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Abstract

Traffic accidents cost about 3% of the world’s GDP and
are the leading cause of death in children and young adults.
Accident risk maps are useful tools to monitor and mitigate
accident risk. We present a technique to generate high-
resolution (5 meters) accident risk maps. At this high res-
olution, accidents are sparse and risk estimation is limited
by bias-variance trade-off. Prior accident risk maps either
estimate low-resolution maps that are of low utility (high
bias), or they use frequency-based estimation techniques
that inaccurately predict where accidents actually happen
(high variance). To improve this trade-off, we use an end-
to-end deep architecture that can input satellite imagery,
GPS trajectories, road maps and the history of accidents.
Our evaluation on four metropolitan areas in the US with
a total area of 7,488 km2 shows that our technique outper-
form prior work in terms of resolution and accuracy.

1. Introduction
According to WHO, each year 1.35 million people die

and 20 to 50 million people sustain non-fatal injuries from
traffic accidents [20]. In the US alone, traffic accidents cost
$871 billion annually [6]. In most countries traffic accidents
cost about 3% of the GDP [20]. By identifying high-risk
locations on the map, many groups, including drivers, po-
lice departments, transportation departments and insurance
companies can take actions to reduce this risk.

Accident risk maps assign an expected rate of accident
over a given time period to each location on the map. Prior
works predict accident maps with resolutions of a few hun-
dred meters (Table 1). In this work we predict maps with
5m×5m resolution because there are important details that
are not captured in lower resolutions. At this resolution,
sparsity causes a bias-variance trade-off in the estimation of
the underlying risk. We explain this challenge in Section 2.

Figure 1. Our model inputs road maps, satellite imagery, GPS tra-
jectories, and historical traffic accidents. It outputs accident prob-
ability distribution. Note that our model has identified a few loca-
tions as high-risk (highlighted with circles) even though they have
no historical accidents. Locations that our model has identified as
high-risk experienced accidents during the follow-up years.

We improve this trade-off by incorporating context in-
formation from satellite imagery, GPS trajectories, and road
maps. We use an end-to-end deep neural network to com-
bine different data modalities. We discuss the details of our
model in Section 3. Figure 1 shows our four input modali-
ties, our prediction, and the accidents in the follow-up years.

At 5m×5m resolution, evaluation is also challenging be-
cause the ground-truth is noisy (It is sampled from a hidden
risk distribution.) In Section 4 we present a process to esti-
mate the prediction error with respect to the true underlying
risk distribution. Our maps outperform prior work in terms
of resolution and prediction error.
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Table 1. Overview of prior work on traffic and accident map prediction. We predict accident maps with one to two orders of magnitude
higher resolution than prior work. We also use richer input data than prior works.

Year Authors Resolution Method Input data
2005 Chang et al. [9] Entire highway Decision Tree Road map, average daily traffic (AADT), weather
2005 Chang et al. [8] Entire highway Neural Networks Road map, average daily traffic (AADT), weather
2007 Caliendo et al. [7] Entire highway Max. Likelihood Road map, AADT, slope and presence of junctions
2016 Chen et al. [11] 500m × 500m SdAE [4] GPS trajectories, historical accidents
2017 Yuan et al. [29] road segments Deep networks Historical Accidents, road map, weather
2017 Najjar et al. [17] 150m × 150m Pre-trained Alex-net Satellite imagery, accident history
2018 Ren et al. [22] 1km × 1km LSTM Historical accidents
2018 Chen et al. [10] 500m × 500m SdAE [4] Traffic flow (from plate recognition system), accident history
2018 Yuan et al. [28] 5km × 5km ConvLSTM Traffic volume, road condition, weather, satellite imagery
2019 Bao et al. [3] > 360m STCL-Net Crash, GPS, road, land use, population and weather data
2020 Zhou et al. [31] 1.5km × 1.5km RiskSeq Traffic flow, road network, weather and accident history
2021 This work 5m × 5m End-to-end deep net Satellite imagery, GPS trajectories, road map, accident history

2. Challenge of sparsity

In the US, the average annual rate of reported accidents
on a 5m×5m block of road is about 1 in 1000. Our analy-
sis on US traffic accidents dataset [16] shows that 31% of
the accidents occur in places where no other accidents hap-
pened nearby (within 50 meters) within four years. There-
fore, Monte Carlo probability estimation will miss some
high-risk areas and misidentify low-risk areas as high-risk.

