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Abstract

Human-Object Interaction (HOI) detection is a funda-
mental visual task aiming at localizing and recognizing in-
teractions between humans and objects. Existing works fo-
cus on the visual and linguistic features of the humans and
objects. However, they do not capitalise on the high-level
and semantic relationships present in the image, which pro-
vides crucial contextual and detailed relational knowledge
for HOI inference. We propose a novel method to exploit
this information, through the scene graph, for the Human-
Object Interaction (SG2HOI) detection task. Our method,
SG2HOI, incorporates the SG information in two ways:
(1) we embed a scene graph into a global context clue,
serving as the scene-specific environmental context; and
(2) we build a relation-aware message-passing module to
gather relationships from objects’ neighborhood and trans-
fer them into interactions. Empirical evaluation shows that
our SG2HOI method outperforms the state-of-the-art meth-
ods on two benchmark HOI datasets: V-COCO and HICO-
DET. Code will be available at https://github.com/
ht014/SG2HOI.

1. Introduction

Recently, Human-Object Interaction (HOI) detection [5,
14] aims at detecting the types of interactions of human-
object pairs. It has gained increasing attention in the com-
puter vision community as it has a wide range of practi-
cal applications, e.g., action recognition [11] and Human-
Computer Interaction (CHI) [8]. Formally, the goal of HOI
is to detect and localize all the interaction triples in an im-
age, i.e. <human, interaction, object>. HOI is a challeng-
ing problem—an image typically contains multiple humans
and objects in a complex scene, while the majority of all
the human-object pairs are non-relation. Therefore, some
works [25, 28, 27] that are solely based on visual features
cannot learn good discriminative patterns for HOIs.
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Figure 1. An illustration of our Scene Graph to Human-Object In-
teraction method, where we consider the scene graph between ob-
jects as external knowledge to facilitate the prediction of HOIs
in two ways: scene graph embedding (green arrow) described in
Sec. 3.1 and relation-aware message passing (red arrow) described
in Sec. 3.2.

It is intuitive to turn to external knowledge, e.g., the
well-known knowledge graph ConceptNet [23], to miti-
gate the limitation of visual appearance features. How-
ever, as such knowledge graphs are often general-purpose,
most of retrieved results are redundant. Thus, such external
knowledge may not provide sufficiently informative cues
for HOIs. Instead, we turn to another closely-related task,
i.e. Scene Graph Generation (SGG), to generate a tiny rela-
tion (knowledge) graph for each image, serving as the ex-
ternal knowledge to make up the visual cues.

SGG [17, 18, 29] and HOI [5, 28] both aim at identify-
ing spatial and other types of relations between objects in
an image. Figure 1 illustrates a scene graph and the HOI
graph of the same image. There are two main differences
between the two tasks: (1) in SGG, subjects can be of any
type (humans, cars, etc.), while in HOI they are fixed as hu-
mans, which results in more edges in the SG; and (2) the
predicates of HOI only consist of interaction verbs, while
in SGG many types of relations may exist, including loca-
tive prepositions (e.g., on) and semantic actions (e.g., play
with). Simply speaking, an SG is a general relation graph
whereas an HOI graph is a human-focused subject graph,
which can be considered a subgraph extracted from the SG.
Thus, we believe that the scene graph can provide more de-
tailed cues for HOI detection and improve the performance
of an HOI model. Specifically, incorporating the SG in the
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HOI task has two benefits: (1) the SG puts each object and
human in a relation graph, which can provide contextual
cues and benefit the scene understanding; and (2) informa-
tion contained in relationships in the SG can be explicitly
or implicitly transferred to more accurately identify the cor-
rect interactions. Therefore, our motivation is to develop a
decoding method that transfers the knowledge encoded in
the scene graph to the HOI graph. To this end, we decode
an SG from two aspects: the global scene-level and regional
relation-level.

