This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

TransForensics: Image Forgery Localization with Dense Self-A ttention

Jing Hao* Zhixin Zhang*

Shicai Yang

Di Xie Shiliang Pu'

Hikvision Research Institute

{haojing, zhangzhixin5, yangshicai, xiedi, pushiliang.hri}@hikvision.com

Abstract

Nowadays advanced image editing tools and technical
skills produce tampered images more realistically, which
can easily evade image forensic systems and make authen-
ticity verification of images more difficult. To tackle this
challenging problem, we introduce TransForensics, a novel
image forgery localization method inspired by Transform-
ers. The two major components in our framework are dense
self-attention encoders and dense correction modules. The
former is to model global context and all pairwise inter-
actions between local patches at different scales, while the
latter is used for improving the transparency of the hidden
layers and correcting the outputs from different branches.
Compared to previous traditional and deep learning meth-
ods, TransForensics not only can capture discriminative
representations and obtain high-quality mask predictions
but is also not limited by tampering types and patch se-
quence orders. By conducting experiments on main bench-
marks, we show that TransForensics outperforms the state-
of-the-art methods by a large margin.

1. Introduction

Image is an important medium for information transmis-
sion. Recently, tampered images generated by image edit-
ing techniques are commonly confused to be real ones, and
are increasingly used in fake news creation, academic fraud,
and criminal offenses. When tampering occurs in a digital
image, we usually expect that the tampered regions can be
found through image forensic analyses. However, captur-
ing discriminative features of tampered regions with multi-
ple forgery types (e.g. splicing, copy-move, removal) is still
a challenge and often requires exploiting the characteristics
of different tampering artifacts.

Unlike semantic object segmentation methods [33, 43]
that do predictions of all meaningful object regions, image
forensics makes predictions of tampering locations only.
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Figure 1. Examples from three common image forgery datasets.
Four authentic images (top) with their corresponding tampered im-
ages (medium) and ground-truth masks (bottom).

The former focuses on analyzing the content of different re-
gions to understand visual concepts, while the latter needs
to generalize some other artifacts (e.g. inconsistent local
noise variances) created by different manipulation tech-
niques. As shown in Fig.1, the well-manipulated images
are usually realistic, where the content of fake and genuine
regions is likely to be similar. If we directly use seman-
tic segmentation network for image forensics, the network
would localize both original and manipulated regions, while
the original ones are the wrong predictions for image foren-
sics. The work of Bappy et al. [3] also have demonstrated
that semantic segmentation approaches do not perform well
for image manipulations.

The key to image forensics is characterizing different
tempering artifacts that are often hidden in tiny details of
the images. Previous methods mainly employ traditional
hand-crafted features, such as error level analysis (ELA)
[20], discrete cosine transform (DCT) [5], and steganalysis
rich model (SRM) [15], to learn local inconsistencies from
invisible traces, but they usually apply only to a specific
manipulation type. In fact, the boundary formation of tam-
pered (smoother) and authentic regions (sharper) within an
image is different [3, 4]. With the success of deep learning
approaches, recent works focus on checking feature consis-
tency or learning boundary discrepancy via convolutional
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neural networks (CNNs) [10, 28, 35, 42] or recurrent neural
networks (RNNSs) [3, 4], which allow to capture tampering
features and perform better than traditional methods.

However, the major shortcoming of deep learning meth-
ods is that they heavily depend on hand-designed patch se-
quence orders and manipulation types. Specifically, RNNs
based methods split an image into a series of patches and
use a long-short term memory (LSTM) network to learn the
correlations between them. These networks can receive the
sequential inputs, but cannot retain the spatial location in-
formation. In contrast, the methods combining hand-crafted
features with deep features [2, 38, 41, 42] achieve the state-
of-the-art (SOTA) performance, but they usually assume
that tampering type is known beforehand. Taking these
facts into consideration, here we show how a spatial atten-
tion network can be used within an image forgery localiza-
tion framework to model all pairwise interactions between
patches (including rich statistical features) of an image, yet
maintain the global structure and alleviate ordering tech-
niques and manipulation types limitation.