Our goal in accident risk prediction is not to identify ex-
actly where new accidents will occur because this is impos-
sible. Instead, our goal is to identify the underlying risk of
accidents at each location, whether accidents occur or not.
Ideally, we should use the underlying risk of accidents as
ground-truth. However, the underlying risk of accidents is
unknown. Therefore, we use a map of future accidents as
an alternative ground-truth. The map of future accidents is a
Monte Carlo estimation of the underlying rate of accidents,
so it carries a large amount of estimation error. This error
leads to challenges in both prediction and evaluation.

Prediction: Assume that a 5m×5m grid cell has a 1%
annual rate of accidents. In one year, the number of acci-
dents at this location would be either 0 or 1. Estimating the
true risk of 1% given an input of 0 or 1 is challenging.

Evaluation: Since the true underlying rate of accidents
is unknown, we can only use an observed rate of accident as
a proxy to ground-truth. Therefore, our ground-truth itself
carries error and this adversely affects the evaluation.

One way to deal with the challenges of sparsity is to re-
duce estimation resolution. However, this low resolution
causes bias in estimation. As an example of this bias, as-
sume that a dangerous intersection and a safe street are
grouped into one single cell. An estimate for the risk in
this cell will underestimate the risk of the dangerous inter-
section and will overestimate the risk of the safe street (Fig-
ure 2-c). This underestimation and overestimation repeats
with varying input, therefore, it is a form of model bias.

2.1. Prior work

Most prior works use low resolutions to control spar-
sity (Table 1). Several works in transportation journals
adopt a high resolution, but they are used for visualization
purposes and do not evaluate their results.

The general problem of accident prediction is a fre-
quent subject of study [27], but few studies produce ac-
cident maps. Most works focus on the effect of certain
events (weather, calendar, lighting) on the frequency of ac-
cidents [13]. In this work, we study the spatial accident
maps and only review major prior works that produce ac-
cident maps. These works either produce coarse resolution
maps or use kernel density estimation.

Coarse resolution: Some works choose a coarse spa-
tial granularity to predict accident risk. The most relevant
works include the work by Najjar et al. [17] that uses satel-
lite imagery, and the work by Chen et al. [11] that uses
GPS trajectories. Other notable works are listed in Ta-
ble 1. Coarse-resolution models miss accident hot-spots and
misidentify low risk locations as high risk (Figure 2-c).

Kernel Density Estimation: Most works in transporta-
tion journals use Kernel Density Estimation. KDE applies
a Gaussian kernel to historical measurements [23]. Xie et
al. [25] use KDE along the roads rather than in the 2D do-
main. Most KDE works evaluate their performance only
visually. The most notable exception is the work by Xie et
al. [26] that calculates statistical significance levels. Ander-
son et al. [2] identify accident hot-spots but do not quantita-
tively evaluate the performance. Le et al. [14] identify hot-
spots and evaluate their ranking. All of these KDE-based
works only use historical accidents and a road map to visu-
alize accidents [21, 5, 24, 3, 31]. These works use similar
KDE techniques in different cities around the world. Okabe
et al. [19], Netek et al. [18] and Shariat et al. [15] imple-
mented KDE in GIS environment. We implemented KDE
and compared against it (Figure 2).
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Figure 2. (b) Kernel density estimation (KDE) generally highlights
areas with historical accidents as hot-spots. Therefore, it fails to
predict new accidents (compare the blue box) and can only work
for high-risk areas. (c) Low-resolution models have a high bias
because they may assign the same risk score to a freeway and its
neighboring residential road simultaneously (compare the purple
box). (d) Our approach can identify high-risk locations that have
not experienced accidents in historical data but are likely to ex-
perience accidents in the future. Note that the KDE predicts very
specific risky locations, many of which do not have accidents in
the future. In contrast, our method accurately highlights the roads
where future accidents happen, properly attributing more risk to
intersections and ramps. We did not visualize historical accidents
as they look similar to KDE.