For the scene-level, our goal is to extract the scene-
specific cues from the detailed scene graph, because many
previous works [16, 25, 27] have demonstrated that the in-
teractions are scene-biased, that is, some interactions are
highly correlated to specific scenes. Taking Figure 1 as an
example, the image is a restaurant scene from the visual ap-
pearance, and it is more likely that the interaction is about
eating. Therefore, accurate scene cues can benefit HOI
recognition. Many existing works [16, 25] have employed
the global visual appearance as the scene clues. However,
due to the coarseness of the appearance feature, their perfor-
mance does not gain a significant improvement. Instead, we
treat a scene graph as the scene-specific contextual cue and
propose two components to embed it: scene graph layout
encoding and attention-based relation fusion.

For the relation-level, we observe that the relations in the
scene graph can explicitly or implicitly transfer to interac-
tions. For instance, as shown in Figure 1, since the three
relation triples: <hand, of, man 1>, <hand, hold, fork>,
and <man 1, near, table> simultaneously take place, we
are more likely to infer that man 1’s interaction is eat at.
Besides, based on the relation <man 2, near, man 1 >, we
could hypothesise that both of them probably have the sim-
ilar interaction. Furthermore, based on his visual features,
we could infer that the man is also eating at the table. Thus,
the knowledge of the exact relations between object pairs
makes the inference more certain. To this end, we develop
a relation-aware message passing module to reason on the
SG by gathering relation information from inter- and intra-
class neighbors and refine their features.

In summary, our contribution is three-fold:

• We propose a novel Scene Graph to Human-Object In-
teraction (SG2HOI) detection network to bridge the
gap between the two tasks. To the best of our knowl-
edge, we are the first to utilize scene graphs for HOI
detection.

• We design two components to decode the SG: scene
graph embedding and relation-aware message-passing,
to learn the environmental context and transfer SG re-
lations to HOI interactions, respectively.

• We evaluate our approach on two popular HOI detec-
tion benchmark datasets: V-COCO and HICO-DET, in

terms of a wide range of evaluation metrics. Our eval-
uation shows that SG2HOI method outperforms state-
of-the-art models on both two datasets.

2. Related Work
Scene Graph Generation (SGG) [30] is to detect visual

relationship of all the objects pairs in an image. This task
has been widely studied for many years [2, 17, 19, 29, 32].
Different from HOI, SGG tries to detect relation triples, i.e.
<subject, predicate, object>, where the subject is not lim-
ited to human, and therefore the combinations of the rela-
tion triples are much more versatile than HOI and the long-
tail becomes the challenging problem in SGG. A couple of
recent works [10, 24, 31] proposed a series of techniques to
address the imbalanced distribution problem. [31] first ob-
served that the biased relation distribution and statistically
showed the frequencies of predicates are long-tailed, and
even using the frequency information as the prior can ob-
tain stunning performance. Subsequently, [24] analyzed the
cause effect in the inference stage and proposed a novel de-
biased strategy able to be seamlessly applied in other SGG
models. [10] tackled this problem by feature hallucination
and knowledge transferring from the head to the tail.

Human-Object Interaction (HOI) Detection aims at
detecting and localizing the interactions of human-object
pairs, and requires a deeper and detailed understanding
of the scene. Generally, most of the previous works
[4, 5, 7, 14, 21, 25] consistently consists of two steps. The
first is to utilize a pre-trained object detection network, e.g.,
Faster-RCNN [22], to generate all the human and object
proposals and construct quadratic number of human-object
pairs, and the second step feeds those pairs to an interaction
classification module. Due to the fact that the first stage
is based on the off-the-shelf model, numerous works focus
on the second stage and dedicate to exploring more visual
and contextual information so that the interaction classi-
fier can capture the essential hidden relationship patterns
between humans and objects. Specifically, InterPoint [28]
proposed a fully convolutional approach to simultaneously
detect the interaction points and predict the interactions,
which avoided the computation of all the human-object
pairs and improve the computational efficiency. VSGNet
[25] concentrated on the relative spatial and structural cues
by deploying two modules: spatial attention network and
interactiveness graph. TIK [13] proposed an interactiveness
network to suppress the non-interactive human-object pairs
and improved HOI models’ performance. PD-Net [33] de-
vised a Polysemy Deciphering Network to address the di-
verse semantic meanings of verbs. CHGNet [27] developed
a homogeneous graph network to conduct message passing
between homogeneous entities and heterogeneous entities,
but their passing messages are transferred in an agnostic
way. To address the insufficient and indistinguishable vi-
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Figure 2. The overview of our Scene Graph to Human-Object Interaction (SG2HOI) method, where the scene graph is fed into two
important modules: scene graph embedding and relation-aware message passing. The former aims to learn the scene-specific contextual
cues while the latter aims to reason on the scene graph and gather interaction information from neighbors.

