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Abstract

Neural volumetric representations such as Neural Ra-
diance Fields (NeRF) have emerged as a compelling tech-
nique for learning to represent 3D scenes from images with
the goal of rendering photorealistic images of the scene
from unobserved viewpoints. However, NeRF’s computa-
tional requirements are prohibitive for real-time applica-
tions: rendering views from a trained NeRF requires query-
ing a multilayer perceptron (MLP) hundreds of times per
ray. We present a method to train a NeRF, then precompute
and store (i.e. “bake”) it as a novel representation called
a Sparse Neural Radiance Grid (SNeRG) that enables real-
time rendering on commodity hardware. To achieve this, we
introduce 1) a reformulation of NeRF’s architecture, and
2) a sparse voxel grid representation with learned feature
vectors. The resulting scene representation retains NeRF’s
ability to render fine geometric details and view-dependent
appearance, is compact (averaging less than 90 MB per
scene), and can be rendered in real-time (higher than 30
frames per second on a laptop GPU). Actual screen cap-
tures are shown in our video.

1. Introduction

The task of view synthesis — using observed images
to recover a 3D scene representation that can render the
scene from novel unobserved viewpoints — has recently
seen dramatic progress as a result of using neural volumet-
ric representations. In particular, Neural Radiance Fields
(NeRF) [31] are able to render photorealistic novel views
with fine geometric details and realistic view-dependent ap-
pearance by representing a scene as a continuous volumetric
function, parameterized by a multilayer perceptron (MLP)
that maps from a continuous 3D position to the volume
density and view-dependent emitted radiance at that loca-
tion. Unfortunately, NeRF’s rendering procedure is quite
slow: rendering a ray requires querying an MLP hundreds
of times, such that rendering a frame at 800 × 800 resolu-
tion takes roughly a minute on a modern GPU. This pre-
vents NeRF from being used for interactive view synthesis

Figure 1: Our method “bakes” NeRF’s continuous neural
volumetric scene representation into a discrete Sparse Neu-
ral Radiance Grid (SNeRG) for real-time rendering on com-
modity hardware (∼ 65 frames per second on a MacBook
Pro in the example shown here). Our method is more than
two orders of magnitude faster than prior work for acceler-
ating NeRF’s rendering procedure and more than an order
of magnitude faster than the next-fastest alternative (Neural
Volumes) while achieving substantially higher-quality.

applications such as virtual and augmented reality, or even
simply inspecting a recovered 3D model in a web browser.

We address the problem of rendering a trained NeRF in
real-time, see Figure 1. Our approach accelerates render-
ing by three orders of magnitude, achieving 12 milliseconds
per frame on a single GPU. We precompute and store (i.e.
“bake”) a trained NeRF into a sparse 3D voxel grid data
structure, which we call a Sparse Neural Radiance Grid
(SNeRG). Each active voxel in a SNeRG contains opac-
ity, diffuse color, and a learned feature vector that encodes
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view-dependent effects. To render this representation, we
first accumulate the diffuse colors and feature vectors along
each ray. Next, we pass the accumulated feature vector
through a lightweight MLP to produce a view-dependent
residual that is added to the accumulated diffuse color.

We introduce two key modifications to NeRF to effec-
tively bake it into this sparse voxel representation: 1) we
design a “deferred” NeRF architecture that represents view-
dependent effects with an MLP that only runs once per pixel
(instead of once per 3D sample as done in NeRF), and 2) we
regularize NeRF’s predicted opacity field during training to
encourage sparsity, which improves both the storage cost
and rendering time for the resulting SNeRG.

We demonstrate that our approach is able to increase the
rendering speed of NeRF so that frames can be rendered in
real-time, while retaining NeRF’s ability to represent fine
geometric details and convincing view-dependent effects.
Furthermore, our representation is compact, and requires
less than 90 MB on average to represent a scene.