2.2. Addressing the challenge of sparsity

Prior work based on historical accidents uses variants of
Monte Carlo estimation. As such, it only works for places
where there is sufficient historical accident data and well-
maintained records. To overcome this challenge, we note
that places with similar road structures, similar visual ap-
pearances, and similar traffic patterns are likely to have sim-
ilar accident risk profiles. If one intersection experiences as
accident, we can share some risks with similar intersections.
In order to generalize from one intersection to another, we
need some context information that can capture the similar-
ity between intersections.

In this work, we use context from satellite imagery, GPS
trajectories, and road maps. We use a deep model that in-
puts context and learns to generate useful representations
for each position. Our model learns an internal metric based
on an accident-based similarity score.

The three data modalities that we used (in addition to
historical accident data) provide complementary informa-
tion. For example, GPS trajectories carry information about
the density, speed, and flow of traffic. Satellite imagery
carries information about the road, such as the number of
lanes, whether there is a road shoulder, and whether there
are many pedestrians.

2.3. Evaluation with ground-truth error

We use future accidents as a proxy to the underlying rate
of accidents. This proxy has an error that adversely affects
evaluation, therefore we need to isolate it.

Assume a map has n grid cells and there is an underlying
rate of accident for each cell Ri that we want to estimate.
There is an observation of the historical rate of accidents
at each location Hi. There is also an observation of the
future rate of accident Fi. Since accidents are independent
events, We can assume Hi and Fi are drawn from a Poisson
distribution with rate Ri. We can write down the rate of all
grid cells write them down in the following vector form:

|H−F |22 = |H−R|22+ |F−R|22+2(H−R)(F−R). (1)

Since at each location i, Hi and Fi are independent draws
from the same Poisson distribution, in expectation, F and
H have orthogonal deviations from the distribution mean
R. Therefore, the last term in Equation 1 is negligible in
practical settings. Also Hi and Fi have similar expected
errors. Simplifying, we get:

|F −R|22 = |H −R|22 =
1

2
|H − F |22. (2)

Even though we don’t know R, we can approximate the er-
ror of F with respect to R.

Our goal is to estimate the underlying risk of accidents
R̂. Since R is not given, we use F as a proxy and calculate
|R̂ − F |22 as prediction error. There is a similar relation to
equation 1 between R̂ and F :

|R̂−F |22 = |R̂−R|22+ |F −R|22+2(R̂−R)(F −R). (3)

Note that in equation 3 the last term multiplies two residuals
from R. If these two residuals have any significant correla-
tion, it means that our prediction shares some error with the
test set. This is not possible because our model doesn’t get
feedback from the test set. Therefore, these two residuals
should be uncorrelated in practical settings. Using Equa-
tions 2 and 3 we have:

|R̂−R|22 = |R̂− F |22 −
1

2
|H − F |22. (4)

This way we eliminate the error of F from our evaluation.
If the residuals were I.I.D., the dot product between

residuals would reach zero with a rate of Θ(
√
n
n ). Even

though the residuals are not I.I.D., in practice, accident
maps span a diverse area and accident rates are bounded;
therefore we can argue that the last term in Equations 1
and 3 grow slower than Θ(1) and reach zero when n is large.

We tried formulating the same logic using maximum-
likelihood, KL-divergence and L1-norm. However, the
properties of orthogonality that make this analysis work are
only available in L2-norm.
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Figure 3. We use a deep model that takes four different data sources as input and predicts an accident risk map at 5-meter resolution – only
at this high resolution can we distinguish the different risks in the output example where the freeway road has a higher risk than the nearby
residential roads and the ramp merging and exiting area has an even higher risk than other places.