sual appearance feature for different interactions, FCNNet
[16] proposed a multi-stream pipeline to amplify key cues,
such as object labels’ word2vec, fine-grained spatial layout
and flow prediction.

However, although SGG and HOI are different from the
concentration, that is, SGG focuses more on relationship
of different object pairs but HOI aims at the high-level re-
lation (interaction), no currently existing works link them
together. To some extent, we believe that the SG can be an
important cue for HOI by supplying scene contextual infor-
mation and reasoning knowledge graph.

3. Method
In this section, we present our Scene Graph to Human-

Object Interaction (SG2HOI) framework, as shown in Fig-
ure 2. Our SG2HOI framework leverages the knowledge
contained in the SG for HOI detection with two main mod-
ules: scene graph embedding (Sec. 3.1) and relation-aware
message passing (Sec. 3.2), which aim at learning scene-
specific contextual cues and transferring SG relationships
to human-object interactions, respectively. Similar to prior
works [25, 27], we also extract a human-object spatial map
as the auxiliary feature. Finally, we fuse these features: vi-
sual appearance features of humans and object (extracted
with Faster-RCNN [22]), scene graph embeddings, refined
human and object features by message passing on the scene
graph, as well as the spatial map to predict HOIs (Sec. 3.3).

3.1. Scene Graph Embedding

Learning contextual knowledge from a scene graph can
provide the model with scene-specific cues, which play an

important role in HOI detection. Different from visual ap-
pearance features used in prior art [16, 25], scene graphs
can provide more high-level relationship information. For
instance, in Figure 1, even with the input image removed,
i.e. without the visual appearance feature, and only given
the SG, we could infer the interaction is highly related to
eating, according to the relations <food, on, table> and
<hand, hold, fork>, which indicate a dining environment.
To embed scene graphs, we design two components: scene
graph layout encoding and relation fusion.

3.1.1 Scene Graph Layout Encoding

The scene graph layout, as illustrated in Figure 3, consists of
a set of objects with associated information, including their
labels, sizes, and positions, as well as their relative spatial
relationship. A scene graph layout contains two types of
important cues: the spatial cues from each object’s position
and size, and the contextual cues from the objects’ environ-
ment, which can be interpreted as the co-occurrence of the
objects in a specific scene. For example, table, food and
forks usually occur in the dining environment.

However, as HOI datasets have no scene graph anno-
tations, we first use a model [24] pre-trained on Visual
Genome [12] to generate the scene graph S of each image,
where S=(V,E), V={oi}ni=1, E={ek=<oi, rij , oj>}mk=1,
where oi, oj are the detected objects and rij is the relation-
ship between oi and oj , n is the number of detected objects,
and m is the number of detected relations.

After generating S, we extract the spatial location of
each object. Specifically, given the bounding box bi =
{xt

i, y
t
i , x

b
i , y

b
i } of the object oi where the former two di-
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Figure 3. The scene graph layout mainly consists two items: spa-
tial localization and size, and the semantic context of objects.

mensions represent the top left coordinate while the last two
are the bottom right, we define the spatial feature of oi as:

pi = Ws
[
xt
i, y

t
i , x

b
i , y

b
i , x

c
i , y

c
i , x

w
i , y

h
i

]
(1)

where (xc
i , y

c
i ) are the center coordinate, and (xw

i , y
h
i ) are

the width and height of the bounding box bi; and Ws de-
notes a transformation layer to project the original 8-D vec-
tor to a high-dimensional representation, following [25].

