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Abstract
Recent studies on Generative Adversarial Network

(GAN) reveal that different layers of a generative CNN hold
different semantics of the synthesized images. However, few
GAN models have explicit dimensions to control the seman-
tic attributes represented in a specific layer. This paper pro-
poses EigenGAN which is able to unsupervisedly mine in-
terpretable and controllable dimensions from different gen-
erator layers. Specifically, EigenGAN embeds one linear
subspace with orthogonal basis into each generator layer.
Via generative adversarial training to learn a target distri-
bution, these layer-wise subspaces automatically discover
a set of “eigen-dimensions” at each layer corresponding to
a set of semantic attributes or interpretable variations. By
traversing the coefficient of a specific eigen-dimension, the
generator can produce samples with continuous changes
corresponding to a specific semantic attribute. Taking the
human face for example, EigenGAN can discover control-
lable dimensions for high-level concepts such as pose and
gender in the subspace of deep layers, as well as low-level
concepts such as hue and color in the subspace of shal-
low layers. Moreover, in the linear case, we theoretically
prove that our algorithm derives the principal components
as PCA does. Codes can be found in https://github.
com/LynnHo/EigenGAN-Tensorflow .

1. Introduction
Strong evidences [40, 42, 2] show that different layers

of a discriminative CNN capture different semantic con-
cepts in terms of abstraction level, e.g., shallower layers
detect color and texture while deeper layers focus more
on objects and parts. Accordingly, we can expect that a
generative CNN also has similar property, which is con-
firmed by the recent studies of generative adversarial net-
work (GAN) [18, 39, 3]. StyleGAN [18] shows that deeper
generator layers control higher-level attributes such as pose
and glasses while shallower layers control lower-level fea-
tures such as color and edge. Yang et al. [39] found simi-
lar phenomenon in scene synthesis, showing that deep lay-
ers tend to determine the spatial layout while shallow lay-
ers determine the color scheme. Similar conclusion is also
made by Bau et al. [3]. All these evidences reveal a prop-
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Figure 1. Example of interpretable dimensions learned by Eigen-
GAN. The smaller the index, the deeper the layer.

erty that different generator layers hold different semantics
of the synthesized images in terms of abstraction level.

According to this property, one can identify semantic at-
tributes from different layers of a well-trained generator by
performing post-processing algorithms [3, 12, 36, 39], and
then can manipulate these attributes on the synthesized im-
ages. For example, Bau et al. [3] identify the causal units for
a specific concept (such as “tree”) by dissection and inter-
vention on each generator layer. Turning on or off the causal
units causes the concept to appear or disappear on the syn-
thesized image. However, these post-processing methods
can only be applied to a well-trained and fixed generator.
As for the generator itself, it still operates as a black box
and lacks explicit dimensions to directly control the seman-
tic attributes represented in different layers. In other words,
we do not know what attributes are represented in differ-
ent generator layers or how to manipulate them, unless we
deeply inspect each layer by these post-processing methods.
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Under above discussion, this paper starts with a question:
can a generator itself automatically/unsupervisedly learn
explicit dimensions that control the semantic attributes rep-
resented in different layers? To this end, we propose to em-
bed one linear subspace model with orthogonal basis into
each generator layer, named as EigenGAN. First, via gener-
ative adversarial training, the generator tries to capture the
principal variations of the data distribution, and these prin-
cipal variations are separately represented in different layers
in terms of their abstraction level. Second, with the help of
the subspace model, the principal variations of a specific
layer are further orthogonally separated into different ba-
sis vectors. Finally, each basis vector discovers an “eigen-
dimension” that controls an attribute or interpretable varia-
tion corresponding to the semantics of its layer. For exam-
ple, as shown at the top of Fig. 1, an eigen-dimension of the
subspace embedded in a deep layer controls gender, while
another of the subspace embedded in the shallowest layer
controls the hue of the image. Furthermore, in the linear
case, i.e., one layer model, we theoretically prove that our
EigenGAN is able to discover the principal components as
PCA [15] does, which gives us a strong insight and reason to
embed the subspace models into different generator layers.
Besides, we also provide a manifold perspective showing
that our EigenGAN decomposes the data generation model-
ing into layer-wise dimension expanding steps.

