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Abstract

Scanning transmission electron microscopy (STEM) is a
powerful technique in high-resolution atomic imaging of
materials. Decreasing scanning time and reducing elec-
tron beam exposure with an acceptable signal-to-noise ratio
are two popular research aspects when applying STEM to
beam-sensitive materials. Specifically, partially sampling
with fixed electron doses is one of the most important so-
lutions, and then the lost information is restored by com-
putational methods. Following successful applications of
deep learning in image in-painting, we have developed an
encoder-decoder network to reconstruct STEM images in
extremely sparse sampling cases. In our model, we com-
bine both local pixel information from convolution opera-
tors and global texture features, by applying specific filter
operations on the frequency domain to acquire initial re-
construction and global structure prior. Our method can
effectively restore texture structures and be robust in differ-
ent sampling ratios with Poisson noise. A comprehensive
study demonstrates that our method gains about 50% per-
formance enhancement in comparison with the state-of-art
methods. Code is available at https://github.com/
icthrm/Sparse—-Sampling—Reconstruction.

1. Introduction

Scanning Transmission Electron Microscopy(STEM)
has become a powerful and successful technique in the
imaging of “beam stable” materials such as inorganic crys-
talline samples. However, to achieve high spatial resolution
better than 0.5 A [2, 10], an order of magnitude for electron
beam doses (typically in excess of 10° — 106 e~ /A?) is nec-
essary, in which the high-energy electron beam may burn
the materials and destroy the original structures. Therefore,
the imaging capability of a STEM technique at low electron
dose is critical for beam-sensitive materials. By decreasing
the dwell time at a pixel (scan faster) or directly reducing
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the electron accelerator voltage [18], we can achieve low
electron dose imaging with a reduced number of electrons
dashing and passing through samples in unit time [3]. How-
ever, the low electron dose configuration leads to another
problem, i.e., the sparsity of the sampling signals and low
signal-to-noise ratio.

Because the electron number per pixel determines the
credibility of a pixel, given total electron doses, sparse sam-
pling makes a pixel acquire more electrons, leading to a
more credible pixel value. Meanwhile, for a STEM system
with 200-300 keV primary beam energy, the Poisson noise
dominates the noise distribution [13, 25, 14]. A one-pass
sparse sampling (or partial scanning) outputs a scatter map
of the true signals of a sample. Except for partial scanning,
multi-pass scanning strategies are developed to further re-
duce electron beam damage. To obtain the structure details,
restoring missing signals from the scatter map is necessary.

Traditional reconstruction methods in sparse sampling
develop from basic frequency filter to compressed sensing
framework. Fourier or wavelets transform combined with
amplitude filter, frequency filter, and phase drift can roughly
restore the repeating structures [20, 26]. But filter meth-
ods are only applicable for materials with a large range of
fixed texture structures, and they can’t accurately determine
the material boundaries, let alone any discrepancy between
the internal structures. Compressed sensing (CS) theory
[8, 5, 4] offers an alternative idea to overcome the limita-
tion. CS makes the assumption that a set of signals is able
to be represented by a suitable basis in an extremely sparse
form if the system satisfies several preliminaries. And if
the sensing matrix obeys i.i.d Bernoulli distribution given
a sparse rate, CS theory guarantees the feasibility and effi-
ciency of image restoration. To achieve satisfying results,
Traditional CS methods such as Group-based Sparse Rep-
resentation (GSR) [28] and Beta Process Factor Analysis
(BPFA) [29] require almost a dozen hours’ execution time,
which can’t meet the practical need of real-time imaging.

Due to the limitation of execution speed, convolution
neural network (CNN) based methods are recently pro-
posed [16, 1, 23, 11, 24, 27, 19]. Well-trained networks
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have replaced the “endless” iterations with just one for-
ward propagation, making the real-time imaging of low-
dose STEM possible. These methods mainly inpaint the
missing information by exploring the texture features from
local patches. However, without strict theoretical guaran-
tee, CS-based deep learning methods perform not well on
inpainting problem in extremely sparse sampling cases, es-
pecially for real-world data with Poisson noise. Meanwhile,
most networks adopt block-based linear mapping as initial
reconstruction, which significantly limits receptive field and
loses the ability of global information extraction.