2. Related work

In this section, we review scene representations used for
view synthesis with a specific focus on their ability to sup-
port real-time rendering, and discuss prior work in efficient
representation and rendering of volumetric representations.
Scene Representations for View Synthesis The task of
view synthesis, using observed images of an object or
scene to render photorealistic images from novel unob-
served viewpoints, has a rich history in graphics and com-
puter vision. When the scene is captured by densely-
sampled images, light field rendering techniques [9, 16, 23]
can be used to efficiently render novel views by interpolat-
ing between sampled rays. Unfortunately, the sampling and
storage requirements of light field interpolation techniques
are typically intractable for significant viewpoint motion.
Methods that aim to support free-viewpoint rendering from
sparsely-sampled images typically reconstruct an explicit
3D representation of the scene [10]. One popular class of
methods uses mesh-based representations, with either dif-
fuse [29] or view-dependent [6, 10, 53] appearance. Re-
cent methods trained deep networks to increase the qual-
ity of mesh renderings, improving robustness to errors in
the reconstructed mesh geometry [17, 48]. Mesh-based ap-
proaches are naturally amenable to real-time rendering with
modern rasterization pipelines. However, as gradient-based
optimization of a rendering loss with a mesh representation
is difficult, these methods struggle to reconstruct fine struc-
tures and detailed geometry.

Another popular class of methods uses discretized volu-
metric representations such as voxel grids [27, 41, 42, 45]
or multiplane images [13, 37, 46, 56]. While volumetric
approaches are better suited to gradient-based optimization,
discretized voxel representations are fundamentally limited

by their cubic scaling. This restricts them to relatively low
resolutions (for voxel grids), or rendering from a limited
range of viewpoints (for multiplane images).

NeRF [31] replaces these discretized volumetric repre-
sentations with an MLP that represents a scene as a con-
tinuous neural volumetric function, mapping from a 3D co-
ordinate to the volume density and view-dependent emit-
ted radiance at that position. NeRF has been remark-
ably successful for view synthesis, and follow-on works
have extended it for generative modeling [7, 40], dynamic
scenes [24, 35], non-rigidly deforming objects [14, 36], and
relighting [3, 44]. NeRF is able to represent detailed geom-
etry and realistic appearance extremely efficiently (NeRF
uses approximately 5 MB of network weights to represent
each scene), but this comes at the cost of slow rendering.
NeRF needs to query its MLP hundreds of times per ray,
and requires roughly a minute to render a single frame. We
specifically address this issue, and present a method that en-
ables a trained NeRF to be rendered in real-time.

Recent works improve efficiency of NeRF’s neural vol-
umetric rendering. AutoInt [25] designs a network archi-
tecture that automatically computes integrals along rays,
which enables a piecewise ray-marching procedure with
fewer MLP evaluations. Neural Sparse Voxel Fields [26]
store a 3D voxel grid of latent codes, and sparsifies this grid
during training to enable NeRF to skip free space during
rendering. Decomposed Radiance Fields [38] represents a
scene using a set of smaller MLPs instead of a single large
MLP. However, these methods achieve moderate speedups
of around 10× at best, and are therefore not suited for real-
time rendering. In contrast to these methods, we specifi-
cally focus on accelerating the rendering of a NeRF after
it has been trained, allowing us to leverage precomputation
strategies that are difficult to incorporate during training.

Concurrent to our work, several approaches have ex-
plored real-time rendering of NeRF reconstructions. Rather
than precomputing, Reiser et al. [39] represent the scene as
a 3D grid of smaller MLPs. Neff et al. [32] predict sam-
ple locations with an MLP and can thus render images with
much fewer samples per ray. It is also possible to bake
view-dependent colors — the field of precomputed radi-
ance transfer explores spherical basis functions [43, 33, 49]
suitable for this purpose. Yu et al. [54] store the scene in
a multi-resolution voxel octree and encode view-dependent
color as spherical harmonics basis functions at every voxel.
Garbin et al. [15] instead factorize the view-dependent com-
putation as a dot product between a global spherical func-
tion and a per-sample feature vector. While fully baked rep-
resentations [15, 54] perform the least computation per 3D
sample point, our representation, KiloNeRF [39] and DON-
eRF [32] compress the scene more effectively, as they rep-
resent view-dependence with MLPs instead of precomputed
spherical functions.
Efficient Volume Rendering Discretized volumetric rep-
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Figure 2: Pipeline overview. We jointly design a “deferred” NeRF as well as a procedure to precompute and store its the
outputs in a sparse 3D voxel grid data structure for real-time rendering. At training time, we query the deferred NeRF’s MLP
for the diffuse color, volume density, and feature-vector at any 3D location along a ray. At test time, we instead precompute
and store these values in a sparse 3D voxel grid. Next, we alpha-composite the diffuse colors and feature vectors along the
ray. Once the ray has terminated, we use another MLP to predict a view-dependent specular color from the accumulated
feature vector, diffuse color, and the ray’s viewing direction. Note that this MLP is only run once per pixel.