Framework overview In this paper, the goal of our sys-
tem is to predict binary masks for image forgery localiza-
tion. Firstly, we use a fully convolutional network (FCN)
as backbone for feature extraction. Then, self-attention en-
coders are used to model rich interactions between points in
feature maps at different scales. For improving the perfor-
mance, dense correction modules are used in our network,
which helps to learn more discriminative representations
from the early layers and performs results correction.

Main contributions In this work, the main contributions
are as follows. First, we propose a novel image forgery lo-
calization method, called TransForensics. To the best of our
knowledge, it is the first attempt in image forensics to model
all pairwise relations, yet maintain the spatial structure be-
tween patches with the self-attention mechanism. Second,
we introduce a dense correction architecture, which adds
the direct supervision for the hidden layers, and corrects the
outputs from different branches by multiplication. Experi-
ments show that our method outperforms the SOTA meth-
ods by a large margin.

Structure of the paper The paper is organized as follows.
We first review related work in Section 2. Then, Section 3
introduces the proposed dense attention network for image
forgery localization in detail. Section 4 shows the experi-
mental datasets, details, results and analysis. Finally, Sec-
tion 5 gives the conclusion of this paper.

2. Related work

Prior work on which our work build contains several do-
mains: image forensics, self-attention mechanism, and deep
supervision. Image forensics focuses on detecting tamper-
ing artifacts, and research on this domain contains various

traditional and deep learning approaches for image forgery
classification, detection, and localization. The self-attention
mechanism is the core component of Transformers, which
are widely used in nature language processing (NLP) and
computer vision (CV). Deep supervision attempts to en-
force direct supervision for the hidden layers, where the
learned features are sensible and discriminative. In this sec-
tion, we briefly review prior work.

Image forensics The development of image editing tech-
niques makes tampered images widely available and more
realistic. The most common tampering techniques are splic-
ing, copy-move, and removal. Splicing means copying re-
gions from an image to another image. Copy-move copies
and pastes regions within the same image. Removal means
removing regions from the current image. Image forensics
aims at detecting these tampering artifacts, and involves bi-
nary (real or fake) classification and tampered regions de-
tection or localization tasks. At first, many studies in this
filed are traditional methods based on hand-crafted features,
such as local noise analysis [9, 15, 26, 31], CFA artifacts
[14], illumination variance analysis [12, 32], and double
JPEG compression [5, 7, 20]. With the revolutionary ad-
vance of deep learning, some methods try to bring deep
neural networks into this realm (e.g. RNNs [3, 4], CNNs
[10, 17,22, 35] and GANs [18]). There are also many pa-
pers that combine hand-crafted features and deep features
for image forensics [1, 2, 36, 38, 41, 42].

Local noise variances estimation is used for image splic-
ing detection [31]. This is because different regions within
an authentic image containing intrinsic noise have simi-
lar noise variances, and image splicing can be exposed
with inconsistent local noise variances. Similarly, SRM
[15, 41, 42] uses local noise residuals to capture the in-
consistency between tampered and authentic regions. For
example, Fridrich et al. [15] propose steganalyzers to con-
struct rich models of the noise component to capture nu-
merous quantitative relationships between pixels in an im-
age, and Zhou et al. [4 1] combine SRM features with RGB
features by a two-stream Faster R-CNN to perform manip-
ulation detection. Furthermore, Bammey et al. [2] design
a CNN structure based on demosaicing algorithms to point
out local mosaic inconsistencies. Amerini et al. [1] com-
bines a spatial domain CNN with a frequency domain CNN
for splicing forgery detection, which is inspired by the fact
that the artifacts of single and double JPEG compression
are different. Bappy er al. [3] propose to exploit the inter-
dependency between patches, which is efficient for various
types of manipulation detection, and then they present a hy-
brid CNN-LSTM network [4] utilizing resampling features
to improve the detection performance. The studies combin-
ing hand-crafted features with deep features are: CNN and
CFA [2], CNN and steganalysis [38, 41, 42], CNN and dou-
ble JPEG compression [, 36].

