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Abstract 

Nuclear instance segmentation is  a challenging task due 

to a large number of touching and  overlapping  nuclei in 

pathological images. Existing methods cannot effectively  

recognize the accurate  boundary owing  to neglecting the 

relationship between pixels (e.g., direction information). In  

this paper, we propose a novel Centripetal Direction Net- 

work (CDNet)  for nuclear  instance segmentation.  Specifi- 

cally, we define centripetal direction feature  as a class  of 

adjacent directions pointing  to the  nuclear  center to rep- 

resent the spatial relationship  between  pixels within  the 

nucleus. These direction features are then  used  to con- 

struct a direction  difference map  to represent the similar- 

ity within instances and the  differences between  instances. 

Finally, we propose  a direction-guided refinement module, 

which acts as a plug-and-play module  to effectively inte- 

grate auxiliary tasks and aggregate the features  of different 

branches. Experiments  on MoNuSeg and  CPM17  datasets 

show that CDNet  is significantly better than  the  other  meth- 

ods and achieves the state-of-the-art performance.  The  

code is available at https://github.com/honglianghe/CDNet. 

1. Introduction 

Nuclear instance segmentation techniques enable accu-  

rate quantitative  characterizations of  nuclear size and shape  

( e.g ., circularity and aspect ratio), which  are key compo- 

nents of the study of cancerous  tissues [9].  However, a  

whole-slide image contains tens  of  thousands of nuclei of  

various types (as  shown  in Fig. 1(a) ∼  (b)), and nuclei dis-  

play a great deal of inter- and intra-instance variability be-
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Figure 1. The schematic  illustration of nuclear instance  segmen- 

tation with different methods.  (a) is  a whole-slide  image; (b) is 

a local region; (c)  is  the ground-truth  boundary corresponding  to  

(b); (d) and (f) denote the probability maps based on  two kinds of 

existing methods, and (e) and (g) reflect the limitations  of these 

existing methods on  overlapping boundaries;  (h) ∼  (j) are obtained  

from our  CDNet,  in which (h) is the centripetal direction feature;  

(i)  is  the direction difference map, and (j) is  the corresponding 

boundary  map. The red line  in (j) indicates that  CDNet effectively 

identifies  the boundaries of  overlapping regions.  

cause  of  their  appearances, surroundings  by organs, disease 

types,  and even digital scanner  brands. In particular,  tu- 

mour  nuclei tend  to be present in clusters and lead  to clus- 

tered  overlapping  instances, which also  provides challenge 

for accurate  segmentation of  nuclear instances. 

To tackle the above challenges of nuclear instance seg-
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mentation task, different  kinds of  deep learning methods 

have been proposed by  building  on convolutional  neural 

networks (CNN).  In  this  paper,  we divide these methods 

into three categories: (1) using CNN for object detection  

and then segmenting the objects within each bounding box  

[12, 5]; (2) using  CNN for semantic  segmentation and pre- 

dicting instance boundary  to separate different instances  

[9, 8]; (3) adding complex post-processing,  such  as  water- 

sheds [21], conditional random field [10]. Among  them, the 

second kind draws most  of attention  due to the  recent devel-  

opment of semantic  segmentation techniques,  and Fig. 1(d) 

and (f) show the probability maps of  two typical methods 

of this kind: boundary-based  model  [1, 17] and distance- 

based model [15]. It can be seen  that both boundary-based  

and distance-based  model lack the  ability to distinguish pix- 

els belonging  to two nuclei apart that  touch or  overlap  with 

each other in Fig. 1(e)  and (g).  

In this study, we propose  a  centripetal direction  network 

(CDNet) for nuclear instance segmentation. To  character-  

ize the spatial relationship  between pixels within a nucleus, 

we define centripetal direction feature as a  class of  adja-  

cent directions pointing  to the  nuclear center  ( i.e .  Fig. 1(d)). 

Based on the centripetal direction feature,  we propose di- 

rection difference map  (DDM) and direction-guided refine- 

ment module (DGM) to improve  the segmentation perfor- 

mance especially for overlapping instances. In  particular,  

DDM represents intra-instance similarity and inter-instance 

difference ( i.e . Fig. 1(e)), which reflects the  direction dif- 

ference between adjacent pixels for nuclear boundary iden- 

tification. DGM is  proposed  as  a plug-and-play module  to 

effectively integrate auxiliary tasks  and aggregate the  fea-  

tures of three branches: point branch,  direction  branch,  and 

mask branch. The optimization of  these branches  are com- 

bined under the guidance of  centripetal direction feature. 

Our contributions  are summarized as follows:  

• We propose a  centripetal direction  network (CDNet) 

for nuclear instance segmentation task, which uses  

centripetal direction feature to effectively deal with the 

boundary ambiguity problem of  touching  and overlap- 

ping nuclei. 

• We propose a  direction  difference map (DDM) to re- 

flect the spatial  difference between adjacent  pixels for 

nuclear boundary identification, and a direction-guided 

refinement  module  (DGM) to aggregate features of dif- 

ferent branches. 

• Our proposed CDNet is  compared with several recent 

methods on two public nuclei segmentation  datasets, 

and achieves the state-of-the-art performance. 