resentations have been used extensively in computer graph-
ics to make rendering more efficient both in terms of storage
and rendering speed. Early works [19, 22, 52] primarily
focused on fast rendering of dense voxel grids. However,
as shown by Laine and Karras [20], sparse voxel grids can
be an effective and efficient representation for opaque sur-
faces. In situations where large regions of space share the
same data value or a prefiltered representation is required to
combat aliasing, hierarchical representations such as sparse
voxel octrees [8] are a popular data structure. When a vari-
able level-of-detail is not required, sparse voxel grids can
be efficiently represented with hash tables [21, 34]. How-
ever, hashing each voxel independently can lead to inco-
herent memory fetches when traversing the representation
during rendering. We make a deliberate trade-off to use a
block-sparse representation, which improves memory co-
herence but slightly increases the size of our representation.

Our work aims to combine the reconstruction quality and
view-dependence of NeRF with the speed of efficient vol-
ume rendering techniques. We achieve this by extending de-
ferred neural rendering [48] to volumetric scene representa-
tions. This allows us to visualize trained NeRFs in real-time
on commodity hardware, with minimal quality degradation.

3. Method Overview

Our overall goal is to design a practical representation
that enables serving and real-time rendering of scenes re-
constructed by NeRF. This implies three requirements: 1)
Rendering a 800×800 resolution frame (the resolution used
by NeRF) should require less than 30 milliseconds on com-

modity hardware. 2) The representation should be com-
pressible to 100 MB or less. 3) The uncompressed repre-
sentation should fit within GPU memory (approximately 4
GB) and should not require streaming.

Rendering a standard NeRF in real-time is completely
intractable on current hardware. NeRF requires about 100
teraflops to render a single 800 × 800 frame, which results
in a best-case rendering time of 10 seconds per frame on
an NVIDIA RTX 2080 GPU with full GPU utilization. We
must therefore exchange some of this computation for stor-
age. However, we do not want to precompute and store the
entire 5D view-dependent representation [16, 23], as that
would require a prohibitive amount of GPU memory.

We propose a hybrid approach that precomputes and
stores some content in a sparse 3D data structure but de-
fers the computation of view-dependent effects to render-
ing time. We jointly design a reformulation of NeRF (Sec-
tion 4) as well as a procedure to bake this modified NeRF
into a discrete volumetric representation that is suited for
real-time rendering (Section 5).

4. Modifying NeRF for Real-time Rendering

We reformulate NeRF in three ways: 1) we limit the
computation of view-dependent effects to a single network
evaluation per ray, 2) we introduce a small bottleneck in
the network architecture that can be efficiently stored as 8
bit integers, and 3) we introduce a sparsity loss during train-
ing, which concentrates the opacity field around surfaces in
the scene. Here, we first review NeRF’s architecture and
rendering procedure before describing our modifications.
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4.1. Review of NeRF

NeRF represents a scene as a continuous volumetric
function parameterized by a MLP. Concretely, the 3D po-
sition r(t) and viewing direction d along a camera ray
r(t) = o+ td, are passed as inputs to an MLP with weights
Θ to produce the volume density σ of particles at that lo-
cation as well as the RGB color c corresponding to the ra-
diance emitted by particles at the input location along the
input viewing direction:

σ(t), c(t) = MLPΘ(r(t),d) . (1)

A key design decision made in NeRF is to architect the MLP
such that volume density is only predicted as a function of
3D position, while emitted radiance is predicted as a func-
tion of both 3D position and 2D viewing direction.