Then, we extract the language prior, the GLOVE word
embeddings [20], as the semantic feature ui for object oi.
Thus, for a object (node) in the scene graph, we concatenate
the two features, denoted as vi = [pi;ui].

To encode the context of objects, we view the scene
graph nodes as a sequence of semantic and spatial code-
words: [v1,v2, . . . ,vn] and employ an RNN to encode the
hidden representation for each word as:

[hi]
n
i=1 = RNN([Wcvi]

n
i=1) (2)

where Wc is a transformation matrix and hi is the node
feature equipped with contextual cues. Note that the nodes’
order in the sequence is base on by the left-to-right central
x-coordinate of each object, following [31] .

3.1.2 Attention-based Relation Fusion

The relationships in the scene graph is the core component
which plays an import role in the scene understanding. In
this module, we dedicate to fusing the scene graph’s lay-
out and relationships into a comprehensive representation.
For a given relationship <oi, rij , oj>, we represent it as a
concatenation of three features:

ek = Wr[hi;αij ;hj ] (3)

where αij is the word embedding of the relation rij , pro-
duced in the same way as the semantic features vi, and Wr

is a transform layer.

rr

hh

cat

..

xx sumsum

..

cat Concatenation

Figure 4. Architecture of our attention-based relation fusion com-
ponent, where h denotes objects’ contextual features derived from
the scene graph layout encoding and r is the word embedding of
relationships in the scene graph. ⊙ and ⊗ are the Hadamard prod-
uct and element-wise product, respectively.

Now, for a scene graph Si of the image i, we have its
object features matrix hi ∈ Rn×d and the relation features
matrix ei ∈ Rm×d, where d is the dimension of the features.

Before fusing ei and hi, we first calculate a correlation
matrix between them denoting the relevance of objects on
relationships, because we believe that each object have dif-
ferent correlation with each relation. For instance, in Fig-
ure 1, the relation <hand, hold, fork> is more related to
man 1 and fork than man 2. To this end, we use a self-
attention mechanism [26] to calculate the correlation matrix
Ci∈Rn×m as:

Ci = (hi ⊗Wa) · e⊤i (4)

where ⊗ is the pointwise product, Wa is the learnable pa-
rameters denoting the self-attention weights, and · is matrix
multiplication.

Then, we use Ci as the bridge to fuse objects and rela-
tionships together by:

g̊i = (C⊤
i · hi)⊗ ei (5)

where g̊i is the fusion of the layout and relationships of the
scene graph. Figure 3 shows the full architecture of data
flow. However, it is worth noting that the dimension of g̊i

is Rm×d, and here, we use summation operation on the first
dimension of g̊ to reduce it into a vector and add a transfor-
mation layer Wg to embed g̊i into the final representation:

g̃i = Wg
m∑
j=1

g̊ij (6)

3.2. Relation-aware Message Passing

A human-object interaction could involve several sur-
rounding objects and thus be related to multiple relation-
ships in the scene graph. Thus, it is intuitive to develop a
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reasoning module where we can aggregate relation informa-
tion from neighbors and then learn the intrinsic correlation
between relationships and interactions. Toward this end, we
devise a relation-aware message passing strategy able to ag-
gregate and propagate relation signals on the scene graph
and refine the visual feature of humans and objects.

Although previous works [21, 27] have proposed mes-
sage passing mechanisms, the messages in these methods
are homogeneous, i.e., they are not aware of the specific re-
lations present in an image. This causes the gathered infor-
mation to be ambiguous and unrepresentative. To address
this issue, we propose to use the explicit relations in the
scene graph as messages to refine the human and object vi-
sual features. We define two types of messages for feature
refinement: inter- and intra-class messages, to capture the
different roles humans and objects play in the interaction.
Inter-class refinement. For the inter-class refinement, hu-
man nodes only aggregate the messages from object (i.e.
non-human) nodes, aimed at updating humans’ feature by
receiving relation messages from object neighbors. For ex-
ample, in Figure 1, by incorporating the relation message
of from hand, the model could reason that man 1 is hold-
ing a fork.