2. Related work 

With the development of CNN, deep  learning  meth- 

ods have been proposed  to deal with instance  segmenta- 

tion tasks. Detection-based instance  segmentation meth- 

ods [7, 14,  2] and semantic-to-instance segmentation meth- 

ods [19,  25, 24] are two mainstream  methods. Since nu- 

clear instance segmentation is an intensive  and small object 

segmentation task, the  performance of detection-based in- 

stance segmentation methods  are limited by detection  per- 

formance [6].  Therefore, the  semantic-to-instance segmen-  

tation methods  have dominated the  nuclear instance seg- 

mentation, and these methods  are divided into the  following 

three types. 

Model structure. In recent work, Raza  et al. [18] pro- 

posed Micro-Net  which learns  image features with multiple 

input resolutions and bypasses the  maximum pooling op- 

eration through additional layers. Wollmann  et al. [23] 

proposed GRUU-Net that integrates  convolutional  neural 

networks and gated recurrent neural networks on multiple 

image scales. Qu et al. [17] proposed  a full-resolution  

CNN and replaced down sampling  with dilated convolu-  

tion, thereby retaining complete feature information to im- 

prove localization accuracy.  In  addition, Gehlot et al. [4] 

proposed an encoder-decoder-based  convolutional  neural 

network with nested-feature cascade (EDNFC-Net)  which 

reuses features and preserves contextual  information. Xiang 

et al. [24] proposed a Bi-directional  O-shape  network (BiO- 

Net) that reuses the  building blocks in a  recurrent manner to 

improve its segmentation capabilities. 

Segmentation strategy.  In  order to strengthen the di- 

vision of  the nuclear  boundary,  Kumar  et  al. [9] described 

the nuclear task as  a  three-class  task instead of  two-class.  

Taking the  three-class prediction as  an intermediate  step, 

Kang et al. [8] designed  a two-stage learning framework 

by stacking two U-Nets. The first stage is  used to estimate 

nuclei and their coarse  boundaries, and the  second  stage is 

used to output the  final  fine-grained  segmentation map. In  

addition, Naylor et al. [15] tried to address the problem of  

segmenting touching nuclei by formulating  the segmenta- 

tion problem as a  regression task  of distance  map. Instead 

of detecting  bounding boxes, Schmidt  et al. [20] detected 

the star convex  polygons to locate  the nuclei. These  ideas 

provide  new solutions for segmentation of overlapping and 

clustered nuclei. 

Auxiliary task learning. Chen et  al. [1] first proposed a 

deep contour-aware network (DCAN). It expresses their or- 

ganizational structure segmentation and contour detection  

as a multi-task learning  framework  to simultaneously  in- 

fer the  information of the object and contour. Oda et al. 

[16] proposed  a  boundary enhanced segmentation network 

(BESNet) which adds an extra decoding path  based  on  the 

U-Net structure for boundary supervision.  In  addition, Liu 

et al. [12] proposed a  multi-task model with  semantic seg- 

mentation branch and instance  branch.  In  order to aggregate 

the features between different optimization tasks, Zhou  et 

al. [26] proposed a  contour-aware  informative aggregation
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Figure 2. The flowchart of the proposed  CDNet.  It is classified into  two parts: training  phase and testing phase. There  are two main modules 

in the training phase:  feature extraction module  and direction-guided refinement module. In the testing phase,  the prediction results  of the 

point detection are used to assist the direction branch to generate  refined direction difference map  (DDM),  and then  the refined  DDM is 

used to enhance  the boundary  prediction of the mask branch. 

network (CIA-Net) which adds a  multi-level information 

aggregation module between  the two  decoder paths. Fur- 

thermore, Graham et al. [6] proposed Hover-Net that uses 

the rich information encoded by the  vertical  and horizontal 

distances from pixels  to the  nuclear  center.  

The above methods  have  improved the  segmentation  per- 

formance, but the correlation between pixels and the  bound- 

ary feature representation of overlapping regions need  to be 

considered again, because it leads to some bottlenecks in 

segmenting overlapping and clustered nuclei in histopathol-  

ogy images. In this  study,  we propose  a  CDNet to address 

the above bottlenecks. Details will be described in Sec. 3.  

3. Methodology 

In this paper, we propose a centripetal direction  network 

(CDNet) for nuclear instance  segmentation.  The flowchart 

is shown in Fig. 2. The goal of the network is to learn the 

direction features of  pixels  pointing to the corresponding  in- 

stance center. We  construct  the  direction  difference map ac- 

cording to the centripetal  direction  feature to distinguish  the 

different instances  of the overlapping  region. To  clearly ex- 

plain our CDNet, we first describe the  direction difference 

map in Sec. 3.1, and then introduce the direction-guided 

refinement network in Sec. 3.2. 

3.1.  Direction Difference  Map 

In order to separate different instances  of overlapping 

regions, we  first construct  direction  feature map  based  on 

the generated block-wise centripetal direction, and then 

transform the direction feature to generate DDM which can  

represent the context information and highlight the  bound- 

aries of instances. 