3. Learning to predict risk maps

We use a deep model to predict accident risk at every
grid cell on the map. In the design of this model, we need
to overcome the challenges caused by sparsity while mak-
ing sure that our model can learn useful information from
all input sources. We illustrate our model architecture in
Figure 3. The model takes different data modalities as in-
put and predicts a 2D risk map y ∈ RN×N , where N is the
dimension of the target map grid, and we set it to 48. Next,
we discuss the details of our model.

Model Inputs: Our model takes five different data
sources as input to predict a risk map for an N × N map
gird with a resolution of 5 meters. The first input is an
RGB-channel satellite image. We use a higher-resolution
(8N × 8N ) imagery to capture more visual information.
In this case, the satellite image input is represented as an
8N × 8N × 3 tensor. The second input is a segmentation
mask of the road map in the target region. Similar to the
satellite image input, we use a high resolution for the road
mask (8N × 8N × 1).

Our model also takes GPS trajectories as input. We rep-
resent the GPS trajectories in two formats: One is a 2D his-
togram (N ×N × 1) which encodes the density of the GPS
trajectories (at log-scale) on each grid cell. The other format
extends the 2D GPS histogram with 12 additional features,
encoding the statistics (10-th, 50-th and 90-th percentiles)
of the speeds, accelerations, turning angles, and the counts
of left/right/no turns of all the GPS trajectories that pass
through each grid cell. Combined with the original 2D GPS
histogram, this input format contains 13 channels in total,
and we represent it as an N ×N × 13 tensor.

The last input source is the historical accident data. We
use the rate of historical accidents in each grid cell.

During training, we randomly drop out each input source
with a probability of 20%. We find that this strategy is help-

ful when the training dataset is small. Our model supports
using a subset of the above five data sources as input. In this
case, we can predict risk maps even if some data sources are
not available in the region of study.

Model architecture: In our model, we first pre-process
input data so that different sources of data all have the same
spatial dimensions. We stack the satellite input and the road
segmentation input into one tensor and pass it to a 6-layer
CNN encoder which down-scales the input dimension and
extends the channel width from 4 (3 RGB channels + 1 map
channel) to 32. Meanwhile, we use a 2-layer CNN encoder
to increase the dimensions of the GPS feature input from 13
to 30. Therefore, if we stack all the input sources together,
the total number of channels add up to 64.

After pre-processing, we stack all the input sources into
an N ×N × 64 tensor and pass it to a ResNet-18 encoder.
We take the feature maps after each residual block set and
up-sample them so that they all have the same spatial di-
mensions. Then, we stack them into a N ×N ×960 feature
map and pass this feature map to a 3-layer CNN decoder.

Skip Connections and Fusion: We don’t use this 3-
layer CNN decoder to predict the final risk map directly;
instead, we introduce a skip connection and a fusion module
to produce the final risk map. We observed that the histor-
ical data is very similar to the training target in some high-
risk regions. As a result, if we directly produce the risk map
using the 3-layer CNN decoder, the model relies on the his-
torical data and ignores other data sources, ending up in a
low-performance local optima. To overcome this issue, we
let the 3-layer CNN decoder predict two N ×N tensors: a
risk map denoted as y1 and a gate g where gi,j ∈ (0, 1). We
use the weighted average of y1 and another risk map pre-
diction y2, which only uses the historical data as the final
output. Formally, we have y = y1 · g + y2 · (1 − g). This
allows our model to focus on learning the residual between
the historical data and the target.
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Table 2. Dataset details in each city. The fact that Boston has fewer
accidents explains why more features don’t always help.