15056



Upsample

Upsample Upsample Upsample

<
<€

Upsample Upsample

Self-Attention

Output

Self-Attention

<& i
< <

Upsample Upsample

Self-Attention

Self-Attention

A A A
<€~ PE b€~ PE €~ PE e~ PE
A A A A
Input C2 C3 C4 C5

Figure 2. Architecture of image forgery localization network. The whole image is the input signal. First, a FCN backbone is applied to
extract discriminative features. Then, the features from four blocks (C2, C'3, Cs and C's) combining with positional encodings are input
into the self-attention encoders separately, which captures rich interactions between ‘patches’ in the input image. Finally, a feature fusion
strategy by multiplication corrects the mask predictions. In this work, we do not split the whole image into a series of patches, and the
points in feature maps is equivalent to the invisible patches in the input image (see Fig. 3).

The commonality among all traditional algorithms dis-
cussed above is that they usually apply only to a certain
manipulation type, and the disadvantage of deep learn-
ing methods is that the performance heavily depends on
patch ordering techniques. Motivated by these works, here
we present a novel spatial attention network with the self-
attention mechanism for modeling rich interactions between
patches at different scales.

Self-attention mechanism The self-attention mechanism
is the core component of Transformers [34], which has been
successfully used in CV [19]. Here, self-attention can cap-
ture ‘long-term’ dependencies between set elements (e.g.
pixels, image patches or video frames) to aggregate global
information of the input signal. A recent framework, called
DETR [8], views object detection as a direct set predic-
tion problem and uses Transformers with parallel decod-
ing to produce unique predictions. Semantic segmenta-
tion is a dense prediction task, where Transformers can be
used to model relations between pixels. For example, Ye et
al. [39] propose a cross-modal self-attention to learn long-
range dependencies between linguistic and visual features,
and Zheng et al. [40] deploy a pure Transformer to encode
an image as a sequence of patches. However, the usual so-
lution for image forensics to learn the correlations between
patches is using LSTM cells, in which the existing orderings
(e.g. horizontal, vertical or Hilbert curve [4]) cannot corre-
late well between patches (i.e. neighbor each other being
separated). In contrast, self-attention mechanisms can ag-

gregate information from the entire input image, and their
global computations make them more suitable than RNNs
in this domain. There are also few studies which make
attempts to bring attention mechanism to image forensics
[17, 18]. In [17], a spatial pyramid attention network (with
different dilation distances) is designed, where RGB, Bayer
[6] and SRM [15, 41] features are extracted. [I8] using a
dual-order (channel) attention module [1 1] in GAN, which
applies only to a specific manipulation type. In this work,
we try to utilize self-attention to model relations between
‘patches’ only based on RGB features for exploiting rich
statistical features of different tampering artifacts.

Deep supervision Deep supervision aims at enforcing di-
rect supervision for the hidden layers. Deeply-supervised
net (DSN) [21] makes the learning process of hidden lay-
ers transparent, which boosts the classification performance
and effectively avoids the exploding and vanishing gradi-
ents. Based on this, Zhou et al. [43] present UNet++ for
medical image segmentation. These segmentation networks
share a key similarity: using skip connections to combine
semantic feature maps from the decoder with shallow fea-
ture maps from the encoder, which helps to improve the
segmentation performance. Inspired by this, we propose
a dense correction architecture for capturing both coarse-
grained (high-level, semantic) and fine-grained (low-level,
statistical) predictions and correcting details from different
branches by multiplication (see 3.3). The architecture en-
ables network pruning and producing better results.
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3. Method

Image forensics, aiming at capturing tampered regions,
is different from semantic object segmentation. For exam-
ple, copy-move copies one object region to another region
within the same image. In this case, the main goal of im-
age forensics is to localize the pasted object region whereas
semantic segmentation needs to segment all object regions
including the original one and the manipulated one. Con-
sidering that tampering techniques can create artifacts (e.g.
local noise variance, boundary discrepancy), we need to de-
sign a network to capture discriminative features for finding
suspicious regions in a potentially forged image.