2. Related Works

2.1. Interpretability Learning for GANs

The first attempt to learn interpretable representations for
GAN generators is InfoGAN [6] which employs mutual in-
formation maximization (MIM) between the latent variable
and synthesized samples. Including InfoGAN, MIM based
methods [6, 16, 17, 14, 20, 21, 22] can automatically dis-
cover interpretable dimensions which respectively control
different semantic attributes such as pose, glasses and emo-
tion of human face. However, the learning of these inter-
pretable dimensions is mainly driven by the MIM objec-
tive, and there is no direct link from these dimensions to
the semantics of any specific generator layer. Ramesh et
al. [33] found that the principal right-singular subspace of
the generator Jacobian shows local disentanglement prop-
erty, then they apply a spectral regularization to align the
singular vectors with straight coordinates, and finally obtain
globally interpretable representations. However, this work
also does not investigate the correspondence between these
interpretable representations and the semantics of different
generator layers. Different from these methods, the inter-
pretability of our EigenGAN comes from the special design
of layer-wise subspace embedding, rather than imposing
any objective or regularization. Moreover, our EigenGAN
establishes an explicit connection between the interpretable

dimensions and the semantics of a specific layer by directly
embedding a subspace model into that layer.

The above methods try to learn a GAN generator with
explicit interpretable representations; in contrast, another
class of methods, post-processing methods, try to reveal
the interpretable factors from a well-trained GAN gener-
ator [9, 3, 35, 39, 32, 12, 38, 36]. [9, 3, 35, 39] adopt
pre-trained semantic predictors to identify the correspond-
ing semantic factors in the GAN latent space, e.g., Yang et
al. [39] use layout estimator, scene category recognizer, and
attribute classifier to find out the decision boundaries for
these concepts in the latent space. Without introducing ex-
ternal supervision, several methods search interpretable fac-
tors in self-supervised [32] or unsupervised [12, 36] man-
ners. Plumerault et al. [32] utilize simple image transforms
(e.g., translation and zoom) to search the axes for these
transforms in the latent space. Harkonen et al. [12] ap-
ply PCA to the feature space of the early layers, and the
resulting principal components represent interpretable vari-
ations. Shen and Zhou [36] show that the weight matrix
of the very first fully-connected layer of a generator de-
termines a set of critical latent directions which dominate
the image synthesis, and the moving along these directions
controls a set of semantic attributes. Among these meth-
ods, [3, 35, 39, 12, 36] carefully investigate the semantics
represented in different generator layers. However, these
post-processing methods must first learn and fix a GAN
generator then learn interpretable dimensions under sepa-
rated objectives (two steps). On the contrary, our Eigen-
GAN learns the interpretable dimensions for each generator
layer along with the GAN training in an end-to-end manner
(one step). Therefore, our method should have a better op-
timum because the learning of generator and the learning of
interpretable dimensions can interact with each other.

2.2. Generative Adversarial Networks

Generative adversarial network (GAN) [10] is a sort of
generative model which can synthesize data from noise.
The learning process of GAN is the competition between a
generator and a discriminator. Specifically, the discrimina-
tor tries to distinguish the synthesized samples from the real
ones, while the generator tries to make the synthesized sam-
ples as realistic as possible to fool the discriminator. When
the competition reaches Nash equilibrium, the synthesized
data distribution is identical to the real data distribution.

GANs show promising performance and properties on
data synthesis. Therefore, plenty of researches on GANs
appear, including loss functions [30, 25, 1], regulariza-
tions [34, 26, 28], conditional generation [27, 31, 29], repre-
sentation learning [24, 6, 8], architecture design [7, 5, 18],
applications [13, 43, 41], and etc. Our EigenGAN can be
categorized into representation learning as well as architec-
ture design for GANs.
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Figure 2. Overview of the proposed EigenGAN. The main stream of the model is a chain of 2-stride transposed convolutional blocks which
gradually enlarges the resolution of the feature maps and finally outputs a synthesized sample. In the ith layer, we embed a linear subspace
with orthonormal basis Ui = [ui1, . . . ,uiq], and each basis vector uij is intended to unsupervisedly discover an “eigen-dimension” which
holds an interpretable variation of the synthesized samples such as race, pose, and lighting for human face.