LA NYC Chicago Boston
Tiles 813 458 282 319
Accidents 351k 88k 45k 33k
GPS (km) 3.1M 1.8M 0.7M 2.0M

Target and loss function: We temporally partition ac-
cidents into two groups: historical accidents (happened be-
fore some time t) and future accidents (happened after t).
A historical accident map is given as input to let the model
understand the distribution of accidents. A future accident
map is given as the prediction target. We use future ac-
cidents as a proxy for the true underlying risk distribution
which is unknown. The future accident map is a sparse sam-
ple from the true underlying risk distribution. Therefore, it
is noisy and not ideal. However, it is useful because the
sampling error in the future accident map is not correlated
with the sampling error in the historical accident map (be-
cause they are independent samples). Therefore, future ac-
cident map does not carry a systematic bias from historical
accidents, so it is a useful proxy. Our loss function is the
mean squared error between our prediction and the future
accident map.

4. Evaluation

4.1. Dataset

We evaluate our model on a dataset covering an area of
7,488 km2 from four metropolitan areas: Los Angeles, New
York City, Chicago, and Boston. The dataset is organized
as 1,872 2km×2km tiles. For each tile, we collect satellite
imagery from MapBox [1] and create the road segmenta-
tion mask using OpenStreetMap [12]. Our imagery has a
resolution of 0.625 meters. We also construct the road seg-
mentation mask with this resolution.

We use a proprietary GPS dataset collected from 2015
to 2017 in the four metropolitan areas as the source of GPS
trajectories. This dataset contains a total of 7.6 million km
of GPS trajectories with a 1-second sampling rate.

We use the US accidents dataset [16] that contains 4.2
million records for accidents that were occurred in the US
from 2016 to 2020. Each record comes with coordinates,
timestamps, and a few other fields of information. We split
this accident dataset into two parts containing the data from
the first two years and the data from the last two years. We
use the first two years’ data as historical data to feed into
the model as input. We use the last two years’ data as future
accidents. Future accidents are used for training and eval-
uation. In table 2, we summarize the amount of available
data in each city that helps to compare the results from the
four different cities.

4.2. Training Details

In our evaluation, we split the dataset spatially into a
training set (80%), a testing set (15%), and a validation set
(5%). We train our models on the training set for 50 epochs,
start with a learning rate of 0.0001 and decrease it by a fac-
tor of 1

10 at the 20-th epoch and the 40-th epoch. The train-
ing took 6 days on one Nvidia V-100 GPU. After training,
we use the validation set to find the best model and evaluate
the model on the testing set. The training/evaluation code,
the output accident maps, and the instruction to download
the dataset are available on GitHub.

4.3. Evaluation settings

We have two major evaluation settings: with history and
without history. In the “with history” setting, we supply
historical accidents to the model, while in the “without his-
tory” setting, we do not supply historical accidents to the
model.

Depending on the use case, historical accident data may
or may not be available to the model. If historical accident
data is available and the goal is to produce an accurate acci-
dent map, then accident history data should be used as input.
If historical accident data is unavailable, or if this model is
being used as a recommender system or to compare hypo-
thetical designs, then historical data cannot be supplied.

We evaluate a few variants for each of the “with history”
and “without history” settings. These variants include six
variants of our model, kernel density estimation, and the-
oretical upper-bounds for low-resolution techniques. We
compare with the theoretical upper-bounds as a reference
to show the effect of the resolution.

In the “with history” evaluation setting, we use two years
or accident data as input, while in the “without history”
evaluation setting, we do not use historical accidents as in-
put.

4.4. Evaluation metrics

In prior works, accident map prediction is formulated ei-
ther as a binary classification problem or as a regression
problem. Classification-based works assign a binary la-
bel (whether any accidents happened) to each cell within a
time window of interest. Then they predict a score for each
cell within the time window of interest. Finally, they com-
pare their prediction scores with the binary ground truth and
evaluate their performance using the precision-recall curve
and average precision.