Previous works just used hand-crafted ordering tech-
niques to model patches relations, which cannot retain spa-
tial information. To solve this issue, inspired by Trans-
former, we propose to use self-attention to learn invisible
tempering artifacts hidden in tiny details of an image, which
is the first attempt in image forensics. Moreover, we pro-
pose a dense correction architecture to re-correct the output,
yielding excellent performance improvement.

3.1. Self-attention for interaction modeling

The self-attention mechanism can be used to model rich
interactions between pixels or patches in an image, which
provides more comprehensive and useful information for
dense visual tasks. In this work, we use self-attention en-
coders in image forensics, which is motivated by the fol-
lowing observations: first, the tampering artifacts produced
by different manipulation types are different, and they are
commonly hidden in the details of the image; second, mod-
eling patches relations with hand-designed patch sequence
orders cannot keep spatial information of patches. If we
‘split’ the image into H x W patches and then fed them into
the self-attention encoder, all pairwise relations between
patches can be extracted. This is the theoretical foundation
for using self-attention encoders in tampering localization.

Each point in a feature map is equivalent to the corre-
sponding patch in the input image, which is called respec-
tive field in deep learning (see Fig. 3). So the discriminative
features between patches can be extracted by modeling the
relations between points in feature maps. In this paper, we
do not split the whole image into a series of patches. We
use ResNet50 [16] as backbone (including five stages) for
feature extraction, and then we feed the outputs of the last
four stages into self-attention encoders, each responsible for
learning the patch relations at a different scale.

Here, we use a standard transformer encoder architec-
ture to learn attention maps, and the details are described
below. First, a 1 x 1 convolution layer is used to reduce
the channel dimension of stages’ output from C' to d, where
C € [256,512,1024,2048] and d = 256. Second, in or-
der to maintain the spatial location of patches, we supple-
ment the features with a sine positional encoding [34] be-
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Figure 3. The correspondence between the feature map and the
input image. The interactions between points in a feature map are
equivalent to the relationships between patches in a digital image.
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Figure 4. Network pruning. In the training phrase, comparing the
results between ¥;(¢ = 2,...,5) and choosing the optimal, where
the final result is produced in the test phrase.
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fore passing them into transformer encoders. Third, a trans-
former encoder has 6 encoder layers, and each one consists
of a multi-head self-attention module and a feed forward
network (FFN). The dimension of feed forward is 2048 and
the dropout during training is 0.1. In this way, we can cap-
ture the difference at the boundary location between tam-
pered and authentic regions.

3.2. Deep supervision for network pruning

In general, highly discriminative features will produce
powerful performance. If the outputs of the hidden lay-
ers can be directly used for the final classification, the net-
work will obtain both semantic, coarse-grained and low-
level, fine-grained predictions, which contributes to the final
performance. In this work, we consider adding deep super-
vision in the tampering localization system.

As shown in Fig. 2, the network has four branches, and
each output is used to calculate the localization loss sepa-
rately. The advantages of this architecture are: providing
more expressive features (semantic and shallow) for feature
fusion (see Fig. 5) and obtaining more efficient architecture
by network pruning (see Fig. 4). Deep supervision in this
work enables the model to choose a suitable mode from all
localization branches §;(i = 2,...,5), and the choice de-
termines the extent of network pruning and speed gain (see
Tab. 4 and Tab. 5).
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3.3. Feature fusion for prediction correction

The fully convolutional network (FCN) was introduced
by Shelhamer e al. [33] for semantic segmentation, where
the upsampled features are summed with the features
skipped from the encoder. Experiments show that it is ef-
fective in helping recover the full spatial resolution at the
model’s output. In this work, we bring a similar but new
feature fusion strategy to the system. Instead of adding the
features, we opt to use the multiplication operation (see Fig.
2 and Fig. 5), and results show that it is a better choice for
the tampering localization task (see Tab. 6).

We fuse the upsampled output from current block with
the output from adjacent previous block, where they have
the same size. As shown in Fig. 5, B represents the output
of the high-level block, A represents the output of the adja-
cent low-level block, and C' is the result of fusing A and B
by multiplication. Specifically, in feature fusion modules, a
1 x 1 convolution is used to change the dimension of fea-
tures from different branches, and the upsampling operation
followed by a sigmoid function with threshold 0.5 produces
the fusing weights. The final mask prediction is computed
by a 3 x 3 convolution with stride 1 and padding 1 after
feature fusion by multiplication.