Here, we propose a novel Frequency-Spatial Hybrid Net-
work (FSHNet) to restore STEM images at an extremely
low sampling rate, for example, atomic-scale STEM imag-
ing with a sampling rate lower than 5%, which is impossible
to be achieved by traditional methods. In FSHNet, the fre-
quency domain information is filtered to ensure global sim-
ilarity, and the detailed spatial domain information is cap-
tured with convolution operators to polish the local struc-
ture. By combining the global structure features from fre-
quency filter and the local pixel information from convo-
lution operators, FSHNet can achieve a complete structure
restoration with clearer local details. Comprehensive exper-
iments on the synthetic and real-world datasets show that
our method gains ~50% performance enhancement.

In summary, our main contributions are:

* A novel architecture that is able to utilize both the
global structure feature and local pixel information in
image inpainting.

* An approach to define a structure prior from
frequency-domain to guide the inpainting.

¢ Introducing an adaptive non-local patches matching
module to enhance image inpainting performance and
alleviate irregular artifact.

* A general procedure for the simulation of STEM sam-
pling and imaging.

2. Related Work

2.1. Traditional Compressed Sensing Algorithms

Supposing that y € RM*! js a compressed measure-

ments, and & € RM*N (M <« N) is a sampling matrix,
the classical compressed sensing problem is expressed as
argmwinHy — ®x||2, st ||[Px|p<S (1)
where x € RV*1 is a real-valued signal to be solved, W is a
mapping operator that transforms « into another space, and
S is the given sparse degree. Because the solving of non-
convex optimization is not trivial, Donoho et al. proposed
the Basis Persuit algorithm [&], in which the loss function
can be reduced into a discrepancy item and some regular-
ization items after a simple Lagrangian multiplier trans-
form. Many works exploited additional prior knowledge to

improve CS reconstruction performance, for example, the
non-local self-similarity property in natural images [7, 14]
and the structure sparse property of transformed coefficients
[12,22,28]. Although the strict mathematical proof resided
in the CS theory, the hypothesis that allows CS theory be
applied into an imaging system is not always exactly satis-
fied, and the information of image alone is not enough to
restore detailed features.

2.2. Leaning-based CS Algorithms

Dictionary learning is proposed to handle the problem
where the fixed-domain methods (e.g. DCT, DWT, gradient
difference) fail. The target of dictionary learning is to find
an over-complete dictionary D of the given images, thereby,
a sparse coding vector w can well represent the raw images:

y = Pxr = PDw. 2)

The Beta process factor analysis (BPFA) proposed by [29]
is the most widely used CS method. Stevens applied
it to STEM by splitting images into B x B overlap-
ping patches and design special sensing matrix ¢ (¢ =
[0]e2]0]es]...|en|0]T) consisting of zero rows and several se-
lected identity matrix rows [21].

Neural network is well known for its powerful feature
learning capability. Benefiting from the fast non-iterative
forward inference, a lot of efforts have been made to replace
the time-consuming iterative optimization in CS by deep
learning approach. Mousavi proposed the stacked denoising
auto-encoder to fit non-linear transform of signal vectors
[16]. Kulkarni utilizes convolution neural networks to ex-
tract deep features and directly output restored image [ 1].
Yang [23] and Zhang [27] recently integrated CNN mod-
ules into ADMM and ISTA [6] algorithms, respectively.
Deep residual reconstruction network was proposed to re-
construct a high-quality preliminary image by introducing
residual module [24]. Jeffrey firstly introduced deep resid-
ual adversarial learning method in STEM sparse sampling
reconstruction with spiral scanning [9]. However, similar to
the previous works, it neglects the global information.