3. EigenGAN

In this section, we first introduce the EigenGAN gen-
erator design with layer-wise subspace models in Sec. 3.1.
Then in Sec. 3.2, we make a discussion from the linear case
to the general case of EigenGAN and finally provide a man-
ifold perspective.

3.1. Generator with Layer-Wise Subspaces

Fig. 2 shows our generator architecture. Our target is to
learn a t-layer generator mapping from a set of latent vari-
ables {zi ∈ Rq | zi ∼ Nq (0, I) , i = 1, . . . , t} to the syn-
thesized image x = G (z1, . . . , zt), where zi is directly in-
jected into the ith generator layer; q denotes the number of
dimensions of each subspace.

In the ith layer, we embed a linear subspace model Si =
(Ui,Li,µi) where

• Ui = [ui1, . . . ,uiq] is the orthonormal basis of the
subspace, and each basis vector uij ∈ RHi×Wi×Ci

is intended to unsupervisedly discover an “eigen-
dimension” which holds an interpretable variation of
the synthesized samples.

• Li = diag (li1, . . . , liq) is a diagonal matrix with lij
deciding the “importance” of the basis vector uij . To
be specific, high absolute value of lij means that uij

controls major variation of the the ith layer while low
absolute value denotes minor variation, which can be
also viewed as a kind of dimension selection.

• µi denotes the origin of the subspace.

Then, we use the ith latent variable zi = [zi1, . . . , ziq]
T as

the coordinates (linear combination coefficients) to sample

a point from the subspace Si:

φi = UiLizi + µi (1)

=

q∑
j=1

zij lijuij + µi. (2)

This sample point φi will be added to the network feature
of the ith layer as stated next.

Let hi ∈ RHi×Wi×Ci denote the feature maps of the ith

layer and x = ht+1 denote the final synthesized image, then
the forward relation between the adjacent layers is

hi+1 = Conv2x (hi + f (φi)) , i = 1, . . . , t, (3)

where “Conv2x” denotes transposed convolutions that dou-
ble the resolution of the feature maps, and f can be identity
function or a simple transform (1x1 convolution in prac-
tice). As can be seen from Eq. (3), the sample point φi from
the subspace Si directly interacts with the network feature
hi of the ith layer. Therefore, the subspace Si directly de-
termines the variations of the ith layer, more concretely, q
coordinates zi = [zi1, . . . , ziq]

T respectively control q dif-
ferent variations.

Besides, we also inject a noise input ε ∼ N (0, I) to the
bottom of the generator intended to capture the rest varia-
tions missed by the subspaces, as follows,

h1 = FC (ε) , (4)

where “FC” denotes the fully-connected layer.
The bases {Ui}ti=1, the importance matrices {Li}ti=1,

the origins {µi}ti=1, and the convolution kernels are all
learnable parameters and the learning can be driven by var-
ious adversarial losses [10, 25, 1, 28]. In this paper, hinge
loss [28] is used for the adversarial training. Besides, the
orthogonality of Ui is achieved by the regularization of
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Figure 3. Manifold perspective of EigenGAN. At each layer, a linear subspace is added to the feature manifold, expanding the manifold
with “straight” directions along which the variation of some semantic attributes are linear. At the end of each layer, nonlinear mappings
“bend” these straight directions, yet another subspace at the next layer will continue to add new straight directions. Here, we only show
one semantic direction of each subspace just for simplicity, generally, each subspace contains multiple orthogonal directions.

‖UT
i Ui − I‖2F . After training, each latent dimension zij

can explicitly control an interpretable variation correspond-
ing to the semantic of its layer.

3.2. Discussion

Linear Case To better understand how our model works,
we first discuss the linear case of our EigenGAN. Adapted
from Eq. (1), the linear model is formulated as below,

x = ULz+ µ+ σε. (5)

This equation relates a d-dimension observation vector x
to a corresponding q-dimension (q < d) latent variables
z ∼ Nq (0, I) by an affine transform UL and a transla-
tion µ. Besides, a noise vector ε ∼ Nd (0, I) is introduce to
compensate the missing energy. We also constrain U with
orthonormal columns and L as a diagonal matrix like the
general case in Sec. 3.1. This formulation can also be re-
garded as a constrained case of Probabilistic PCA [37].