3.1.1 Direction  feature  map  

In order to enable the  model  to learn the centripetal di- 

rection feature for each pixel in the  input image, we design  

a direction feature map as a  direction label. Fig.3 illustrates 

the process of generating the centripetal direction  ground 

truth from annotated mask. The mathematical details  and 

technical  aspects of the direction  feature are described as  

follows. 

First of  all, we convert  an annotated mask  into  a pixel-  

to-boundary distance map M  to locate  center points. We  

define an image X  =  P  ∪  B  ,  where P  and B  denote the set 

of  foreground  pixels and background pixels,  respectively. 

Further, we  define P  =  {P1  

,  P2  

,  ...,  PN  

} , where  Pk  

de- 

notes  the set  of  pixels belonging to the k  

th  instance in X  

and N  is the  number of instances in X  .  Then, the pixel-  

to-boundary distance map  M  =  { Mp  

} (Fig. 3(c)) is calcu-
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Figure 3. The process of  generating centripetal direction ground 

truth (GT). (a) is  the original  ground truth  mask; (b)  is  the three- 

class ground truth mask (black,  gray and white regions denote the 

background, instance inside  and boundary, respectively); (c) is the 

pixel-to-boundary  distance map, M  ; (d)  is  the center point  map;  

(e) is the pixel-to-center distance  map,  U  ;  (f) is  the gradient  map,  

G  ; (g) is the angle  map, A  ; (h) is  the centripetal direction GT, D  

C . 

lated, where Mp  

denotes  the  pixel-to-boundary distance of  

pixel p  =  (  px  

,  py)  , and is  defined as  Eq. 1.

 

Mp  

=  

{ 

0 ,  if  p  ∈  B√

 

(  px  

−  bx)2  + (  py  

−  by)2  ,  if  p  ∈  P  

,

 

(1) 

where b  =  (  bx  

,  by)  denotes  the  nearest background  pixel to 

p  . 

In the second step, we construct  the pixel-to-center  dis-  

tance map. Specifically,  we define the center  axis  of  the k  

th  

instance as:

 

Tk  

=  

{
p  =  (  px  

,  py)  |  Mp  

=  max  (  M  

k)  ,  p  ∈  Pk  

}  

,

 

(2) 

where M  

k  denotes the  pixel-to-boundary  distance  map  of  

the k  

th  instance. We sort Tk  

and select  the medium value 

T̃k  

in Tk  

as the center pixel  zk  

of the instance  Pk.  Further,  

the pixel-to-center distance  map  U  is defined as: for pix-  

els in an instance,  the value  is  calculated by the distance 

between them and their corresponding  instance  center. In  

order to avoid the  effect  of nuclear size on distance, we nor- 

malize the pixel-to-center distance  to 0-1. For pixels in the 

background, the value is set  to 0 (Fig.  3(e)). 

In the third step, we calculate the  corresponding direc- 

tion gradient through the pixel-to-center  distance map U  , 

and finally obtain the  the  centripetal direction ground truth 

according to the gradient map. By utilizing the  convolution  

operation, we convert U to the gradient  map  G, consisting 

of the horizontal gradient Gx  and the  vertical gradient Gy , 

which is used to quantify relative  angle (Fig. 3(g)) and com- 

pute the centripetal direction feature (Fig. 3(h)). Specifi- 

cally, for each instance  pixel p  ∈  Pk, we compute the  di- 

rection towards its  center pixel zk  

as  θ  =  ar  ctan  (  Gx  

p  

/Gy  

p) 

and discretize this  angle  to generate D  

C
p  

=  �  θ  ∗ C  / 360  �  , 

where C  is the number of  centripetal  direction classes. For 

example, as shown  in Fig. 3(h), these  pixels  within the  in- 

stance have 8 directions. 

We utilize  the generated centripetal direction ground 

truth  map D  

C  as  direction  supervisor,  by the loss function 

in terms of both cross-entropy loss  and dice loss:

 

Ld  

=  Lce 

+  w  Ldice 

=  −  

1

 

N  

N∑  

i  =1  

C∑  

j  =1  

(  yij  

l  og  (  ̂yij))  

+ (1  −  

1

 

C  

C∑  

j  =1  

2 

∑N  

i  =1  

yij ˆ yij

 

∑N  

i  =1  

yij  

+  

∑N  

i  =1  

ˆ yij  

)  ,

 

(3) 

where Lce 

denotes the  cross-entropy loss;  Ldice 

denotes the 

dice loss;  N  is the number  of  pixels; yij  

is the ground-truth  

of the  input xi; and ˆ yij  

is the probability  that the  input xi  

is 

predicted to be class j  .  w  is a  weight coefficient, which is 

taken  as 1 in the experiments. 

The centripetal direction  feature is block-wise, which 

has better ability to resist noise than pixel-wise  feature and 

to represent local information than  instance-wise feature.  

Moreover, if  multiple instances  are adjacent  or have  over-  

lapping regions,  there exist drastic  directional changes be- 

tween pixels in the  boundary or overlapping regions, facili- 

tating to segment instances.  

3.1.2 The generation  of  direction difference map 

To directly strengthen  the  difference between  bound- 

aries, we  further propose the  direction  difference map, 

which is transformed via the direction feature.  