3. Methodology

3.1. Reconstruction Model

Given the sampling inputs {Y;,} with Y;, € RM>*M and
n = 1,2...,T, where T is the inputted frame number, the
reconstruction problem in partial scanning STEM is formu-
lated as follows:

T
argmin ) [V — @0 © X[o + [€X[l, ()

n=1

where © represent Hadamard product, X € RM™*M g the
unknown image to be solved, ®,, € RM*M jg the sampling
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Figure 1: The architecture of FSHNet. The workflow starts with a bicubic interpolation, on which further operations are
applied. The main encoder-decoder framework accepts the initial reconstruction based on low-pass filtered results, and
utilizes global structure guidance prior extracted from frequency filtered results to guide training.

matrix and ¥ X denotes the transform coefficients matrix of
X with respect to transform ¥ € RM*M _ The discrepancy
item for the n*" sampling can be further rewritten as

||Yn_q)n®X||2: HYn_P(MnQX)H% )

where M,, € RM*M ig a mask matrix consisted of 0 or 1
corresponding to the n'”* partial sampling and P refers to
the modulation of Poisson noise. Given the total electron
dose A and sparsity k, the operator P is explicitly formu-
lated as

Plu) = W if the p.ixel u is selected 5)
0 otherwise

where P(-) is the random variable subject to Poisson Dis-
tribution, and A = A/(k - n?).

The regularization item ||¥X||; is extended into two
components in our model, to reflect the structure features
serving as image reconstruction guidance and the inherent
characteristics residing in the image.

Motivated by the successful application of frequency fil-
ter in low-dose image restoration, the global structure in-
formation could be discovered from the frequency domain.
Here, we designed the regularization of structure features as

T
Re, = Diff(S(Z]:(Yn))vX)’ (6)

where F is the Fourier transform, S is an operator to ex-
tract structure guidance information. The goodness of X is
judged by the Diff(-) function in terms of structure features.

Meanwhile, considering the inherent property of the im-
age itself, another regularization item is defined as

Re; = R(X), ()

where R is selected to reflect the sparsity of transformed
coefficients and local smoothness.

Thus, the reconstruction model for partial scanning
STEM is extended as

T
argmgnz |Y;, = P(M,, ® X)|2 + Res + Re;.  (8)

n=1

3.2. Network Architecture

A Frequency-Spatial Hybrid Network (FSHNet) is de-
signed according to the reconstruction model, based on an
encoder-decoder architecture (shown in Figure 1). Differ-
ent from the previous CS methods that clip image into a set
of small patches, FSHNet accepts the complete image as in-
put, for the better retainment of global information. The ba-
sic convolution block in our net consists of a Conv2D layer,
a Leaky-Relu layer (k=0.2) and a batch norm layer. The
up-sampling block in the decoder architecture adopts a 2x
nearest interpolation, with the last up-sampling block utiliz-
ing a 2x pixel shuffle operation to shrink channel number.

In FSHNet, the inputted partial sampling data is dupli-
cated and fed into two parallel processes, of which one di-
rectly shuffles the sparse sampling data in spatial domain
with a 4-layer CNN, and the other makes a Fourier domain
analysis (subsection 3.3.1) on the integrated Fourier Trans-
form (FT) maps of the inputs. The Fourier domain analy-
sis will reconstruct an initial STEM image and extract its
global structure features. Then, the initial reconstruction is
fed into the encoder layers to reduce data dimension, and
combined with the shuffled sparse sampling data. Finally,
under the guidance of global structure features, the decoder
layers will output a fine-reconstructed STEM image, fol-
lowing with a non-local module (subsection 3.3.2) to sup-
press the effect of Poisson noise.
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Figure 2: An illustration of global structure feature extrac-
tion (the zero-frequency is centralized for visualization). (a)
Groundtruth. (b) A frame of partial sampling data. (c)
Integrated FT map. (d) Frequency-filtered FT map. (e)
Initial reconstruction. (f) Amplitude-filtered FT map. (g)
Global structure features extraction. (h) Extracted feature
after Laplace of Gaussian filter.

3.3. Main Component
3.3.1 Fourier domain analysis

Essentially, the Fourier transform looks for repeating struc-
tures. Thus, compared with spatial domain analysis, fre-
quency domain analysis could provide more information for
STEM image. Figure 2 gives out an example of the Fourier
operations carried out on an FSHNet’s input.