To render the color Ĉ(r) of a pixel, NeRF queries
the MLP at sampled positions tk along the corresponding
ray and uses the estimated volume densities and colors to
approximate a volume rendering integral using numerical
quadrature, as discussed by Max [28]:

Ĉ(r) =
∑
k

T (tk)α(σ(tk)δk) c(tk) , (2)

T (tk) = exp

(
−
k−1∑
k′=1

σ(tk′)δk′

)
, α(x) = 1− exp(−x) ,

where δk = tk+1 − tk is the distance between two adjacent
points along the ray.

NeRF trains the MLP by minimizing the squared error
between input pixels from a set of observed images (with
known camera poses) and the pixel values predicted by ren-
dering the scene as described above:

Lr =
∑
i

∥∥C(ri)− Ĉ(ri)
∥∥2

2
(3)

where C(ri) is the color of pixel i in the input images.
By replacing a traditional discrete volumetric represen-

tation with an MLP, NeRF makes a strong space-time trade-
off: NeRF’s MLP requires multiple orders of magnitude
less space than a dense voxel grid, but accessing the prop-
erties of the volumetric scene representation at any loca-
tion requires an MLP evaluation instead of a simple mem-
ory lookup. Rendering a single ray that passes through the
volume requires hundreds of these MLP queries, resulting
in extremely slow rendering times. This tradeoff is benefi-
cial during training; since we do not know where the scene
geometry lies during optimization, it is crucial to use a com-
pact representation that can represent highly-detailed geom-
etry at arbitrary locations. However, after a NeRF has been
trained, we argue that it is prudent to rethink this space-
time tradeoff and bake the NeRF representation into a data
structure that stores pre-computed values from the MLP to
enable real-time rendering.

4.2. Deferred NeRF Architecture

NeRF’s MLP can be thought of as predicting a 256-
dimensional feature vector for each input 3D location,
which is then concatenated with the viewing direction and
decoded into an RGB color. NeRF then accumulates these
view-dependent colors into a single pixel color. However,
evaluating an MLP at every sample along a ray to estimate
the view-dependent color is prohibitively expensive for real-
time rendering. Instead, we modify NeRF to use a strategy
similar to deferred rendering [11, 48]. We restructure NeRF
to output a diffuse RGB color cd and a 4-dimensional fea-
ture vector vs (which is constrained to [0, 1] via a sigmoid
so that it can be compressed, as discussed in Section 5.4) in
addition to the volume density σ at each input 3D location:

σ(t), cd(t),vs(t) = MLPΘ(r(t)) . (4)

To render a pixel, we accumulate the diffuse colors and fea-
ture vectors along each ray and pass the accumulated fea-
ture vector and color, concatenated to the ray’s direction,
to a very small MLP with parameters Φ (2 layers with 16
channels each) to produce a view-dependent residual that
we add to the accumulated diffuse color:

Ĉd(r) =
∑
k

T (tk)α(σ(tk)δk) cd(tk) , (5)

Vs(r) =
∑
k

T (tk)α(σ(tk)δk)vs(tk) , (6)

Ĉ(r) = Ĉd(r) + MLPΦ(Vs(r),d) (7)

This modification enables us to precompute and store the
diffuse colors and 4-dimensional feature vectors within our
sparse voxel grid representation discussed below. Criti-
cally, we only need to evaluate the MLPΦ to produce view-
dependent effects once per pixel, instead of once per sample
in 3D space as in the standard NeRF model.

4.3. Opacity Regularization

Both the rendering time and required storage for a vol-
umetric representation strongly depend on the sparsity of
opacity within the scene. To encourage NeRF’s opacity
field to be sparse, we add a regularizer that penalizes pre-
dicted density using a Cauchy loss during training:

Ls = λs
∑
i,k

log
(

1 +
σ(ri(tk))2

c

)
, (8)

where i indexes pixels in the input (training) images, k in-
dexes samples along the corresponding rays, and hyperpa-
rameters λs and c control the magnitude and scale of the
regularizer respectively (λs = 10−4 and c = 1/2 in all ex-
periments). To ensure that this loss is not unevenly applied
due to NeRF’s hierarchical sampling procedure, we only
compute it for the “coarse” samples that are distributed with
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Figure 3: Ray-marching for NeRF vs. SNeRG. Left: To
render a ray with NeRF, we densely sample points along the
ray and pass the coordinates to a large MLP to compute col-
ors and opacities, which are alpha-composited into a pixel
color. Right: SNeRG significantly accelerates rendering by
replacing compute-intensive MLP evaluations with lookups
into a precomputed sparse 3D grid. We use an indirection
grid to map occupied voxel blocks to locations within a
compact 3D texture atlas. During ray-marching, we skip
unoccupied blocks, and alpha-composite the diffuse colors
and feature vectors fetched along the ray. We terminate
ray-marching once the accumulated opacity saturates, and
pass the accumulated color and features to a small MLP that
evaluates the view-dependent component for the ray.