As mentioned above,  we convert the  direction feature 

map (Fig. 4(a)) of each pixel  predicted  by the  network into  

the gradient  map G  . Furthermore, we use the cosine  dis- 

tance function to measure the directional similarity between 

two pixels,  dis  (  pi  ,  pj)  =  

Gpi  

Gpj

 

||  Gpi  

||×||  Gpj  

|| . 

Subsequently,  the direction  difference map, denoted as  

D  ,  is computed by the directional similarity. Dpi  of the 

pixel  pi  in D  ,  is calculated  as  follows:

 

Dpi  =  

{  

1 −  min  

pj  ∈Vpi  

{  dis  (  pi  ,  pj)  } ,  if  pi  ∈  P  

0 ,  if  pi  ∈  B  

,

 

(4) 

where Vpi  denotes  the set of pixels surrounding pi.  

According to the  definition in Eq. 4,  pixels within 

the same  instance  except  that  adjacent  to instance centers 

have small values  in D  , while pixels in the  overlapping re- 

gions belonging to different instances  or  in the boundary 

have  large  values in D  . In other words, the direction dif- 

ference map  describes one characteristic for pixels at the  

boundary or the overlapping regions.  In this way,  the  pixels  

in overlapping regions are distinguished according to direc- 

tion difference map.  How to utilize the direction  difference 

map  in our CDNet  to strengthen the  ability of segmentation 

is introduced in the  Section 3.2.
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(a) Direction feature map  (b) Direction difference map 
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…
 

max D 

Figure 4. Illustration  of Direction  feature map and Direction  difference map. In the centripetal direction map, each  instance  has k directions 

( k  = 8 in (a)); Each pixel calculates  the maximum  direction difference between the pixel and its  adjacent pixels, which is  depicted  by  the 

direction difference map. Note:  in  order to  clearly  show the direction difference near the boundary,  we temporarily ignore  the direction 

difference near the instance  center  in (b). 

3.2. Centripetal direction network  

In our proposed CDNet, its main structure consists  of  

two components:  feature extraction module  and direction- 

guided refinement module. In the  feature extraction mod-  

ule, CNN is used to extract feature information and its  back- 

bone networks is dynamically adjusted according  to differ-  

ent tasks. The flowchart of  the  proposed CDNet is  provided 

in Fig. 2. The training  and inference of  the centripetal di- 

rection network  are described  in detail as  follows. 

3.2.1 Training  of  CDNet 

Based on the  centripetal direction feature, we propose 

a plug-and-play direction-guided  refinement module  to im- 

prove the original segmentation  performance. As shown in 

Fig. 2, the module contains three branches: mask  branch,  

direction branch and point branch,  which correspond to 

mask segmentation task, direction  segmentation  task  and 

center point detection task, respectively.  The ground truth 

of three tasks can be obtained  in the process of  generating 

centripetal direction feature,  so there  is  no need for addi- 

tional artificial tagging. This module integrates the  advan- 

tages of different tasks  and strengthens  the guidance of cen- 

tripetal direction feature in instance  segmentation.  

The center point detection  task is  introduced to assist the 

network training, in which the  point branch is  used  to learn  

the center position of instances.  However,  there  is an op- 

timization gap between the  center point detection  task and 

the mask segmentation task, because center point detection  

task allows model  to tend to learn more information about 

central area and  ignore the overall features of  the instance, 

while the mask segmentation task  expects  to learn the  over-  

all features and boundary  features of instance. Therefore,  

if  these two  tasks  are combined directly, the  network learn- 

ing is confused, which leads  to the  decline of the prediction 

performance. 

To this  end, a  direction segmentation task  is  introduced 

to bridge the optimization  gap  between the  center point de- 

tection task  and the mask  segmentation task, where  direc- 

tion features  are predicted  and used to characterize the  con- 

text information about instance  center,  boundary, and the  

correlation  between internal pixels.  Therefore,  we put the  

direction  branch in the  middle  of the  mask branch  and the  

point branch.  

Specifically,  as  shown in Fig. 2,  the  feature map  ob- 

tained from feature extraction  module  passes  through the 

first residual unit (RU) to obtain  the  feature map F1  

of  shape  

H  ×  W  ×  C  . The feature map F1  

will enters  two branches.  

The first branch passes  F1  

to the  second RU,  and the second  

branch uses  F1  

to generate 3-class segmentation map;  in the 

same way,  the  feature map  F2  

obtained by the second RU  

also enters two branches. The first  branch passes  the  fea- 

ture map to the third RU to obtain the  feature map  F3,  and 

the second  branch is used to generate the direction feature.  

Point map  prediction  results  are obtained  by  F3  

through cor- 

responding convolution operation. Among  them, the RU  is 

composed of  3  ×  3 convolutions  + Batch Normalization  + 

ReLU and shortcut connection.  