Regression-based techniques predict the number of ac-
cidents within each cell and the time window of interest.
Regression-based techniques often have a low resolution;
therefore, several accidents could occur within each cell.
Regression-based techniques typically use RMSE between
the ground-truth number of accidents in each cell and their
estimation to evaluate their regression performance.
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(b) Accident Risk Prediction Without Historical Data(a) Accident Risk Prediction With 2-Year Historical Data

Figure 4. (a) Precision-Recall curves for “with history” setting. We present the results of three variants of our model, Kernel Density
Estimation (KDE), and three upper-bounds on low-resolution techniques. The improvement from satellite imagery is on the lower-risk
(right) side of the curve. KDE identifies the most high-risk places well but performs worse on low-risk places. (b) Precision-Recall curves
for “without history” setting. In the absences of historical data, accident prediction accuracy is lower and the context information is more
useful. In this case, GPS trajectories are effective in improving the performance.

We evaluate our model with both AP and RMSE. Fig-
ure 4-a shows our precision-recall curve for the “with his-
tory” model. Figure 4-b shows our precision-recall curve
for the “without history” model. Table 3 also compare av-
erage precision quantitatively.

Traffic accident estimation techniques that perform re-
gression use RMSE to evaluate their performance. We com-
pared our performance with RMSE in table 3. AP and
RMSE have a few notable differences. First, AP puts a
higher weight on high-risk locations than RMSE. Second,
AP does not distinguish between one or many accidents in
a cell. AP is useful for evaluating performance in high-risk
areas. RMSE is useful to evaluate overall performance.

When reading these precision-recall curves, we should
note that the prior probability of the prediction target has
a large effect on AP statistics. A classification task on a
10m×10m map has four times higher prior than a classi-
fication on a 5m×5m map. Therefore, average precision
numbers on different resolutions are different and should
not be compared. Furthermore, since ground-truth itself is
noisy, there is an upper limit on maximum AP.

4.5. Baselines and prior work

Unfortunately, the code for most of the prior work is
not available. Furthermore, each prior work has studied
one separate city with private data. We use the US acci-
dents dataset [16] that is a large scale and publicly available
dataset covering the entire US. In order to compare to the
prior work we perform the following:

1. Since several prior works use KDE, we implemented
and evaluated KDE as a baseline. The details of KDE
is presented in [23]. We tuned the parameters of KDE
so that it can achieve its highest average precision.

2. Since prior works use lower resolution than we do (Ta-

ble 1), they cannot pinpoint accident hot-spots. This
has a profound adverse effect on their performance.
The effect of low resolution (100m×100m vs 5m×5m)
is so significant that even if the prior works are al-
lowed to optimize their output on the actual test-set,
they still under-perform comparing to our model. To
compare with the prior works, we use the best theoret-
ical possible prediction (optimized on the test set with
the knowledge of the future accidents) at their resolu-
tion. We refer to this as theoretical upper-bound for
their accuracy. We show that our technique outper-
forms this theoretical upper-bound for prior works. We
use theoretical upper-bound because the code for prior
works is not available and they are evaluated on differ-
ent cities than ours.

3. Different prior works use different sources of data as
input (Table 1). We measure the effect of different
sources of data on the performance of the model. This
measures the effect of the extra data that we use.

4.6. Evaluation Results

We summarize our results in Table 3 and Figure 5. We
show the APs and RMSEs of different approaches under
two setups – with and without historical data. Next, we
discuss a few insights we learned from this experiment.

Prediction with historical data: Our model uses other
data sources to improve the risk map prediction when the
historical data is available. As a result, our model performs
better than the KDE-based approaches that only take the
historical data input into account. As shown in Table 3,
compared to the KDE-based approaches, our models im-
prove the AP by 4.87 points and reduce the RMSE by 8.8%.

Prediction without historical data: When historical
data is not available, our model can still use the other data
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Table 3. Comparison of AP and RMSE for different methods. The first 7 rows compare the methods without using historical data as
input, and the last 7 rows compare the methods that use the historical data as input. We also show the theoretical upper-bounds for the
low-resolution risk maps at rows 8-10. In this comparison, all variants of our model consistently outperform other methods on both metrics.