uniform density along each ray. We chose a Cauchy loss as
it is highly robust to outliers (which is desirable as all “hard”
surfaces with high density will be treated as outliers) while
also being continuously differentiable near the origin — a
desirable property in gradient-based optimization [2].

5. Sparse Neural Radiance Grids

We now convert a trained deferred NeRF model, de-
scribed above, into a representation suitable for real-time
rendering. The core idea is to trade computation for storage,
significantly reducing the time required to render frames. In
other words, we are looking to replace the MLP evaluations
in NeRF with fast lookups in a precomputed data structure.

(a) Frame rendered by our method. (b) Cross-section of (a).

(c) Trained without Ls. (d) No Ls, no visibility culling.

Figure 4: Visualization of sparsity loss and visibility
culling. We render cross-sections of the Hotdog scene to in-
spect the effect of our sparsity loss Ls and visibility culling.
Our full method (b) represents the scene by only allocating
content around visible scene surfaces. Removing either the
sparsity loss alone (c) or both the sparsity loss and visibility
culling (d) results in a much less compact representation.

We achieve this by precomputing and storing, i.e. baking,
the diffuse colors cd, volume densities σ, and 4-dimensional
feature vectors vs in a voxel grid data structure.

It is crucial for us to store this volumetric grid sparsely,
as a dense voxel grid can easily fill up all available memory
on a modern high-end GPU. By exploiting sparsity and only
storing voxels that are both occupied and visible, we end up
with a much more compact representation.

5.1. SNeRG Data Structure

Our data structure represents an N3 voxel grid in a
block-sparse format using two smaller dense arrays.

The first array is a 3D texture atlas containing densely-
packed “macroblocks” of size B3 each, corresponding to
the content (diffuse color, feature vectors, and opacity) that
actually exists in the sparse volume. Each voxel in the 3D
atlas represents the scene at the full resolution of the dense
N3 grid, but the 3D texture atlas is much smaller than N3

since it only contains the sparse “occupied” content. Com-
pared to hashing-based data structures (whereB3 = 1), this
approach helps keep spatially close content nearby in mem-
ory, which is beneficial for efficient rendering.

The second array is a low resolution (N/B)3 indirection
grid, which either stores a value indicating that the corre-
sponding B3 macroblock in the full voxel grid is empty, or
stores an index pointing to the high-resolution content of
that macroblock in the 3D texture atlas. This structure cru-
cially lets us skip blocks of empty space during rendering,
as we describe below.

5.2. Rendering

We render a SNeRG using a ray-marching procedure, as
done in NeRF. The critical differences that enable real-time
rendering are: 1) we precompute the diffuse colors and fea-
ture vectors at each 3D location, allowing us to look them
up within our data structure instead of evaluating an MLP,
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and 2) we only evaluate an MLP to produce view-dependent
effects once per pixel, as opposed to once per 3D location.

To estimate the color of each ray, we first march the ray
through the indirection grid, skipping macroblocks that are
marked as empty. For macroblocks that are occupied, we
step at the voxel width 1/N through the corresponding block
in the 3D texture atlas, and use trilinear interpolation to
fetch values at each sample location. We further accelerate
rendering and conserve memory bandwidth by only fetch-
ing features where the volume density is non-zero. We use
standard alpha compositing to accumulate the diffuse color
and features, terminating ray-marching once the opacity has
saturated. Finally, we compute the view-dependent specular
color for the ray by evaluating MLPΦ with the accumulated
color, feature vector and the ray’s viewing direction. We
then add the resulting residual color to the accumulated dif-
fuse color, as described in Equation 7.