Basic concepts. Given an FT coefficient map A =
[ai;] € RM*M and a mask matrix M = [m;;], the Fourier
mask operation is defined as

M(M,A) =M 6 A. )

Here, a low-pass filter H ¢ (A, ) = M(Mj,., A) and an
top-k amplitude filter Hopmp(A, h) = M(Megmp, A) are
defined based on the Fourier mask operation. The mask
matrix My in Hyre(-) is set with m,;; = 1 if and only if
i%2 4+ j2 < r2, where 7 is a threshold to truncate frequency.
The mask matrix M.,y in Hamyp(+) is set with m;; = 1 if
and only if |a;;| ranks top h of all the amplitude.

Initial Reconstruction. Though simple linear mapping
is widely-used for initial reconstruction in traditional meth-
ods, it is not applicable in the case of extremely sparse sam-
pling. In FSHNet, the initial reconstruction is generated by
applying a low-pass filter on the integrated FT map of the
inputted multi-frame data, i.e.,

T
I= fﬁl(fore(Z‘F(Yn)ar)) (10)

where r is a relatively large threshold for frequency trun-
cation. Considering the elements in I = [a;;] and Y =

ZL Y,, = [b;;], we further let

ifb;; =0
otherwise.

Qi
a;j = (1D
’ {é(aij + bij)

Figure 3: Adaptive patch sizes determination. (a) is an im-
age plotted by f(i,7) = sin (45! + 3;1;]) (b) is the FT
map of (a). (c) is an example of STEM image. (d) is the FT
of (c). The patch size used in non-local matching is deter-
mined by the maximum horizontal and vertical component
of the selected peak, which is marked in red.

to better interpret the pixels of the realistic sampling.

Global Structure Features Extraction. Low-frequency
signals determine the main structure of images and strong
amplitude signals dominate the image fluctuation. The fluc-
tuation can be approximately regarded as the edge informa-
tion in an image. However, due to the extremely sparsity
of partial scanning STEM image, the edge information is
impossible to be extracted in spatial domain. Given the in-
puts {Y,, }, an amplitude-frequency joint filter is devised to
extract the global structure, which is formulated as

T
S(FY)) = F Hpre(Hamp(Y_ F(Yn) k), 14)) (12)
n=1
where k and r, are parameters related to the imaging sys-
tem. By applying the amplitude filter on the FTs and setting
arelative small threshold, the attention of FSHNet is able to
be maintained on the main structure of the image.

3.3.2 Non-local Patch Enhancement.

To suppress the effect of Poisson noise, a structure refining
strategy is designed based on non-local patch matching and
weighting. For a patch P = [p;;] € RW>*W locating in the
local region Q, its value is updated by

exp—MSE(P,Pn)/hz

P=> (

P, (13)
P,cO ZP,LGQGXP

—MSE(P,P,)/h?

where MSE(-) is the function to calcuate the mean squared
error between two patches and h is a bandwidth parameter.

The patch size W is adaptively determined by select-
ing the k strongest amplitude peak within a maximum fre-
quency range 7, and calculating their maximum horizontal
and vertical component, i.e.,

W = max{i \/j|Vfij c F A fz‘j 7& O}, (14)

where F = [fij] = Hamp(Hpre(3_y F(Ya), 1), ).
Figure 3 gives out an example of patch size determination.
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3.4. Loss Function

FSHNet accepts a multi-frame sparse sampling
{Y,,}T_, as input and outputs a reconstructed image X.
Given a training pair {{Y,,}2_,, Z}, with Z representing
the reference ground truth, FSHNet tunes the model by
minimizing a combined loss function, i.e.,

L= Edis + )\lﬁgui + )\ZETeg (15)
with

Lais = MSE(Z, X))
Lgus = MSE(Toage (S(F(Y))), Teage (X)) . (16)
Lreg = TV(X)

where L 4; is a discrepancy loss to make fundamental com-
parison, L,,; is a structure loss based on the result of Global
Structure Features Extraction and L, is a regularization
term of total variation. Here, 7cqqe Operator is a Laplace of
Gaussian (LoG) filter combined with a binary mask, i.e.,

ITedge(') =MO EOG(.)' (17)

The element in matrix M is set O if and only if the corre-
sponding value x in the image < 0. By this, the network
will pay more attention to the structure information.