In  order to effectively aggregate the features of  different 

branches, we construct  a reverse  transmission  path, which 

is the attention  unit (AU) in Fig. 2. In  this unit,  feature B  

is used as  the attention  of  feature A  , i.e., using feature B  

to guide feature A  to generate output with different spatial 

attention. As  shown in Fig. 2, the  calculation process in the 

attention  unit is: feature B  undergoes a 1 ×  1 convolution 

to convert the channels into one,  and spatial  attention is  ob- 

tained through sig  moid  function and then  is combined with
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feature A through multiplication and addition. 

In the process  of training, direction-guided refinement 

module enhances  the original network to improve segmen-  

tation performance. The total loss function is:

 

Ltotal  

=  w1  

Lm  

+  w2  

Ld  

+  w3  

Lp

 

(5) 

where Lm  

is the loss  of mask  branch; Ld  

is  the loss of  di- 

rection branch, and Lp  

is  the  loss of  point branch.  wi  

is  a 

set of weight coefficients,  all of  which are set  to 1 in the 

experiments. We  use  cross-entropy loss and dice loss in the 

mask branch and direction branch, and use mean square er- 

ror (MSE) loss  in the  point branch.  

3.2.2 Inference of CDNet  

In the process of  testing,  DDM is  further used  as  an im- 

portant approach to enhance the segmentation performance 

of the proposed CDNet.  In details, the 3-class mask map, 

direction feature  and point map are obtained by the  mask  

branch, direction  branch and point branch respectively (Fig. 

2). In the direction branch, we calculate  the corresponding  

DDM according to Eq. 4). In  DDM, there is  a large  direc- 

tion difference between  the boundary pixels and the  pixels 

near the instance  center.  In order to eliminate the  influence  

of pixels near the instance  center in the refining process,  we 

use the point map obtained by the point branch to assist in 

eliminating the large  direction difference near the  instance 

center. Specifically,  we eliminate the value of the central re- 

gion in the DDM, which refers to the  area  where the value 

in the corresponding point map is  greater than  the median 

value. Moreover, refined  DDM is  used as a  weight map  to 

enhance the prediction  probability of the boundary  class in 

the original 3-class mask  segmentation  task. The boundary 

reinforcement function is  shown  in Eq. 6 below.

 

pbr  e 

i  

=  (  pb  

i  

+  

Dpi

 

2 

)  ×  (1 +  Dpi
)

 

(6) 

where pb  

i  

represents  the  prediction probability  of  the  bound- 

ary class for the  pixel pi  

in original  3-class segmentation 

map, and Dpi  

represents the  direction  difference value of  

the pixel pi  

in  refined DDM. 

4. Experiments 

4.1. Datasets  and  evaluation metrics 

Datasets.  The datasets for nuclei segmentation are rela- 

tively small, because the  manual annotation requires labor- 

intensive work and involvement  of pathologists whose time 

is limited and expensive. In this  paper,  we evaluate our 

proposed CDNet on two  widely-used nuclei segmentation 

datasets. (1) MoNuSeg [9]: The multi-organ nuclei seg- 

mentation dataset (MoNuSeg) is  one of  the largest  reposi- 

tory of hand annotated nuclei. It  contains 30 H&E  stained 

histopathology images of  size 1000 ×  1000 , from 7  differ- 

ent organs with a  total of 21,623 individual annotated nu- 

clei. To make  a fair comparison,  we use the  same training 

and testing  sets  as  described  in the supplementary materials  

of [9],  and those images were also used for the  MoNuSeg  

grand challenge  in 2017. According to [9],  we  divide  30 

images into  three  sets: 12 images for training, 4 images for 

validation, and 14 images for testing.  (2) CPM17 [22] :  It 

is from the  computational precision  medicine  digital pathol- 

ogy challenge [22]. It contains 64  H&E stained histopathol- 

ogy images with 7,570 annotated nuclear boundaries.  The 

dataset is split according  to the  original  challenge  [22] with 

32 images in both training  and testing sets. 

Evaluation Metrics. To  measure the  overall segmen-  

tation performance of  the proposed  CDNet, we use four 

evaluation metrics as  presented in [9]: F1-score (F1), av-  

erage Dice coefficient (Dice), average  Hausdorff  distance 

(HausD), and the Aggregated Jaccard Index (AJI). 

4.2. Implementation details 

We  first preprocess  the  training images by dividing  each 

image into 16 patches with a size of  300×300, and obtain 

192 training  images for MoNuSeg  and 512 training images 

for CPM17. For training,  we  randomly augment our  data by  

standard data augmentation techniques such as  color trans-  

formation, horizontal flip, rotation,  elastic transformation, 

and cropping. Finally, we resize the  image patch  to a  size 

of 256 ×  256 before inputting  the  network. For segmenta- 

tion supervision, we use 3-class  masks:  inside, boundary, 

and background. For point supervision,  we use the  heatmap 

obtained by Gaussian  kernel convolution  of  the  point map  

as the  ground truth. 

We  use  PyTorch to implement  CDNet on  NVIDIA  

2080Ti  with CUDA  10.1. RAdam [13] is used as the op- 

timizer. The initial  learning  rate  is  set to 0.0005,  and the 

training epoch is set to 300. In  inference stage,  we remove  

small objects with area less than 20 pixels  to avoid unnec- 

essary foreground  caused by incorrect pixel  prediction. 