5.3. Baking

To minimize storage cost and rendering time, our bak-
ing procedure aims to only allocate storage for voxels in
the scene that are both non-empty and visible in at least
one of the training views. We start by densely evaluating
the NeRF network for the full N3 voxel grid. We convert
NeRF’s unbounded volume density values, σ, to traditional
opacity values α = 1−exp(σv), where v = 1/N is the width
of a voxel. Next, we sparsify this voxel grid by culling
empty space, i.e. macroblocks where the maximum opacity
is low (below τα), and culling macroblocks for which the
voxel visibilities are low (maximum transmittance T be-
tween the voxel and all training views is below τvis). In
all experiments, we set τα = 0.005 and τvis = 0.01. Fi-
nally, we compute an anti-aliased estimate for the content
in the remaining macroblocks by densely evaluating the
trained NeRF at 16 Gaussian distributed locations within
each voxel (σ = v/

√
12) and averaging the resulting diffuse

colors, feature vectors, and volume densities.

5.4. Compression

We quantize all values in the baked SNeRG representa-
tion to 8 bits and separately compress the indirection grid
and the 3D texture atlas. We compress each slice of the in-
direction grid as a lossless PNG, and we compress the 3D
texture atlas as either a set of lossless PNGs, a set of JPEGs,
or as a single video encoded with H264. The quality ver-
sus storage tradeoff of this choice is evaluated in Table 3.
For synthetic scenes, compressing the texture atlas results
in approximately 80×, 100×, and 230× compression rates
for PNG, JPEG, and H264, respectively. We specifically
choose a macroblock size of 323 voxels to align the 3D tex-
ture atlas macroblocks with the blocks used in image com-
pression. This reduces the size of the compressed 3D tex-
ture atlas because additional coefficients are not needed to
represent discontinuities between macroblocks.

(a) No FT (23.30) (b) FT (28.35) (c) Ground Truth

Figure 5: Impact of fine-tuning (FT) the view-dependent
appearance network (PSNR in parentheses). (a) Render-
ings from a SNeRG representation can be lower-quality
than those from the deferred NeRF, primarily due the quan-
tization from 32-bit floating point to 8-bit integer values
(see Sections 5.3, 5.4). (b) We are able to regain most of
the lost quality by fine-tuning the weights of the deferred
shading network MLPΦ (Section 5.5).

5.5. Fine-tuning

While the compression and quantization procedure de-
scribed above is crucial for making SNeRG compact and
easy to distribute, the quality of images rendered from the
baked SNeRG is lower than the quality of images rendered
from the corresponding deferred NeRF. Figure 5 visualizes
how quantization affects view-dependent effects by biasing
renderings towards a darker, diffuse-only color Ĉd(r).

Fortunately, we are able to recoup almost all of that lost
accuracy by fine-tuning the weights of the deferred per-
pixel shading MLPΦ to improve the final rendering quality
(Table 2). We optimize the parameters Φ to minimize the
squared error between the observed input images used to
train the deferred NeRF and the images rendered from our
SNeRG. We use the Adam optimizer [18] with a learning
rate of 3× 10−4 and optimize for 100 epochs.

6. Implementation Details

Our deferred NeRF model is based on JAXNeRF [12],
an implementation of NeRF in JAX [4]. We apply a posi-
tional encoding [47] to positions and view directions. We
train all networks for 250k iterations with a learning rate
which decays log-linearly from 2 × 10−3 to 2 × 10−5. To
improve stability we use JAXNeRF’s “warm up” function-
ality to reduce the learning rate to 2×10−4 for the first 2500
iterations, and clip gradients by value (at 0.01) and then by
norm (also 0.01). We use a batch size of 8,192 for synthetic
scenes and a batch size of 16,384 for real scenes.

As our rendering time is independent of MLPΘ’s model
size, we can afford to use a larger network for our experi-
ments. To this end, we base our method on the JAXNeRF+
model, which was trained with 576 samples per ray (192
coarse, 384 fine) and uses 512 channels per layer in MLPΘ.