3.4. Prediction loss

In this work, we use DICE loss [29] and Focal loss [24]
to supervise each mask prediction:

. 2> (k- Ur)
L ice ) =1- ~ 1
e e
Locai(pt) = —ae(1 — pt)7 log(pr) 2

where y and ¥ are ground-truth (GT) and predicted mask,
and k& denotes the point of the mask. Let {£1} be the GT
class and p € [0,1] be the probability (p; = p for class 1
and p, = 1 — p for class —1). A weighting factor « € [0, 1]
is introduced for addressing class imbalance (o = « for
class 1 and oy = 1 — « for class —1). + is the tunable
focusing parameter. Like [24], we set a = 0.25 and v = 2.
We compute the joint loss of all branches during training:

Loss =Y Ni(Laice(Yi §i) + Lfocar(pt))  (3)

7

here, the loss for the branch ¢ i8 Lgice (i, i) + L focal(Pt)
and the corresponding ratio is A;. There are two ways to cal-
culate the branch loss: upsampling predicted mask or down-
sampling GT mask. ¥; can be used to compute the branch
loss directly in which the corresponding y; can be obtained
by downsampling the original GT mask. We can also em-
ploy upsampled mask prediction, in which ¥; is upsampled
to have the same size as the original GT mask. Note that
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Figure 5. Feature fusion strategy. A and B are the outputs of two
adjacent blocks, and C' is the result of feature fusion by multipli-
cation. B is the semantic prediction and can help to correct A.

these two computation types are different. In upsampling,
the higher the layer, the more noise may be introduced into
the network via ‘nearest’ interpolating, and in this way, the
loss between GT and predicted mask needs more attention,
whereas downsampling does the opposite. For producing
more precise predictions, we choose different coefficients
for four branches to control the correction amplitude during
training. Thus, the ratio set is written as follows.

Upsampling : Ay < Xj,i <] “)

Downsampling : A\ > X\j,i < j )

here, we denote the low-level branch as ¢ and the high-level
branch as j. A; and \; are the corresponding ratio of the
branch 7 and j for calculating the joint loss.

4. Experiments
4.1. Datasets

In this work, we choose three common datasets in image
forensics: CASIA [13], COVERAGE [37] and IMD2020
[20]. The details are as follows.

CASIA focuses on splicing and copy-move. It provides bi-
nary GT masks of tampered regions. The dataset includes
CASIA v1.0 about 921 tampered images and CASIA v2.0
about 5123 tampered images.

COVERAGE is a relatively small dataset designed for
copy-move. It provides 100 manipulated images and cor-
responding GT masks.

IMD2020 is a ‘real-life’ manipulated dataset made by un-
known people and collected from the Internet. The images
having obvious traces of digital manipulation are discarded
and binary masks localizing tampered regions are created
manually. It includes 2010 examples.
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In data preparation, we split the entire dataset into three
subsets and the ratio of training, validation and testing is
8:1:1. Note that these subsets are chosen randomly.

4.2. Details

The proposed network contains three main components:
a FCN backbone for feature extraction, dense self-attention
encoders for relations modeling between patches at differ-
ent scales, and dense correction modules for further per-
formance optimization. Specifically, we use ResNet-50 as
backbone. We train the network with Adam setting the ini-
tial learning rate to le-4. We resize the input images to
512 x 512, and use random horizontal flipping as the only
data augmentation method. To train the model, we use Py-
torch 1.6.0 to define the localization network and utilize
multi-GPU setting. We set the batch size to 2 and train the
model on two NVIDIA Tesla V100 GPUs over 50 epochs
for different datasets. We choose the loss weights within
[0.1,0.2,0.3,0.4] during training.

Note that some previous works chose to finetune their
models trained on other bigger image forgery datasets to
obtain the performance on COVERAGE, because the num-
ber of COVERAGE is small. In our experiments, we do not
perform such finetuning on COVERAGE, and the results
are still comparable to the SOTA methods (see the COVER
column in Tab. 1 and Tab. 2).