To estimate U, L, µ and σ in Eq. (5) with n observations
{xi}ni=1, an analytical solution is maximum likelihood es-
timation (MLE). Please refer to the appendix for detailed
derivation of the MLE results. One important result is that
the columns of UML =

[
uML
1 , . . . ,uML

q

]
are the eigenvec-

tors of data covariance corresponding to the q largest eigen-
values, which is exactly the same as the result of PCA [15].
That is to say, the linear EigenGAN is able to discover the
principal dimensions, which gives us a strong insight and
motivation to embed such a linear model (Eq. (5)) hierar-
chically into different generator layers as stated in Sec. 3.1.

EigenGAN (General Case) With the insight of the linear
case, we suppose that the linear subspace model embedded
in a specific layer can capture the principal semantic vari-
ations of that layer, and these principal variations are or-
thogonally separated into the basis vectors. In consequence,
each basis vector discovers an “eigen-dimension” that con-
trols an attribute or interpretable variation corresponding to
the semantics of its layer.

Manifold Perspective Fig. 3 shows a manifold perspec-
tive of EigenGAN. From this aspect, the subspace of each
layer expands the feature manifold with “straight” direc-
tions along which the variations of some semantic attributes
are linear. At the end of each layer, nonlinear mappings
“bend” these straight directions, yet another subspace at the
next layer will continue to add new straight directions. In
a word, EigenGAN decomposes the data generation mod-
eling into hierarchical dimension expanding steps, i.e., ex-
panding the feature manifold with linear semantic dimen-
sions layer-by-layer.

4. Experiments
Dataset We test our method on CelebA [23], FFHQ [18],
and Danbooru2019 Portraits [4]. CelebA contains 202,599
celebrity face images with annotations of 40 binary at-
tributes. FFHQ contains 70,000 high-quality face images
and Danbooru2019 Portraits contains 302,652 anime face
images. We use CelebA attributes for the quantitative evalu-
ations and use FFHQ and Danbooru2019 Portraits for more
visual results.

Implementation Details We use hinge loss [28] and R1

penalty [26] for the adversarial training. We adopt Adam
solver [19] for all networks and parameter moving average
for the generator. The generator is designed for 256 × 256
images and contains 6 upsampling convolutional blocks. A
whole block with one upsampling is defined as a “layer”,
and one linear subspace with 6 basis vectors is embedded
into each generator layer. Please refer to the appendix for
detailed network architectures.

4.1. Discovered Semantic Attributes

Visual Analysis Fig. 4 shows the semantic attributes
learned by the subspace of different layers, where “Li Dj”
means the jth dimension of the ith layer and smaller index
of layer means deeper. As shown, moving along an eigen-
dimension (i.e., a basis vector of a subspace), the synthe-
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L6 D1  Background Hue

L6 D4  Foreground Hue Pale Skin (39%)

Hair Color
L5 D2 Black Hair (59%)  Blond Hair (44%)  Gray Hair (33%) 

L5 D4  Lighting

L5 D6  Lipstick ColorL4 D1 Pose

L4 D5  Smile
Smile (81%)  High Cheekbones (67%)  Mouth Open (55%)  Narrow Eyes (43%) 

L4 D6  Face Shape

L3 D4 Bangs Bangs (68%)

L3 D6 Body Side

L3 D1 Age → Gender Gender (89%)  Lipstick (87%)  Makeup (80%)  Attractive (60%)  Age (57%)

L2 D2 Hair Side & Background Texture Orientation

L1 D5 (Layer: 1 Dimension: 5) Facial Hair → Hat Hat (45%)  Sideburns (33%) 

Figure 4. Discovered semantic attributes at different layers for CelebA dataset [23]. Traversing the coordinate value in [−4.5σ, 4.5σ], each
dimension controls an attribute, colored in blue. The attributes colored in green are the most correlated CelebA attributes, and the bracket
value is the entropy coefficient: what fraction of the information of the CelebA attribute is contained in the corresponding dimension. “Li
Dj” means the jth dimension of the ith layer. We only show the most meaningful dimensions, please refer to the appendix for all dimensions.
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Figure 5. Interpretable dimensions of FFHQ dataset [18] and anime dataset [4].