During baking, we set the voxel grid resolution to be
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GT JAXNeRF+ 
34.63

SNeRG 
30.86

Tinyview 
30.01

Deferred 
29.60

Diffuse 
23.90

Figure 6: Ablation study showing visual examples from
Table 2. Note the minimal difference in quality between
the full JAXNeRF+ network and the successive approxima-
tions we make to speed up view-dependence (Tinyview, De-
ferred NeRF and SNeRG). For completeness, we show the
floating alpha artifacts introduced by not modelling view-
dependence at all (Diffuse).

slightly larger than the size of the training images: 10003

for the synthetic scenes, and 13003 for the real datasets.
We implement the SNeRG renderer in Javascript and We-
bGL using the THREE.js library. We load the indirection
grid and 3D texture atlas into 8 bit 3D textures. The view-
dependence MLPΦ is stored uncompressed and is imple-
mented in a WebGL shader. In all experiments, we run this
renderer on a 2019 MacBook Pro laptop equipped with a
85W AMD Radeon Pro 5500M GPU.

Training the JAXNeRF+ model takes approximately 24
hours on 16 TPU v2 accelerators. The baking process is
faster and completes in less than two hours, where most of
the time is spent on refinement, which is currently imple-
mented on the CPU and could be significantly accelerated.

7. Experiments
We validate our design decisions with an extensive set

of ablation studies and comparisons to recent techniques
for accelerating NeRF. Our experiments primarily focus
on free-viewpoint rendering of 360◦ scenes (scenes cap-
tured by inwards-facing cameras on the upper hemisphere).
Though acceleration techniques already exist for the spe-
cial case in which all cameras face the same direction (see

(a) JAXNeRF+ (23.00) (b) Deferred (22.75)

(c) SNeRG (21.45) (d) Ground Truth

Figure 7: Real 360◦ scene (PSNR in parentheses). Note
how our real-time method is able to model the mirror-like
reflective surface of the garden spheres.

Broxton et al. [5]), 360◦ scenes represent a challenging and
general use-case that has not yet been addressed. In Fig-
ure 7, we show an example of a real 360◦ scene and present
more results in our supplement, including the forward-
facing scenes from Local Light Field Fusion (LLFF) [30].

We evaluate according to three criteria: render-time per-
formance (measured by frames per second as well as GPU
memory consumption in gigabytes), storage cost (measured
by megabytes required to store the compressed represen-
tation), and rendering quality (measured using the PSNR,
SSIM [51], and LPIPS [55] quality metrics). It is important
to account for power consumption when evaluating perfor-
mance — algorithms that are fast on a high performance
GPU are not necessarily fast on a laptop. We adopt the con-
vention used by the high performance graphics community
of measuring performance relative to power consumption,
i.e. FPS per watt, or equivalently, frames per joule [1].

7.1. Ablation Studies

In Table 1, we ablate combinations of three compo-
nents of our method that primarily affect speed and GPU
memory usage. Ablation 1 shows that removing the view-
dependence MLP has a minimal effect on runtime perfor-
mance. Ablation 2 shows that removing the sparsity loss
Ls greatly increases (uncompressed) memory usage. Abla-
tion 3 shows that switching from our “deferred” rendering
back to NeRF’s approach of querying an MLP at each sam-
ple along the ray results in prohibitively large render times.

Table 2 and Figure 6 show the impact on rendering qual-
ity of each of our design decisions in building a representa-
tion suitable for real-time rendering. Although our simpli-
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MLP Ls Defer ms/frame ↓ GPU GB ↓
Ours X X X 11.9± 4.5 1.73 ± 1.48

1) X 9.2± 4.6 1.73 ± 1.48
2) X X 20.0*± 5.3 4.26 ± 1.56
3) X X 343.6± 247.5 1.73 ± 1.48

Table 1: Performance ablation study, including uncom-
pressed GPU memory used during rendering, on the Syn-
thetic 360◦ scenes. Ablation 2 ran out of memory on the
Ficus scene, which biases the average runtime for that row.