Evaluation We evaluate our model at pixel level with the
benchmark metrics: F; score and area under curve (AUC).
The higher value indicates that the performance is better.

Baseline models In this paper, we compare our work with
various baseline methods. Some methods are described in
[42], suchas ELA [20], NOI1 [27], CFA1 [14], J-LSTM [3],
RGB-N [42], and other methods such as BLK [23], ADQI
[25], ManTra-Net [38], LSTM-EnDec [4] and SPAN [17]
are described below.

e BLK: The work focuses on extracting block artifact grids
caused by the blocking processing during JPEG compres-
sion, and then detecting them with a marking procedure.

e ADQI: The method aims to detect tampered images by
examining the double quantization effect hidden among
the DCT coefficients in JPEG images. It is insensitive to
different kinds of forgery methods.

e ManTra-Net: A unified deep neural architecture per-
forming both detection and localization can handle many
known forgery types.

e LSTM-EnDec: A manipulation localization architecture
utilizing resampling features, LSTM cells and encoder-
decoder modules is performed to segment out manipu-
lated regions from non-manipulated ones.

o SPAN: The paper presents a spatial pyramid attention
network, where Bayer and SRM features are extracted.

4.3. Results

In this subsection, we compare results of various works
on three standard datasets quantitatively and qualitatively.

Quantitative analysis We compare our work with other
various SOTA models on the datasets mentioned above with
the benchmark metric AUC and F;. From Tab. 1 and Tab.
2, we can see that our proposed network outperforms base-
line models by a large margin. The results of our method
through upsampling and downsampling are comparable in
AUC metric and the former is better in Fj score. Note that
IMD2020 was released in 2020, and we struggled to find the
published literatures reporting F; score on this dataset, but
in vain until we submitted the paper. The Fj score of our
method on IMD2020 is 0.545. About cross-dataset results:
training our network with IMD2020, the AUC performance
on CASIA and COVER are 0.652 and 0.758, respectively.
It proves the generalizability of our method.

| Method CASIA COVER IMD2020
ELA [20] 0.613 0.583 -
NOI1 [27] 0.612 0.587 -
CFAL1 [14] 0.522 0.485 0.586
J-LSTM [3] - 0.614 0.487
RGB-N [42] 0.795 0.817 -
BLK [23] - - 0.596
ADQI1 [25] - - 0.579
ManTra-Net [38] 0.817 0.819 0.748
LSTM-EnDec [4] - 0.712 -
Ours (downsample) | 0.850 0.884* 0.847
Ours (upsample) 0.837 0.883* 0.848

Table 1. AUC performance comparison against different works on
image forgery localization. ‘*’ denotes that our experiments on
COVERAGE do not perform finetuning, which is different from
the other methods in table. ‘-’ denotes that the result is not avail-
able in the literature.

] Method \ CASIA COVER \
ELA [20] 0.214 0.222
NOII1 [27] 0.263 0.269
CFA1 [14] 0.207 0.190
RGB-N [42] 0.408 0.437
SPAN [17] 0.382 0.558
Ours (downsample) | 0.479 0.648*
Ours (upsample) 0.627 0.674*

Table 2. F score performance comparison against different works.
“*’ and ‘-” have the same meaning as Tab. 1.

Qualitative analysis After training, our model can gen-
erate high quality mask predictions that depict tampering
locations. Here, we provide some qualitative examples (see
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COVER CASIA CASIA IMD2020 IMD2020

COVER

—
(a) Authentic (b) Tampered

(¢) Ground-truth (d) Prediction

Figure 6. Examples of mask predictions using the proposed dense attention network. Images are taken from three common datasets
mentioned above. From left to right: (a) authentic images, (b) tampered images, (c) ground-truth masks, and (d) mask predictions.

Fig. 6), which are taken from the datasets mentioned above.
These examples are generated by copy-move, splicing, and
‘real-life’ tampering from the Internet. As we can see, our
method can find tampering regions with different types of
manipulation. Note that the predictions are produced di-
rectly by our model without any post-processing.