4.3. Ablation studies 

To  evaluate the effectiveness of key components used in 

our proposed CDNet,  we use U-Net  as the baseline  model  

and perform a  series  of comparison with its  variants  on  

MoNuSeg  and CPM17  datasets. 

Effectiveness  of  direction feature.  The goal  is  to clar- 

ify the effect of direction  feature on nuclear instance  seg- 

mentation. On  the basis  of 3-class mask  supervision,  we 

tune  the  number of  direction classes such that direction  cat- 

egory supervision changes in the  compared  models. The 

comparison results  on MoNuSeg and CPM17  datasets  are 

summarized in Table  1,  where  k  indicates  the number  of  

direction classes  in direction feature. Specifically,  k  = 0
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Baseline MoNuSeg CPM17

F1 Dice HausD AJI F1 Dice HausD AJI

+ Direction  (k=0) 0.8608 0.8184 7.3329 0.5910 0.8688 0.8473 6.6222 0.6648 

+ Direction  (k=4) 0.8679 0.8223 7.0086 0.6091 0.9161 0.8710 5.6532 0.7097 

+ Direction  (k=8) 0.8717 0.8229 6.9326 0.6095 0.9167 0.8717 5.6672 0.7101 

+ Direction  (k=16) 0.8649 0.8209 7.1466 0.6003 0.9119 0.8641 5.7856 0.7047

Table 1. Comparison results of baseline  with  respect to different number of direction classes k  . The baseline  refers to U-Net without 

direction category supervision ( i.e ., k = 0).

Mask Direction Point Interaction MoNuSeg CPM17

F1 Dice HausD AJI F1 Dice HausD AJI√
0.8608 0.8184 7.3329 0.5910 0.8688 0.8473 6.6222 0.6648√ √
0.8717 0.8229 6.9326 0.6095 0.9167 0.8717 5.6672 0.7101√ √ √
0.8740 0.8241 6.8576 0.6153 0.9186 0.8748 5.5377 0.7173√ √ √ √
0.8708 0.8277 6.6925 0.6196 0.9167 0.8771 5.4968 0.7232

Table 2. Performance comparison between baseline  and the  model  with  direction-guided refinement  module  (DGM). 

√  

indicates 

adding the task or strategy of DGM.  Mask: mask supervision;  Direction: direction segmentation  task;  Point: center point detection  task; 

Interaction: interaction of different supervision branches  in DGM.  

refers to the baseline  U-Net, only with 3-class mask  super- 

vision. It can be seen from Table 1 that all the  models  with 

direction category supervision (  k  =  4 ,  8 ,  16 )  achieve better  

performance compared to the baseline  without direction cat- 

egory supervision ( k  =  0 ). Specifically,  when the number  

of direction class  is set to 8,  the performance on MoNuSeg  

dataset is increased by 1.09%, 0.45%, 0.40, 1.85% in F1, 

Dice, HausD, and AJI, respectively, and on CPM17 dataset, 

the performance  is  increased by 4.79% F1, 2.44%  Dice, 

0.96 HausD, and 4.53% AJI.  Overall, the  results  demon-  

strate that the direction feature helps  the  nuclear instance 

segmentation.  

Effectiveness  of direction-guided refinement module 

(DGM). Table 2 shows the comparison  between the base- 

line and the model with DGM.  First, we investigate whether 

adding the center point detection  task  has  a  positive impact 

on segmentation  performance. From the  results  in the sec- 

ond row and the  third  row of  Table  2,  it  is observed that 

there is an improvement of  0.58%  AJI and 0.72%  AJI on  

MoNuSeg dataset and CPM17 dataset  respectively, when 

adding the center point detection task. It  indicates that the 

strategy of introducing point supervision in DGM helps the 

mask and direction branches to learn more effective  fea-  

tures. Furthermore, in order to validate the effectiveness  of  

the interaction of  different supervision branches  in DGM, 

we compare the performance of  DGM with and without 

interactive operation. Table  2 shows that using interactive 

operation in DGM leads to an improvement of 0.43% AJI 

and 0.59% AJI on MoNuSeg  and CPM17  datasets. There- 

fore,the interaction between different task branches pro- 

motes mutual learning and improve the  segmentation per- 

formance of the proposed CDNet.  

Effectiveness of direction  difference map (DDM). We

Input image (iii) U-Net+DGM+DDM (ii) U-Net+DGM (i) Baseline model (U-Net) 

Figure 5. Qualitative comparison of  predicted boundary re- 

sults. There  is a  significant improvement  in the boundaries in- 

dicated by  the red arrows. 

obtain DDM by calculating the  difference of  direction  fea-  

ture between  a  pixel and its surrounding  pixels.  In our 

method, DDM is used in the inference  stage to enhance the 

original boundary probability. In order to verify  its  effec- 

tiveness, we compare the  segmentation  performance of our 

method with and without DDM for post-processing. The 

results in Table  3 show that DDM has a  significant  con- 

tribution to improve segmentation  performance in our CD- 

Net. We further perform a  qualitative  evaluation of DDM on 

boundary prediction. As shown in Fig. 5,  we compare  the 

predicted boundary results  of  (i) ordinary U-Net, (ii)  U-Net 

with DGM module, and (iii) U-Net with DGM and DDM. 