sized images consistently change by an interpretable mean-
ing. Shallower layers tend to learn lower-level attributes,
e.g., L6 and L5 learn color-related attributes such as “Hue”
in L6 and “Hair Color” in L5. As the layer goes deeper,
the generator discovers attributes with higher-level or more
complicated concepts. For example, L4 and L3 learn geo-
metric or structural attributes such as “Face Shape” in L4
and “Body Side” in L3. Deep layers tend to learn multi-
ple attributes in one dimension, e.g., L1 D5 learns “Facial
Hair” on the left axis but “Hat” on the right axis. Besides,
entanglement of attributes is likely to happen in deep layer
dimensions, e.g., L2 D2 learns to simultaneously change
“Hair Side” and “Background Texture Orientation”, be-
cause complex attribute composition might mislead the net-
work into believing their whole as one high-level attribute.

In summary, shallow layers learn low-level or simple at-
tributes while deep layers learn high-level or complicated
attributes. Entanglement might happen in some dimensions
of deep layers, and this is one of our limitations. Nonethe-
less, the entanglement is interpretable, i.e., we can identify
what attributes are entangled in a dimension. Moreover, our
method can still discover well disentangled dimensions that
are highly consistent with the visual concepts of humans.
Fig. 5 show additional results of FFHQ dataset [18] and
Danbooru2019 Portraits dataset [4]. Please refer to the ap-
pendix for more results and more interpretable dimensions.

Identifying Well-Defined Attributes In the previous part,
we visually identify semantic attributes for each dimension.
In this part, we identify the attributes in a statistical man-
ner, utilizing 40 well-defined binary attributes in CelebA
dataset [23]. Specifically, we investigate the correlation be-
tween a dimension Z and a CelebA attribute Y in terms of

entropy coefficient (normalized mutual information), which
represents what fraction of the information of Y is con-
tained in Z:

U (Y |Z) = I(Y ;Z)

H(Y )
=

H(Y )−H(Y |Z)
H(Y )

∈ [0, 1] (6)

where

H(Y |Z) =
∫
Z
pZ(z)

[
− pY|Z(y=1|z) ln (pY|Z(y=1|z))

− (1− pY|Z(y=1|z)) ln (1− pY|Z(y=1|z))
]
dz, (7)

H(Y ) =− pY(y=1) ln (pY(y=1))

− (1− pY(y=1)) ln (1− pY(y=1)) . (8)

pY|Z(y=1|z) and pY(y=1) can be calculated by1

pY|Z(y=1|z) =
∫
X
pY|X(y=1|x)pG(x|z)dx, (9)

pY(y=1) =

∫
Z
pY|Z(y=1|z)pZ(z)dz, (10)

where pG(x|z) is the generator distribution, and pY|X(y =
1|x) is the posterior distribution which is approximated by
a pre-trained attribute classifier on CelebA dataset. We set
pZ(z) as U [−4.5, 4.5] and discretize it into 100 equal bins
for approximation of the integral

∫
Z · pZ(z)dz in Eq. (7) and

(10); and we sample 1000 x from the generator pG(x|z) in
each bin of z, then approximate the integral

∫
X · pG(x|z)dx

in Eq. (9) by averaging over the samples.

1y and z are conditionally independent given x, i.e., pY|X,Z(y =
1|x, z) = pY|X(y=1|x).
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Figure 6. Qualitative comparison among GLD [38], SeFa [36], and our EigenGAN.

Table 1. Correlation between the discovered attributes and the CelebA attributes in terms of entropy coefficient. Each row denotes a
discovered attributes by GLD [38], SeFa [36] and our EigenGAN, and each column denotes a CelebA attribute.