4.4. Ablations

In this subsection, we conduct ablation experiments to
study how the components of our proposed architecture in-
fluence the localization performance. For the ablation anal-
ysis, we use a FCN (i.e. ResNet50) as backbone and eval-
uate the importance of the self-attention, sine spatial posi-
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] FCN Self-attention Positional encoding Dense correction CASIA COVER IMD2020
v 0.669  0.715 0.735
vV vV 0.655 0.674 0.725
Vv Vv 0.650  0.707 0.729
v v v 0.809  0.862 0.815
A v Vv Vv 0.837  0.883 0.848

Table 3. AUC performance in ablations.

tional encoding, and dense correction by adding the corre-
sponding module respectively. We also provide a detailed
study to show how the choice of feature fusion and network
pruning affect the final performance.

Architecture analysis The self-attention mechanism is
the key component for modeling rich interactions between
set elements, where the positional encoding is very impor-
tant. As shown in Tab. 3, performance is significantly im-
proved only when self-attention and positional encoding are
used at the same time. Dense correction improves the trans-
parency of the hidden layers, which minimizes the loss error
more effectively, and re-corrects the mask prediction based
on semantic dependencies between different attention maps.
From the last line in Tab. 3, we can observe that dense cor-
rection is helpful for the final performance.

Network pruning Dense correction makes network prun-
ing possible. As shown in see Fig. 4, we can compare the
results between ¥,;(i = 2,...,5) in the training phase and
choosing the optimal, where the final result is produced in
the test phrase. Tab. 4 shows the AUC performance of dif-
ferent branches of the proposed architecture, and Tab. 5
provides the information of time spent and GPU memory
occupancy. As can be seen in Tab. 4, the low-level fea-
tures contribute more to the final localization performance
than deep ones, which means that our model can learn in-
visible traces that are often hidden in tiny details of the im-
ages. Combining Tab. 4 and Tab. 5, we can see that C3

’ Method \ GPU memory (M)

Inference time (s) ‘

Ours (Cs) 6687 0.11
Ours (C3) 774 0.09
Ours (Cy) 368 0.08
Ours (C5) 353 0.07

Table 5. Comparisons of results of different branches as final out-
put in GPU memory and inference time.

direction connection. Thus, although the prediction of C3
branch is block-wise, it does not lack refinement on edges.

Type of feature fusion As described above, feature fu-
sion has two types: multiplication and addition. In our ex-
periments, we try both addition and multiplication (see Tab.
6), and experimental results demonstrate that the multipli-
cation type is more suitable for the tampering localization
task, which is consistent with expectations.

| Method [ CASIA COVER IMD2020
Ours (Mul) [ 0.837  0.883 0.848
Ours (Add) | 0.739  0.857 0.827

Table 6. AUC comparison using different types for feature fusion.

5. Conclusion

We present TransForensics, which uses dense self-

branch (i.e. ¥3) outperforms the other branches both in per-
formance and time-consuming relatively.

| Method | CASIA COVER IMD2020
Ours (C5) | 0.837  0.883 0.848
Ours (C3) | 0.835  0.887 0.847
Ours (Cy) | 0.835  0.880 0.837
Ours (C5) | 0.826  0.877 0.827

Table 4. AUC performance comparison using different branches

as final output (see Fig. 4).

During training, with the help of dense correction, the
features with low-spatial resolution can get feedback in-
cluding edges from low-level high-resolution features. This
is the most significant difference from networks with single

attention encoders to model global context and all pair-
wise interactions between patches at different scales. It is
the first work that introduces self-attention mechanisms of
transformers to localizing tampered regions. Further, dense
correction modules re-correct mask predictions by multipli-
cation for nicer results. We demonstrate the system’s ability
to detect tampering artifacts for diverse realistic tampered
images and to achieve a balance between performance and
time-consuming. Experiments show that the proposed sys-
tem can provide a powerful model for image forgery. Our
method can be served as a solid but simple-to-implement
baseline for image forensics, and can also be employed as a
defense against data poisoning attacks to protect our learn-
ing system. In future work, the dense self-attention archi-
tecture would be a novel approach in other tasks, such as
object detection and semantic segmentation.
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