4. Experiments

FSHNet is compared with the dictionary learning
method BPFA, the deap learning method CSNet and Re-
conNet. Here, BPFA is well known as the most accurate CS
method [15], while CSNet and ReconNet are the state-of-
art CNN-based methods [19, 11]. These methods are tested
on both synthetic datasets and real-world datasets'.

4.1. Synthetic Data Generator

Generally, a real-world STEM image is usually degen-
erated by electronic noise, and the true sample structure of
the STEM image is inaccessible. Nevertheless, the ground-
truth is very important in model training and method com-
parison. Here, to prepare the sampling-clear training pairs,
a synthetic data generator is designed, whose workflow is
shown in Figure 4. 800 real-world STEM images of crys-
talline structures (512 x 512 pixels) are prepared for syn-
thetic data generation. As shown in Figure 4, firstly, these
images are smoothed by a Gaussian filter and an iterative
median filter, to prepare a clean ground-truth dataset. Then,
the filtered images are upsampled by a factor of 2, with a
bicubic interpolation, to better simulate the sampling pro-
cess. Finally, the upsampled images are sparse sampled by a

'Owing to space limitations, Section 4 here only presents partial re-
sults. More detailed results are provided in Supplementary Materials.

Original Ground
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Figure 4: The workflow to generate synthetic data.

block random scanning strategy, which makes random sam-
pling in a block level, for example, random sampling 1 pixel
within an 8 x 8 pixel block. Meanwhile, following Eq. 5,
Poisson noise is applied to the sparse sampled images, to
better simulate the real sampling process.

In this work, for each image in the clean ground-truth
dataset, we sample four times to generate a multi-frame
synthetic input. We have produced 6 of sparse sampling
datasets under 6 different sampling ratios, i.e., 1.56%,
3.125%, 5%, 6.25%, 8% and 9.375%.

4.2. Network training details

FSHNet is implemented by PyTorch [17] and all the ex-
periments are trained on the NVIDIA RTX 3080 GPU. The
batch size is set to 4 with 4 x 1024 x 1024 input size dur-
ing total 100 epochs. The optimizer of model is Adam with
default parameters and the learning rate is 0.0001. For Eq.
13, the control parameter are set as h = 0.5 if the sampling
ratio 3%, otherwise i = 1. For the initial reconstruction,
the max frequency domain threshold is set as 7; = 150. For
the global structure features extraction, the max frequency
domain threshold is set as r, = 100 and the number of
selected amplitude component is set as & = 200. For the
non-local patch enhancement, the region of interest is set as
R = 128 x 128 and the stride step is set to the quarter of
patch sizes. The parameters in the loss function (Eq. 15)
takes Ay = 0.2 and Ao = 0.01.

4.3. Evaluation on synthetic data

We challenged our method and the other three recon-
struction methods on 45 synthetic data. To best exhibit the
difference between these methods, we selected the synthetic
data with a variety of structures under different sampling ra-
tio. For BPFA, CSNet and ReconNet, we tried to reproduce
the best results with the publicly released codes. To assess
the performance, we calculated the PSNR/SSIM of the re-
sults for each synthetic data, whose average values are sum-
marized in Table 1. Judging from Table 1, it can be found
that all CNN-based methods perform better than the tradi-
tional CS method. Nevertheless, our method outperforms
the other methods in terms of PSNR and SSIM.
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Table 1: PSNR(dB)/SSIM results of methods on simulated datasets

. . Method Dose per Pixel BPFA CSNet ReconNet FSHNet
Sampling ratio
1.56% 10 9.973/0.357 18.28/0.638 15.70/0.472 25.22/0.818
= 25 10.22/0.377 17.80/0.625 16.01/0.531 25.38/0.836
3.125% 10 11.03/0.458 18.38/0.652 15.98/0.506 25.85/0.847
’ ¢ 25 11.16/0.480 18.47/0.655 16.58/0.553 25.67/0.854
59 10 11.26/0.485 18.74/0.664 15.98/0.506 26.08/0.856
? 25 11.40/0.503 18.75/0.665 16.49/0.555 26.67/0.868
6.25% 10 11.14/0.486 18.44/0.657 15.79/0.505 26.45/0.867
a7 25 11.53/0.521 18.85/0.668 16.59/0.558 27.55/0.875
3% 10 11.29/0.491 18.77/0.664 16.39/0.527 26.34/0.874
7 25 11.70/0.529 18.93/0.669 16.44/0.557 27.85/0.885
9.3759% 10 11.27/0.487 18.77/0.662 16.44/0.527 27.24/0.882
’ 7 25 12.00/0.540 19.02/0.671 16.58/0.560 27.90/0.885

Ground Truth Sampling CSNet

ReconNet BPFA FSHNet

Figure 5: Reconstruction results of simulated datasets with the dose A = 10e™ per selected pixel and 5% sparse ratio.