GLD Gender Eyeglasses Smiling Black Hair
Gender 28% 2% 11% 3%

Eyeglasses 3% 5% 5% 4%
Smiling 0% 0% 24% 1%

Black Hair 1% 0% 1% 9%

SeFa Gender Eyeglasses Smiling Black Hair
Gender 49% 14% 2% 4%

Eyeglasses 5% 49% 2% 0%
Smiling 1% 1% 52% 8%

Black Hair 1% 0% 1% 18%

Ours Gender Eyeglasses Smiling Black Hair
Gender 57% 14% 12% 2%

Eyeglasses 2% 33% 0% 1%
Smiling 1% 0% 55% 2%

Black Hair 0% 0% 0% 38%

For each dimension in Fig. 4, the five most correlated
CelebA attributes with entropy coefficient larger than 30%
are shown (green text). As shown, the identified CelebA
attributes according to entropy coefficient are highly con-
sistent with our visual perception. Several dimensions have
no correlated CelebA attributes just because the attributes
represented by these dimensions are not included in the
CelebA, but these dimensions are still interpretable, e.g., L4
D1 learns “Pose” which is not a CelebA attribute. Several
dimensions correlate to multiple CelebA attributes mainly
because these CelebA attributes are themselves highly cor-
related, e.g., L4 D5 learns “Smile” therefore it has high en-
tropy coefficient for “Smile” correlated attributes: “High
Cheekbones”, “Mouth Open”, and “Narrow Eyes”. In con-
clusion, this experiment statistically verifies that, Eigen-
GAN can indeed discover interpretable dimensions con-
trolling attributes which are highly consistent with human-
defined ones (e.g., CelebA attributes).

Comparison In this part, we compare our method to
two state-of-the-art post-processing methods GANLatent-
Discovery (GLD) [38] and SeFa [36]. We use their official
models with GLD trained on StyleGAN2-FFHQ-1024 and
SeFa trained on StyleGAN-FFHQ-256. Fig. 6 shows the
qualitative comparison. As can be seen, both SeFa and our
EigenGAN can achieve smooth and consistent change of the
identified attributes, more natural and realistic than GLD.
However, entanglement to some extent still happens in all
three methods, e.g., “Pose” dimension also changes light-
ing in GLD, “Smiling” dimension also changes bangs in
SeFa, and “Hair Color” dimension also changes skin color
in EigenGAN. This is because all of them are unsupervised
methods, and it is difficult to precisely decouple all the at-

tributes without any supervision. Table 1 shows the quan-
titative comparison of the correlation between the discov-
ered attributes and the CelebA attributes, in terms of en-
tropy coefficient introduced in the previous part. As can be
seen, the discovered attributes by both SeFa and our Eigen-
GAN have high correlation to the corresponding CelebA
attributes, demonstrating that both methods can indeed dis-
cover meaningful semantic attributes. Overall, our Eigen-
GAN achieves comparable performance to the state-of-the-
art SeFa on the learned attributes and disentanglement, and
both methods perform better than GLD.

4.2. Model Analysis

Effect of the Latent Variables EigenGAN contains two
kinds of latent variables: 1) layer-wise latent variables
{zi}ti=1, which are used as the subspace coordinates; 2)
bottom noise ε to compensate the missing variations. In
Fig. 7a, we respectively fix one of them and randomly sam-
ple another to generate images. As can be seen, the layer-
wise latent variables {zi}ti=1 dominate the major variations
while the bottom noise ε captures subtle changes. That is to
say, EigenGAN tends to put major variations into the layer-
wise latent variables rather than the bottom noise used in
typical GANs, but the bottom noise can still capture some
subtle variations missed by the subspace models.

Effect of the Subspace Model We remove all the layer-
wise subspace models to investigate their effect, instead, we
directly add the layer-wise latent variables to the network
features. As shown in Fig. 7b, without the subspace mod-
els, the layer-wise latent variables can only capture minor
variations, which is completely opposite to the original set-
ting in Fig. 7a. In conclusion, the subspace model is the key
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effect of layer-wise latent (fix bottom noise)

effect of bottom noise (fix layer-wise latent)

(a) With the subspace models (EigenGAN), major variations are captured by
the layer-wise latent variables.

effect of layer-wise latent (fix bottom noise)

effect of bottom noise (fix layer-wise latent)

(b) Without the subspace models (typical GANs), major variations are cap-
tured by the bottom noise.

Figure 7. Effect of the layer-wise latent variables (top) and the bottom noise (down).

Table 2. Basis similarity with PCA. P = Nd (0, I).