PSNR ↑ SSIM ↑ LPIPS ↓
JAXNeRF+ 33.00 0.962 0.038
JAXNeRF+ Tinyview 31.65 0.954 0.047
JAXNeRF+ Deferred 30.55 0.952 0.049
SNeRG (PNG) 30.38 0.950 0.050
SNeRG (PNG, no Ls) 30.22 0.949 0.050
SNeRG (PNG, no FT) 26.68 0.930 0.053
JAXNeRF+ Diffuse 27.39 0.927 0.068

Table 2: Quality ablation study on Synthetic 360◦ scenes.

fications of using a deferred rendering scheme (“Deferred”)
and a smaller network architecture (“Tinyview”) for view-
dependent appearance do slightly reduce rendering quality,
they are crucial for enabling real-time rendering, as dis-
cussed above. Note that the initial impact on quality from
quantizing and compressing our representation is signifi-
cant. However, after fine tuning (“FT”), the final rendering
quality of our SNeRG model remains competitive with the
neural model from which it was derived (“Deferred”).

In Table 3 we explore the impact of various compression
schemes on disk storage space requirements. Our sparse
voxel grid benefits greatly from applying compression tech-
niques such as JPEG or H264 to its 3D texture atlas, achiev-
ing a file size over 200× more compact than a naive 32
bit float array while sacrificing less than 1dB of PSNR.
Because our sparsity loss Ls concentrates opaque voxels
around surfaces (see Figure 4), ablating it significantly in-
creases model size. Our compressed SNeRG representa-
tions are small enough to be quickly loaded in a web page.

The positive impact of the sparsity loss Ls is visible
across these ablations. It more than doubles rendering
speed, halves storage requirements of both the compressed
representation on disk and the uncompressed representation
in GPU memory, and minimally impacts rendering quality.

7.2. Baseline Comparisons

Table 4 shows that the quality of our method is compa-
rable to the other methods listed here, while our run-time
performance is an order of magnitude faster than the fastest
competing approach (Neural Volumes [27]) and more than a
thousand times faster than the slowest (NeRF). Note that we
measure the run-time rendering performance of our method
on a laptop with an 85W mobile GPU, while all other meth-

PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓
SNeRG (Float) 30.47 0.951 0.049 6883.6
SNeRG (PNG, no Ls) 30.22 0.949 0.050 176.0
SNeRG (PNG) 30.38 0.950 0.050 86.7
SNeRG (JPEG) 29.71 0.939 0.062 70.9
SNeRG (H264) 29.86 0.938 0.065 30.2
JAXNeRF+ 33.00 0.962 0.038 18.0
JAXNeRF 31.65 0.952 0.051 4.8

Table 3: Storage ablation study on Synthetic 360◦ scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ W ↓ FPS ↑ FPS/W ↑
JAXNeRF+ [12] 33.00 0.962 0.038 300 0.01 0.00002
NeRF [31] 31.00 0.947 0.081 300 0.03 0.00011
JAXNeRF [12] 31.65 0.952 0.051 300 0.05 0.00016
IBRNet [50] 28.14 0.942 0.072 300 0.18 0.00061
AutoInt [25] 25.55 0.911 0.170 300 0.38 0.00128
NSVF [26] 31.74 0.953 0.047 300 0.65 0.00217
NV [27] 26.05 0.893 0.160 300 3.33 0.01111
SNeRG (PNG) 30.38 0.950 0.050 85 84.06 0.98897

Table 4: Baseline comparisons on Synthetic 360◦ scenes.

ods are run on servers or workstations equipped with much
more powerful GPUs (over 3× the power draw).

8. Conclusion
Our method renders Neural Radiance Fields in real-time

by precomputing and storing a Sparse Neural Radiance
Grid. This SNeRG uses a sparse voxel grid representation
to store the precomputed scene geometry, but keeps storage
requirements reasonable by maintaining a neural represen-
tation for view-dependent appearance. Rendering is accel-
erated by evaluating the view-dependent shading network
only once per ray, achieving over 30 frames per second on
a laptop GPU for typical NeRF scenes.

However, these design choices have some limitations.
As we evaluate view-dependence once per ray, we will not
be able to easily model scenes with both reflective and trans-
parent surfaces, where the view-dependence for each sur-
face should be modelled separately. Rendering will also be-
come expensive in extremely large (e.g. city-scale) scenes,
as our representation does not use multiple levels of detail.
This could be addressed with an octree cone tracer [8].

In conclusion, we hope this ability to render neural vol-
umetric representations such as NeRF in real time on com-
modity hardware will help increase the adoption of neural
scene representations in vision and graphics applications.
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