Methods Average Precision (%) RMSE (10−6)
LA NYC CHI BOS Avg. LA NYC CHI BOS Avg.

w
/o

hi
st

or
ic

al
da

ta GPS Density 16.82 11.87 6.95 5.83 11.90 1.397 2.652 5.216 4.555 2.823
Road (ours) 19.67 13.36 10.85 13.75 15.51 1.330 2.630 5.035 4.363 2.730
Road+Satellite (ours) 24.61 14.13 13.98 11.74 19.81 1.282 2.574 4.869 4.309 2.662
Road+GPS-Hist (ours) 28.59 17.56 22.71 16.72 23.01 1.239 2.552 4.690 4.203 2.594
Road+GPS-Hist+Sat. (ours) 28.83 16.51 21.02 16.75 23.15 1.233 2.556 4.688 4.243 2.599
Road+GPS-Feat. (ours) 27.28 15.11 19.66 15.12 21.71 1.271 2.616 4.744 4.296 2.648
Road+GPS-Feat.+Sat. (ours) 28.29 16.41 22.26 14.49 22.15 1.242 2.608 4.591 4.338 2.618

w
ith

hi
st

or
ic

al
da

ta

100m (upper bound) 23.64 20.28 13.79 16.40 21.37 1.328 2.462 4.925 4.210 2.644
200m (upper bound) 14.28 10.68 6.20 8.54 12.32 1.404 2.657 5.163 4.462 2.804
500m (upper bound) 7.86 5.61 2.94 3.70 6.62 1.439 2.729 5.255 4.583 2.872
KDE on historical data 42.60 22.11 25.68 20.06 34.24 0.945 2.562 4.060 5.073 2.529
Road (ours) 43.48 25.41 27.26 23.16 35.86 0.901 2.459 3.938 4.758 2.412
Road+Satellite (ours) 44.77 23.91 27.08 21.09 35.10 0.860 2.306 3.897 4.570 2.317
Road+GPS-Hist (ours) 46.42 27.71 30.83 24.87 38.33 0.865 2.365 3.818 4.461 2.304
Road+GPS-Hist+Sat. (ours) 46.27 26.96 30.01 23.93 37.79 0.859 2.278 3.888 4.573 2.308
Road+GPS-Feat. (ours) 46.55 28.07 33.38 24.13 38.28 0.852 2.330 3.701 4.724 2.318
Road+GPS-Feat.+Sat. (ours) 47.67 28.90 32.95 24.63 39.11 0.853 2.316 3.799 4.783 2.339

sources to estimate the risk, achieving an AP of 23.15% and
an RMSE of 2.594; this accuracy is significantly improved
compared to a baseline method that only uses GPS density
to estimate the traffic risk. More importantly, unlike most
prior works that rely on historical accidents, we can use this
model to create risk maps for places that do not have histor-
ical data, holding the potential to create broader impact.

Low resolution prediction upper bounds: We find that
our models can outperform the 100-meter resolution upper
bound by a large margin — 17.74 points on the AP metric
and a 12.8%-reduction on the RMSE metric when the his-
torical data is available. Even when the historical data is not
available, our models can still outperform this upper bound
thanks to the high resolution of our predicted risk maps.

Impact of each data source: Within our model, we
evaluate six variants that use different combinations of data
sources. In our experiments, 2 of the variants do not have
GPS input. Comparing them with the other four variants,
we can observe the benefit of the GPS data source. This
benefit is due to two reasons, (1) the information carried by
GPS data, such as the volume of the traffic, has a strong
correlation with accident risk, (2) because information con-
tained in the GPS data after aggregation (e.g., using a his-
togram) is relatively limited, overfitting becomes unlikely,
and the prior learned from one place can be easily general-
ized to other places. This property is especially important
in our scenario where the ground truth data is sparse.

Besides the benefit of the GPS data source, we also ob-
serve another important fact. Among the four cities, LA
is the most unsafe city (has the highest accident density),
followed by New York City, Chicago and Boston. The spar-

sity of our dataset in each city follows the reverse order. If
we look at the average precision (AP) of each model (with
historical data) in these four cities, we find that the mod-
els that take more information as input generally perform
better in LA and New York City where accidents are less
sparse. However, they perform worse in Boston, where the
accidents are sparser. This fact verifies that the challenge
caused by sparsity does indeed exist.