The results clearly show  that the effectiveness of DGM and 

DDM on boundary prediction. Specifically, DDM enables 

a refinement of  the results  predicted  by  U-Net with DGM, 

which helps  to enhance the  segmentation masks and sepa- 

rate touching  objects. 

4.4. Comparison with state-of-the-arts  

In  this  section,  we provide quantitative and qualitative 

comparisons between our method  CDNet and other nuclei 

segmentation methods. As shown in Table 4, our CD-  

Net achieves  the best  performance for nuclei segmentation 

task. Specifically,  our proposed  CDNet achieves  0.8316
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(a) Original image (b) Exemplar patch (c) Instance label (e) FullNet (f) Hover-Net (g) Our CDNet(d) DIST

 

Figure 6. Visualization of  segmentation results on  MoNuSeg  (top)  and CPM17  (bottom) datasets.  (a) Original  image; (b) Example 

patch; (c) Ground  Truth; The prediction results  of (d) DIST [15]; (e)  FullNet [17]; (f) Hover-Net  [6]; (g) our proposed CDNet. Different 

colors indicate different instances  in the images.  The red rectangles are drawn  for  clear comparison.
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MoNuSeg

 

CPM17

 

F1

 

Dice

 

HausD

 

AJI

 

F1

 

Dice

 

HausD

 

AJI

 

Baseline

 

0.8608

 

0.8184

 

7.3329

 

0.5910

 

0.8688

 

0.8473

 

6.6222

 

0.6648 

w  /o  DDM

 

0.8708

 

0.8277

 

6.6925

 

0.6196

 

0.9167

 

0.8771

 

5.4968

 

0.7232 

w  / DDM

 

0.8705

 

0.8316

 

6.4754

 

0.6331

 

0.9237

 

0.8801

 

5.3495

 

0.7326

 

Table 3. Performance  comparison between our CDNet with  and without direction  difference  map  (DDM)  during the  inference  

stage. Baseline is the benchmark  model (U-Net).

 

Method

 

MoNuSeg

 

CPM17

 

Dice

 

AJI

 

Dice

 

AJI

 

U-Net [19]

 

0.8362

 

0.5971

 

0.8473

 

0.6648 

Mask-RCNN [7]

 

0.7600

 

0.5460

 

0.8500

 

0.6840 

DCAN [1]

 

0.7920

 

0.5250

 

0.8280

 

0.5610 

Micro-Net [18]

 

0.7970

 

0.5600

 

0.8570

 

0.6680 

DIST [15]

 

0.7890

 

0.5590

 

0.8260

 

0.6160 

CIA-Net [26]

 

0.8180

 

0.6200

 

0.8416

 

0.6648 

FullNet [17]

 

0.8027

 

0.6039

 

0.8306

 

0.6609 

Hover-Net [6]

 

0.8260

 

0.6180

 

0.8690

 

0.7050 

BRP-Net [3]

 

-

 

0.6422

 

0.8770

 

0.7310 

PFF-Net [11]

 

0.8091

 

0.6107

 

-

 

- 

Our CDNet

 

0.8316

 

0.6331

 

0.8801

 

0.7326

 

Table 4. Comparison  with SOTAs  on MoNuSeg  and CPM17.  

Dice and 0.6331 AJI on MoNuSeg  dataset  and 0.8801 Dice 

and 0.7326 AJI on CPM17  dataset, respectively. The per- 

formance of CDNet is  obviously improved  compared  with 

that of Hover-Net [6] and recently published  PFFNet [11]. 

Note that although BRP-Net  surpasses  our  CDNet in terms 

of AJI on MoNuSeg, it  is a  complex two-stage model  which 

requires more computational power  than  our  method. 

We further carry out a  qualitative  visualization anal-  

ysis on MoNuSeg and CPM17 datasets. As  shown  in 

Fig. 6, compared  to all the  other methods, our CDNet still 

achieves better  results  for nuclear instance  segmentation.  

Specifically, it can be  observed from the  red  rectangles in 

Fig. 6 that our method  effectively distinguishes nuclear pix- 

els from the  background and segment clustered instances. 

Therefore, quantitative  and qualitative results  both demon- 

strate the effectiveness of  our CDNet for nuclear  instance 

segmentation. 

5. Conclusion  

In this paper, we propose a  centripetal direction net- 

work (CDNet),  a  simple and effective  network designed  

to address the  challenge  of  touching and overlapping 

nuclear segmentation.  To  effectively separate touching and 

overlapping nuclei instances, we  define centripetal direc- 

tion feature to represent the spatial relationship  between 

pixels  in an object.  Based on  the centripetal direction  

feature, we  further design  a direction  difference map to 

measure the direction difference between adjacent pixels 

for accurate nuclear  boundary identification.  Finally,  by 

combining the  direction feature map, the  direction-guided 

refinement module  is  used as  a plug-and-play module  to 

refine the  segmentation masks. The experimental results  

on two nuclei datasets  demonstrate the  effectiveness  of our 

proposed CDNet.  