Given the visual feature of human f ih and object f jo , we
refine the human feature by aggregating the relationship
messages from its object neighbors. The inter-messages are
calculated by:

f̊ ih = Wo→h

 ∑
j∈N i

Wo · f jo ⊗ αo→h
ji

 (7)

where N i denotes the neighbors of human i in the scene
graph S; αo→h

ji is the word embedding of relation rji from
object to human as described in Eq. (3); and Wo and
Wo→h are two transformation layers.
Intra-class refinement. On the other hand, a human could
interact with several other humans, and their relationships
could provide essential clues. Different from the inter-class
refinement strategy, the intra-class messages are calculated
from human neighbors only:

f
i

h = Wh→h

 ∑
j∈N i

Wh · f jh ⊗ αh→h
ji

 (8)

Then, the refined human feature is formulated as:

f̃ ih = f ih + f
i

h + f̊ ih (9)

For iterative refinement, we only let f ih be updated as f̃ ih
and repeat the calculation following Eq. (7), (8), and (9).

Note that the object feature refinement also has inter- and
intra- parts and is similar to the human refinement, and we
omit their details for brevity reasons.

3.3. HOI Predication

After embedding the scene graph and refining visual fea-
tures, we have the global scene graph representation g̃k for
the image k and the refined human feature f̃ ih and object
feature f̃ io. In addition, we also extract the spatial mask of
each human-object pair with size 64 × 64 as the auxiliary
feature f ijs , following [25, 27]. The final prediction of HOI
is combined from two branches: visual appearance features
and refined features by message passing. For the human i
and object j, the visual branch is predicted by:

pv = δ(Wv[f
ij
s ⊗ [f ih; f

j
o ]]) (10)

where δ is the sigmoid active function and Wv is the classi-
fier parameters for visual features.

The message passing branch is calculated as below:

pm = δ(Wm[g̃k; f̃
i
h; f̃

j
o ]) (11)

where Wm is the classifier parameters for refined features.
Finally, we combine the two predicted scores as:

pij = λij · pv · pm (12)

where λij is the multiplication of the detected human and
object score normalized by [13].

In the training stage, we optimize the Binary Cross-
Entropy (BCE) loss on pij to optimize the HOI model.

4. Experiments
In this section, we first briefly describe the datasets, eval-

uation metrics and baseline models, as well as the imple-
mentation details. Next, we compare our model with the
state-of-art methods and further conduct a series of ablation
studies. Last, we show several qualitative results on the both
tasks: SGG and HOI.

4.1. Datasets and Metrics

Datasets: We evaluate our model’s performance on two
standard benchmarks: the V-COCO [6] and HICO-DET [1]
datasets. The training, validation and test sets of V-COCO
consist of 2, 533, 2, 867 and 4, 946 images, respectively.
Following previous works [25, 28], we also use the train-
ing and validation set, containing 5, 400 images in total, to
train our model. Each human-object pair in V-COCO is la-
beled with a 29-D one-hot vector. It is worth noting that
among the 29 actions, three (cut, hit, eat) have no interac-
tion objects. HICO-Det is a large dataset and is split into
two sets: 38, 118 training and 9, 658 testing images. In to-
tal, HICO-Det is annotated with 600 human-object interac-
tion classes, 80 object classes and 117 actions, including
a no-interaction class. Following previous works [1, 28],
we categorize the interactions into three groups: Full, Rare
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and Non-Rare, based on the number of its training samples.
Also, we further conduct the experiments under a “Known
Objects” setting but the default is unknown for objects.
Metric: We conduct model evaluation with the standard
evaluation metric [25, 28] role mean Average Precision
(mAProle). More concretely, if an HOI triple meets the fol-
lowing two conditions: (1) both of bounding boxes of the
detected human and object are greater than 0.5 with the re-
spective annotated ground-truth boxes; and (2) their interac-
tion class is correctly predicted, then we consider the HOI
triple is correct.
Baseline Models: We compare our model against the fol-
lowing state-of-the-art models: InteractNet [5], GPNN [21],
iCAN [4], TIK [13], VSGNet [25], InterPoint [28], FCN-
Net [16], PD-Net [33], and CHGNet [27]. A detailed dis-
cussion of these methods can be found in Sec. 2.