GAN Loss
Data Rank → Subspace Rank

5→1 5→3 10→1 10→3 10→5 20→1 20→5 20→10

KL-f-GAN [30] 1.00 0.98 0.99 0.90 0.93 0.97 0.78 0.79
Vanilla GAN [10] 1.00 0.99 1.00 0.90 0.94 0.98 0.77 0.81
WGAN [11] 0.99 0.98 1.00 0.89 0.92 0.99 0.76 0.83
LSGAN [25] 0.99 0.99 1.00 0.89 0.92 0.99 0.76 0.80
HingeGAN [28] 0.99 0.99 1.00 0.92 0.93 0.96 0.77 0.81

Table 3. Basis similarity with PCA. P = Ud(0, 1).

GAN Loss
Data Rank → Subspace Rank

5→1 5→3 10→1 10→3 10→5 20→1 20→5 20→10

KL-f-GAN [30] 0.96 0.98 0.97 0.89 0.93 0.89 0.72 0.82
Vanilla GAN [10] 0.97 0.97 0.97 0.92 0.92 0.92 0.76 0.84
WGAN [11] 0.98 0.97 0.98 0.93 0.94 0.98 0.77 0.84
LSGAN [25] 0.97 0.97 0.96 0.89 0.95 0.91 0.74 0.82
HingeGAN [28] 0.97 0.98 0.97 0.87 0.94 0.92 0.75 0.82

point to enable the generator to put major variations into the
layer-wise variables, therefore can further let the layer-wise
variables capture different semantics of different layers.

Linear Case Study Sec. 3.2 theoretically proves that the
linear case of EigenGAN can discover the principal com-
ponents under maximum likelihood estimation (MLE). In
this part, we validate this statement by applying adversar-
ial training on the linear EigenGAN (we do not directly use
MLE since we train the general EigenGAN with adversar-
ial loss rather than MLE objective, and we keep this con-
sistency between the linear and the general case). Specifi-
cally, we use the linear EigenGAN to learn a low-rank sub-
space model for toy datasets, then compare the basis vectors
learned by our model and learned by PCA in terms of cosine
similarity. The toy datasets are generated as follows,

DA,b,P = {yi = Axi + b | xi ∼ P} (11)

where A is a random transform matrix, b is a random
translation vector, and P is a distribution selected from
Nd (0, I) or Ud(0, 1). We test typical adversarial losses
including Vanilla GAN [10], LSGAN [25], WGAN [11],
HingeGAN [28], and f-GAN [30] with KL divergence (KL-
f-GAN). Note that the objective of KL-f-GAN is theoreti-
cally equivalent to MLE, thus we are actually also testing
MLE in the adversarial training manner.

Table 2 and Table 3 report the average similarity between
EigenGAN basis vectors and PCA basis vectors, where each
result is the average over 100 random toy datasets. As can
be seen, when the data rank is no more than 10, EigenGAN
basis is highly similar to PCA basis with cosine similarity of
about 0.9-1.0. When the data rank increases to 20, there are

two situations: 1) if we only search the most principal one
basis vector (20→1), the vectors found by linear EigenGAN
and by PCA are still very close; 2) but if we want to find 5
or more basis vectors, the average similarity decreases to
0.7-0.8. We suppose the reason is that higher dimension
data leads to the curse of dimensionality and further results
in learning instability. Besides, various GAN losses have
very consistent results, which shows the potential of gen-
eralizability of our theoretical results in Sec. 3.2 from KL
divergence (MLE) to more general statistical distance such
JS divergence and Wasserstein distance. In conclusion, we
experimentally verify the theoretical statement that the lin-
ear EigenGAN can indeed discover principal components.

5. Limitations and Future Works

Discovered semantic attributes are not always the same
at different training times in two cases: 1) E.g., sometimes
the gender and pose are learned as separated dimensions
but sometimes are entangled in one dimension at a deeper
layer. This is because, without supervision, some complex
attribute compositions might mislead the model into believ-
ing their whole as one higher-level attribute. 2) Sometimes
the model can discover a specific attribute but sometimes
cannot, such as eyeglasses, mainly because these attributes
appear less frequently in the dataset. Future works will
study the layer-wise eigen-learning with better disentangle-
ment techniques and more powerful GAN architectures.
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