Acknowledgments  This work is supported by  the  Na- 

tional Nature Science Foundation of China  (No. 61972217, 

62006133, 62006253, 32071459, 62081360152), Guang- 

dong Basic and Applied Basic Research Foundation (No. 

2019B1515120049) and Guangdong Science and Technol- 

ogy Department (No. 2020B1111340056).

4033



 

References 

[1] Hao Chen, Xiaojuan  Qi, Lequan Yu,  Qi  Dou, Jing Qin, and 

Pheng-Ann  Heng. Dcan: Deep contour-aware networks  for 

object instance segmentation from histology  images.  Medi- 

cal image analysis , 36:135–146, 2017. 

[2] Liang-Chieh  Chen,  Alexander Hermans, George  Papan- 

dreou, Florian  Schroff, Peng Wang,  and Hartwig  Adam. 

Masklab: Instance segmentation by refining object detection 

with semantic and  direction features. In Proceedings of  the 

IEEE Conference  on  Computer Vision and  Pattern Recogni- 

tion , pages  4013–4022,  2018.  

[3] Shengcong Chen,  Changxing  Ding, and Dacheng  Tao. 

Boundary-assisted  region  proposal  networks for nucleus  seg- 

mentation. In International  Conference  on  Medical  Image  

Computing and Computer-Assisted Intervention , pages 279– 

288. Springer,  2020.  

[4] Shiv Gehlot, Anubha Gupta, and Ritu Gupta.  Ednfc-net: 

Convolutional neural network with nested  feature concate- 

nation for nuclei-instance segmentation.  In ICASSP 2020-  

2020 IEEE International Conference  on  Acoustics, Speech  

and Signal Processing  (ICASSP) ,  pages 1389–1393.  IEEE, 

2020. 

[5] Xuan Gong, Shuyan Chen, Baochang  Zhang, and David Do- 

ermann. Style consistent image generation for  nuclei in-  

stance segmentation.  In Proceedings of  the IEEE/CVF Win- 

ter Conference on  Applications  of Computer  Vision ,  pages  

3994–4003,  2021.  

[6] Simon Graham, Quoc Dang Vu,  Shan  E  Ahmed Raza, 

Ayesha Azam,  Yee  Wah  Tsang,  Jin  Tae  Kwak, and  Nasir 

Rajpoot. Hover-net: Simultaneous  segmentation and  classi- 

fication of nuclei in multi-tissue  histology  images. Medical  

Image Analysis ,  58:101563, 2019.  

[7] Kaiming He, Georgia  Gkioxari,  Piotr Dollár,  and Ross Gir- 

shick. Mask  r-cnn. In Proceedings  of  the IEEE international  

conference  on computer vision  , pages 2961–2969, 2017. 

[8] Qingbo Kang, Qicheng  Lao,  and Thomas Fevens.  Nuclei 

segmentation  in histopathological  images using  two-stage 

learning. In International  Conference  on  Medical  Image  

Computing and Computer-Assisted Intervention , pages 703– 

711. Springer,  2019.  

[9] Neeraj Kumar, Ruchika  Verma,  Sanuj Sharma,  Surabhi 

Bhargava,  Abhishek  Vahadane, and  Amit Sethi.  A dataset 

and a technique  for  generalized nuclear segmentation for 

computational pathology.  IEEE transactions on medical 

imaging , 36(7):1550–1560, 2017.  

[10] John Lafferty, Andrew McCallum,  and Fernando CN Pereira. 

Conditional  random fields:  Probabilistic models  for seg- 

menting and labeling sequence  data. 2001.  

[11] Dongnan Liu, Donghao  Zhang, Yang  Song, Heng  Huang,  

and Weidong Cai. Panoptic feature fusion net:  A novel in-  

stance segmentation  paradigm for  biomedical and biological  

images. IEEE Transactions  on Image Processing  , 30:2045– 

2059, 2021. 

[12] Dongnan Liu,  Donghao  Zhang, Yang  Song, Chaoyi Zhang, 

Fan Zhang,  Lauren O’Donnell,  and  Weidong Cai. Nuclei 

segmentation  via a  deep panoptic model with semantic  fea- 

ture fusion.  In IJCAI  , pages 861–868, 2019. 

[13] Liyuan Liu, Haoming Jiang, Pengcheng  He, Weizhu  Chen,  

Xiaodong Liu, Jianfeng Gao, and Jiawei  Han. On the vari- 

ance  of  the adaptive learning rate  and  beyond. arXiv  preprint 

arXiv:1908.03265 , 2019.  

[14] Shu  Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya  Jia. 

Path aggregation network  for instance  segmentation. In Pro- 

ceedings of the IEEE conference  on  computer  vision and pat- 

tern recognition , pages 8759–8768, 2018. 

[15] Peter  Naylor, Marick  Laé, Fabien  Reyal,  and Thomas Walter.  

Segmentation of nuclei in  histopathology images by  deep re-  

gression  of the distance  map. IEEE transactions on  medical 

imaging ,  38(2):448–459,  2018. 

[16] Hirohisa  Oda, Holger  R Roth, Kosuke Chiba, Jure  Sokolić,  
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