4.2. Implementation Details

For the backbone network, we use the Resnet-50 [9] as
the default feature extraction network for fair comparison
with other models. During the training stage, we freeze
the parameters of the backbone derived from the pre-trained
model on ImageNet [3]. The input image size is rescaled to
600× 800 or 800× 600, depending on the width and height
of the image. We use the ROIAlign module to extract the
human and object proposal features, which are transformed
by two fully connected non-linear layers. In addition, the
human and object bounding boxes are generated by Faster-
RCNN trained on the COCO [15] dataset, and the threshold
score for the detected human and object are empirically set
as 0.6 and 0.3, following [25]. The semantic word embed-
dings are from GLOVE [20] and all the word embedding
dimension is set to 300.

For the spatial feature extraction, we use two 64 × 64
masks as the input, but different from previous works [25,
28] that used two binary masks, we use two semantic masks,
i.e., the object proposal region is filled with the correspond-
ing object category information to differentiate them with
each other.

The scene graph is generated by the recent model [24].
We train it on the Visual Genome dataset [12], which is a
large dataset for visual relationship detection, with more
than 100, 000 images. To obtain high-quality scene graphs,
we use all images in the training and testing sets to train the
SGG model, and the validation set is used for selecting the
best model. For scene graph embedding, we set a threash-
hold 0.2 for relationship prediction, while we use the soft
label of relation predictions as the relation-aware messages
for reasoning.

During HOI training, we set the initial learning rate to
0.01 and dynamically decay it by 0.9 every 10 epochs.
To suppress the low confidence scores of detected objects,
we use the same strategy proposed in previous work [13].

As for the optimizer, we use Stochastic Gradient Descent
(SGD) to optimize all parameters. All experiments are con-
ducted on four Nvidia GeForce RTX 2080Ti GPUs with Py-
Torch.

Methods Feature Backbone mAProle

InteractNet [5] ResNet-50-FPN 40.0
GPNN [21] ResNet-152 44.0
iCAN [4] ResNet-50 45.3
TIK [13] ResNet-50 47.8
VSGNet [25] ResNet-50 51.1
InterPoint [28] Hourglass-104 51.0
PDNet† [33] ResNet-50 51.6
CHGNet [27] ResNet-50 52.7
FCNNet† [16] ResNet-50 53.1

SG2HOI ResNet-50 52.8
SG2HOI† ResNet-50 53.3

Table 1. Performance comparison on the V-COCO dataset in terms
of mAProle. The best score is marked in bold. † denotes the mod-
els that use Faster-RCNN pre-trained on COCO [15] as the feature
extractor for human and object.

4.3. State-of-the-art Comparison

We first present performance comparison with nine re-
cent state-of-the-art methods and report the mean Average
Precision score results on both datasets.

Table 1 shows the comparison results on the V-COCO
dataset. Among those methods, our SG2HOI gains com-
petitive performance superior to the majority of methods.
Specifically, in the group using the pretrained model on the
ImageNet, SG2HOI surpasses the best model CHGNet [27]
by 0.1 percentage point. In fact, CHGNet is superior to
other methods with the same feature extractor by at least
1.5 points, possibly because CHGNet also utilizes inter-
class and intra-class feature refinements for human and ob-
ject features. However, as we discussed in Sec. 3.2, since
CHGNet utilizes ambiguous messages to refine features and
ignores the valuable relationship from the scene graph, its
performance deteriorates a lot on the large and more com-
plex HICO-DET dataset, which is shown in Table 2. On
the other hand, when using the pre-trained Faster-RCNN
with ResNet-50 backbone on COCO, we can observe a
half point improvement (SG2HOI† over SG2HOI). Besides,
SG2HOI† exceeds the SOTA model FCNNet by 0.2 point.