When the electron dose is below a certain level, the
true signal may lost in sampling process under the distur-
bance of Poisson noise (the left bottom in Figure 5a). On
the other hand, when there are different periodic structures
overlapped, the smaller structure may be blurred after in-
painting (the right top in Figure 5b). Without frequency
information, the methods like CSNet, ReconNet and BPFA
were almost impossible to restore the complete structures,
while FSHNet correctly reconstructed the structure. Here,
interested reader are referred to Supplementary Materials
for more detailed information.

4.4. Evaluation on real-world data

We further challenged our method on real-world data.
Figure 6 shows an atom level microstructure of NiTiOs,
which is taken under microscope at 200kV and recorded on
a High Angle Annular Dark Field (HAADF) detector at a
dwell time of 60 ps. Similar with previous results, BPFA,
CSNet and ReconNet restore blurred and aliasing structure,
while our method inpaints most clear and complete result,
within which the particle size and arrangement can be easily

Table 2: Average execution time (in seconds) per image and
number of parameters for the compared methods

Method ‘ Runtime (s) Number of parameters
CSNet ‘ 0.4824 428936
ReconNet | 0.5518 40578
FSHNet | 0.3788 161761
BPFA | 74465 —f

T Because the BPFA is a dictionary learning method, its number of
parameters is not comparable with the deep learning methods.

identified. Figure 7 shows the Annular Bright Field (ABF)
image reconstruction of Sr'TiOg at 200k V. Our method pro-
duces a relatively clear boundary of the particles, while the
other CNN-based methods only restore blurring ones with
specious structure.

4.5. Model parameters and execution speed

Table 2 summarizes the average execution time of the
above experiments and the number of model parameters for
each method. All the deep learning based methods are run
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Figure 6: Reconstruction of NiTiOg under 5% sampl

ing raio. (a) Sampling result; (f) Frequency filtered result; (b), (¢), (d),
(e) Reconstruction result from BPFA, CSNet, ReconNet and FSHNet, respectively; (g), (h), (i), (j) Local enlargement.

Figure 7: Reconstruction of SrTiO3 under 5% sampling raio. (a) Sampling result; (f) Frequency filtered result; (b), (c), (d),
(e) Reconstruction result from BPFA, CSNet, ReconNet and FSHNet, respectively; (g), (h), (i), (j) Local enlargement.

on the system same in network training and the BPFA is
run on a system with Intel Core 19-9980 CPU. Here, it can
be found that FSHNet has moderate parameters but runs
fastest, while BPFA is the slowest. An execution time less
than 0.5 seconds is possible for real-time data process.

4.6. Robust Study

In practice, sparse sampling in STEM is usually taken
under an uncertain sampling ratio. Sometimes, one block
may has more or fewer sampling pixels than configured,
which makes the robustness of a learning method very im-
portant. Here, we trained the learning model with 5% sam-
pling ratio dataset but tested the model with the data taken
under different sampling ratios, of which results (average
value of the test set) are demonstrated in Table 3. Though
the performance of all the methods have enhanced with the
increasing of sampling ratio, the performance of FSHNet
improves the most.

4.7. Ablation Studies

We tested how the net behaves without non-local patch
enhancement, structure prior and initial reconstruction. The
numerical results are summarized in Table 4 and visual re-
sults are shown in Figure 8. Here, all the model are trained
with the dataset under 5% sampling. The “init-recon” in
Table 4 is referred to “initial reconstruction”. More detailed
information can be found in Supplementary Materials.