Because the GPS data contains important information
about traffic patterns that can be helpful for accident risk
prediction, instead of using the aggregated GPS histogram
or hand-crafted statistics such as the median speed, we tried
to use a Deep Set [30] to extract more information from
the raw GPS trajectories end-to-end. However, we found
that DeepSet actually harms the accuracy in our dataset be-
cause the provision of the extra rich features from the raw
GPS trajectories greatly increases model variance and over-
fitting. We observe this fact even in LA, where it has the
highest accident density.

Cross-city evaluation: We evaluate the generalization
ability of our model in a cross-city evaluation setup where
we train a model on three different cities and test it on an
unseen city. As shown in Table 4, we find our model can
generalize well on unseen testing cities.

Table 4. Comparison of the average precision of city-specific mod-
els vs a cross-city model. City-specific models perform slightly
better. We believe this is because each city has certain unique
characteristics.

Training cfg. LA NYC CHI BOS
Same cities 47.67% 28.90% 32.95% 24.63%
Cross-city 47.61% 27.79% 31.33% 24.52%
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Figure 5. We show the risk maps produced by the KDE approach, and our approach (with and w/o historical data), along with the 2-year
future accidents (used as the target in our evaluation) and the 2-year historical accidents in the four cities. We find that our risk maps can
capture the underlying risk distribution that determines the probability of future accidents at all places and do so even without any historical
data. In contrast, the KDE-based approach can only highlight places where there were accidents before and fail to assess the risks at other
places. For example, in New York City, the accidents happened at random intersections in those two 2-year periods. Even though it looks
like our risk map has low precision because there is no accident at many high-risk intersections in a 2-year period, our model captures the
underlying risk distribution — accidents happen at those intersections with a similar chance.

Hyper-parameters: Since the targets (accidents) are
sparse, over-fitting is a major issue. We found that optimal
hyper-parameters (including model size) highly depend on
the size and sparsity of the dataset. Larger models generally
perform better in larger cities. Hyper-parameters must be
tuned to the input size. In this work, we focused on the logic
behind model design rather than tuning hyper-parameters to
one dataset.

Insight: In summary, we find that the sparsity of acci-
dents is a major challenge in the design of an accident risk
prediction model. On the one hand, we need to use more
data sources and deeper architectures so that we can learn
a good estimation of the accident risk. On the other hand,
due to the sparsity of the accidents, using more input fea-
tures and deeper models can lead to overfitting.

5. Conclusion
We presented an end-to-end deep model that predicts

high-resolution traffic accident risk maps. Since accident
data is sparse, sample efficiency is key for a successful ac-
cident risk estimation technique. To improve sample effi-
ciency, we use a model that establishes the similarity be-
tween locations, not just based on proximity (as in KDE)
but also on similarity in appearance. We developed a model

to use satellite imagery, GPS trajectories, and road maps
to achieve this. We extensively evaluated and showed that
our model has state-of-the-art performance. Besides the im-
proved performance and the useful maps we generated, our
evaluations provide insights into how to achieve high per-
formance in the face of accident data sparsity.

Future work: One potential extension of this work is
to combine this work with temporal risk prediction tech-
niques to establish a spatio-temporal accident risk model.
In the simplest form, there could be independent spatial and
temporal components in the model. A comprehensive ac-
cident risk model could potentially input other factors, in-
cluding weather patterns, driver characteristics, driving be-
havior, and vehicle condition.

Accident related applications: Our model is flexible in
terms of what data sources are available. Once our model is
trained, we can apply it to countries where detailed histori-
cal accident data is not published. Furthermore, this model
can be potentially used to compare city layout designs be-
fore construction.

Other Applications: Even though this model has been
developed for accident prediction, this fundamental tech-
nique can work for similar sparse location-based problems,
including 911 emergency risk maps or taxi demand maps.
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