Table 2 shows the comparison results on HICO-DET.
Following the experimental configurations in previous
work [28], we also evaluate our model on three different
HOI category sets: “Full”, “Rare”, and “Non-Rare”, un-
der two different schemes of “Default” and “Known Ob-
jects”. As can be observed, our SG2HOI method consis-
tently outperforms other state-of-the-art methods in both
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Methods Feature BackBone Default Known Object AverageFull Rare Non-Rare Full Rare Non-Rare

InteractNet [5] ResNet-50-FPN 9.94 7.16 10.77 - - - -
GPNN [21] ResNet-152 13.11 9.34 14.23 - - - -
iCAN [4] ResNet-50 14.84 10.45 16.15 16.43 12.01 17.75 14.61
TIK [13] ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26 17.25
VSGNet [25] ResNet-152 19.80 16.05 20.91 - - -
InterPoint [28] Hourglass-104 19.56 12.79 21.58 22.05 15.77 23.92 19.27
DPNet† [33] ResNet-50 19.99 14.95 21.50 24.15 18.06 25.97 20.76
CHGNet [27] ResNet-50 17.57 16.85 17.78 21.00 20.74 21.08 19.18
FCNNet† [16] ResNet-50 20.41 17.34 21.56 22.04 18.97 23.12 20.57

SG2HOI ResNet-50 20.62 17.41 21.06 23.48 19.06 24.54 21.03
SG2HOI† ResNet-50 20.93 18.24 21.78 24.83 20.52 25.32 21.94

Table 2. The comparison results on HICO-DET dataset in terms of Mean average precision (mAP). The best score is marked in bold. †

denotes the model uses Faster-RCNN pre-trained on COCO [15] as the feature extractor for human and object. It is worth noting that
InteractNet, GPNN, and VSGNet did not report their results on the Knowledge Object setting.

settings. Specifically, among the models that use a ResNet-
50 model pre-trained on ImageNet as the feature extractor,
our model achieves the best performance, with 0.76 points
higher than the best model InterPoint on average. Among
the other group that use Faster-RCNN as the feature extrac-
tor, we could evidently observe SG2HOI† is consistent su-
periority to the competitive models FCNNet and DPNet, by
1.37 and 1.18 percentages,respectively.

4.4. Ablation Studies

In this section we study the effectiveness of the two
main components in our model: scene graph embedding
and relation-aware message passing. To further compare to
other similar strategies, we also test other two counterparts:
image global feature from the last convolutional layer used
in previous work [16, 25] and non-relation-aware message
passing proposed in previous work [27].

Table 3 shows the results on the V-COCO dataset, where
the columns denote model variants with various modules
included/excluded. The baseline column denotes the model
that only uses visual appearance features and spatial infor-
mation of humans and objects for HOI prediction. Rows
sge, cov, rel, no-rel in Table 3 denote modules of scene
graph embedding, image global feature, relation-aware
message passing and non relation-aware message passing,
respectively. Our full model is the last column (⑤).
Scene Graph Embedding aims at providing scene-specific
global clues for HOI prediction, and the results in Table 3
show that this component (sge) can positively contribute to
the performance improvement. Specifically, there is an in-
crease of 2.8 absolute points increase with the addition of
scene graph embeddings (① vs the baseline), and an in-
crease of 5.7 points with the relation-aware message pass-
ing (② vs the baseline). Comparing ② to ③, we can see that

Modules baseline ① ② ③ ④ ⑤

sge ✓ ✓ ✓
cov ✓
rel ✓ ✓ ✓
no-rel ✓

mAProle 46.5 49.3 50.2 51.1 51.0 52.8
Table 3. The effectiveness of each component on the V-COCO
dataset as measured by mean Average Precision (mAProle). Note
that all the variant models use ResNet-50 pre-trained on ImageNet
as the feature extractor. Compared with the baseline that only
uses visual appearance and spatial features, our full model (⑤)
improves the performance by 13.55%.

