.49 87.12 91.84 65.90 51.24
MCLNet Ours 80.31 92.70 96.03 73.07 57.39 75.93 90.93 94.59 69.49 52.63

expensive and space-expensive images generation, which
reduces intermediate steps and avoids introducing addi-
tional noise. 2) Compared with the method using both
global features and local features [46], our method sig-
nificantly outperforms it by a large margin. Notably, our
baseline model only computes global features. This would
be beneficial for practical pedestrian retrieval deployment,
while it has lower computational efficiency.

The experiments on RegDB dataset (Table 5) suggest
that our proposed method is robust against different query
settings. It performs well on both visible-to-infrared and
infrared-to-visible settings by modality confusion learning.
Since RegDB dataset is collected by a dual-camera system,
we did not apply CCA on it. This learns better modality-
invariant and modality-specific information.

5. Conclusion

In this paper, we propose a new cm-ReID baseline
with a Modality Confusion Learning Network (MCLNet),
which could learn modality-invariant features by minimiz-

ing inter-modality discrepancy while maximizing cross-
modality similarity among instances. Different from other
methods, MCLNet aims to confuse the two modalities by
confusion learning mechanism. Meanwhile, we proposed
an identity-aware and a camera-aware marginal center ag-
gregation strategy for person ID and camera ID prediction,
which can help the framework to extract the centralization
features temperately. Extensive experiments validate the su-
perior performance of the proposed method, as well as the
effectiveness of each component of the framework.
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