Study on non-local module. The second column of Ta-
ble 4 shows that the method without non-local patch en-
hancement has a drop on PSNR and SSIM. The gap of
PSNR shrinks from 1.4 dB to 0.3 dB and the gap of SSIM
from 0.07 to 0.01 with the increase of sampling ratio. Ac-
cording to the comparison of Figure 8b&c, non-local patch
matching is an effective way to remove individual noise and
enhance the structure, especially in the red box marked area.

Study on structure prior. The Figure 8d shows that,
losing the structure prior, our method barely restores an
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Table 3: PSNR(dB)/SSIM results of robust study (train on 5% sparse ratio, dose A = 10e™ per selected pixel)

M BPFA CSNet ReconNet FSHNet
1.56% \ 9.973/0.357 17.80/0.616 15.59/0.508 21.22/0.726
3.125% \ 11.03/0.458 18.42/0.649 15.91/0.522 25.39/0.845
5% \ 11.23/0.485 18.62/0.658 16.24/0.527 26.72/0.866
6.25% \ 11.14/0.486 18.74/0.664 16.18/0.528 26.84/0.867
8% \ 11.29/0.491 18.81/0.666 15.87/0.520 26.92/0.873
9.375% \ 11.27/0.487 18.80/0.668 16.06/0.525 26.80/0.873

Table 4: PSNR(dB)/SSIM results of ablation studies (train on 5% sparse ratio, dose A\ = 10e™ per selected pixel)

w FSHNet FSHNet without  FSHNet without FSHNet without  FSHNet with linear
Sampling ratio non-local patch structure prior frequency init-recon  spatial init-recon
1.56% \ 21.22/0.726 19.97/0.657 20.83/0.657 21.05/0.663 19.02/0.634
3.125% \ 25.39/0.845 23.89/0.802 24.71/0.79 22.10/0.700 21.02/0.757
5% \ 26.72/0.866 25.86/0.845 25.84/0.838 22.07/0.708 22.07/0.793
6.25% \ 26.84/0.867 26.54/0.860 26.02/0.853 22.18/0.711 22.13/0.807
8% \ 26.92/0.873 26.67/0.864 26.14/0.861 22.28/0.711 22.42/0.812
9.375% \ 26.80/0.872 26.96/0.867 26.08/0.866 22.22/0.712 22.70/0.815

Figure 8: Visual results of ablation studies. (a) Ground
truth; (b) FSHNet reconstruction; (¢) Reconstruction re-
sult from FSHNet without non-local patch enhancement;
(d) Reconstruction result from FSHNet without structure
prior; (e) Reconstruction result from FSHNet without ini-
tial reconstruction; (f) Reconstruction result from FSHNet
with linear initial reconstruction.

rough structure and blurs edge of particles, even resulting
in structural overlapping. The oval structures selected in red
box have collapsed into conical or punctuate ones. Numer-
ical results in the third column of Table 4 further demon-
strates that the structure prior helps recover better structure.

Study on initial reconstruction. Without initial recon-
struction, our method just simply fills the blank region with
repeating structures, resulting in quite naive textures (Fig-
ure 8e). The fourth column of Table 4 shows that the gap of
PSNR sharply increase from 0.07dB to 4.6dB and the gap

of SSIM from 0.06 to 0.16 with the increase of sampling
ratio. Moreover, we try to replace the initial reconstruction
of frequency domain by a spatial linear initial reconstruc-
tion, to study the benefits of frequency domain initial re-
construction. The corresponding Fourier operation layer in
FSHNet is replaced by a linear combination layer. Figure
8f shows that FSHnet with linear initial reconstruction has
inpaint rough structure but still lose lots of detailed informa-
tion, resulting in a degenerated numerical results in Table 4.
Furthermore, the FSHNet with linear initial reconstruction
owns 4364257 model parameters, which is more than ten-
fold that of the original FSHNet. Thus, it can be concluded
that the linear initial reconstruction is inadequate for large-
size STEM image inpainting.

5. Conclusion

In this paper, we have proposed a CNN-based recon-
struction model for partial scanning STEM, which utilizes
frequency domain information to restore periodic structure
of STEM crystalline images in extremely sparse sampling
(lower than 5%). Our method utilizes both the global struc-
ture features and local smooth information, achieving a
complete structure restoration with clearer details.
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