the image global feature brings 0.9 points lift. However, the
performance of image global feature is still 1.9 points lower
than our scene graph embedding. Comparing ③ with our
full model ⑤, when switching from image features to scene
graph embeddings, the model gains a 1.7-point improve-
ment. These results demonstrate that our proposed scene
graph embedding module is not only effective but also su-
perior to the conventional image features.
Relation-aware Message Passing. To evaluate this com-
ponent, we design two baselines: (1) completely removing
this module and (2) replacing it with the conventional non-
relation-aware message passing strategy [27]. Comparing
results of the baseline and ② in Table 3, we can see there is
a 3.7 points improvement with the addition of the relation-
aware message passing module. Comparing ① with ④, we
can observe that the addition of non-relation-aware mes-
sage passing contributes 1.7 points increase. However, non-
relation-aware message passing still lags behind our full
model by 1.8 percentage points (④ vs ⑤).

We also conduct the ablation experiments on the HICO-
DET dataset, and the results are presented in Table 4, from
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Figure 5. Human-Object Interaction detection and scene graph generation results on V-COCO. For each image, the top right graph is the
generated scene graph which shows the basic relationships between object pairs, while the bottom right graph shows the predicted HOIs.
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Figure 6. Human-Object Interaction detection and scene graph generation results on HICO-DET. Note that the red arrow for the middle
image denotes the false predictions on both task.

Modules baseline ① ② ③ ④ ⑤

sge ✓ ✓ ✓
cov ✓
rel ✓ ✓ ✓
no-rel ✓

Default:
Full 14.54 17.27 18.46 19.02 18.85 20.62
Rare 12.92 15.36 16.80 17.15 17.09 17.41
Non-Rare 16.37 17.48 19.14 19.50 19.02 21.06

Known:
Full 16.83 17.82 18.17 18.25 20.75 23.48
Rare 14.02 16.24 17.63 18.02 18.44 19.06
Non-Rare 18.01 19.25 19.70 20.07 22.31 24.54

Table 4. The effectiveness of each component on the HICO-Det
dataset, as measured by mean Average Precision (mAProle). Note
that all the variant models use ResNet-50 pre-trained on ImageNet
as the feature extractor. Compared with the baseline only using
visual appearance and spatial features, our full model on average
improves the performance by 33.1%.

which we could obtain the same conclusions as on the V-
COCO dataset.

4.5. Qualitative Results

We further visualize some examples on both datasets, as
shown in Figures 5 and 6, respectively. For each image, we
draw its scene graph and predicted HOIs.

Generally, we could find that the generated scene graph
is more detailed than the HOI graph, and the two graphs
have intrinsic correlations. Taking the first image in Fig-
ure 5 as an example, as long as we know a man is on a skate-
board and his leg is under the skateboard, we are likely to
guess the interaction is skateboard, because the majority of

skateboarding people have the same relationships.
For the example from the HICO-DET shown in Figure 6,

some SG relation are the same as interaction classes, such
as sit on and ride. Therefore, we could directly obtain
these interactions. Additionally, there is a wrong relation-
ship predicted in the scene graph: in fact, there is no relation
between book and chair in the middle image in Figure 6.
Interestingly, since the SGG model predicts the relation be-
tween hand and book as hold, the HOI model also falsely
predicts the interaction as hold. Thus, the quality of scene
graph generation has an effect on the prediction of HOIs.

5. Conclusion

In this paper, we propose a novel framework, denoted as
SG2HOI, that utilizes scene graph information as the key
contextual cues to predict Human-Object Interaction. To
the best of our knowledge, our method is the first to bridge
the gap between the two tasks. Specifically, we achieve
this goal from two aspects. First, we embed the global
scene graph of each image as the scene-specific context, for
which we propose two embedding strategies: scene graph
layout embedding and attention-based relation fusion. Sec-
ondly, we treat each scene graph as a reasoning graph and
devise a novel relation-aware message passing mechanism
that gathers the relationship information from its inter-class
and intra-class neighbors. We conduct a wide range of eval-
uation on two benchmark datasets: V-COCO and HICO-
DET, which shows that our model’s performance is supe-
rior to current state-of-the-art methods. In the future, we
will integrate the two tasks as a dual-task learning problem
to improve the performance of both tasks.
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