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Abstract

Existing research on autonomous driving primarily fo-
cuses on urban driving, which is insufficient for charac-
terising the complex driving behaviour underlying high-
speed racing. At the same time, existing racing simula-
tion frameworks struggle in capturing realism, with respect
to visual rendering, vehicular dynamics, and task objec-
tives, inhibiting the transfer of learning agents to real-
world contexts. We introduce a new environment, where
agents Learn-to-Race (L2R) in simulated competition-
style racing, using multimodal information—from virtual
cameras to a comprehensive array of inertial measure-
ment sensors. Our environment, which includes a sim-
ulator and an interfacing training framework, accurately
models vehicle dynamics and racing conditions. In this
paper, we release the Arrival simulator for autonomous
racing. Next, we propose the L2R task with challenging
metrics, inspired by learning-to-drive challenges, Formula-
style racing, and multimodal trajectory prediction for au-
tonomous driving. Additionally, we provide the L2R frame-
work suite, facilitating simulated racing on high-precision
models of real-world tracks. Finally, we provide an offi-
cial L2R task dataset of expert demonstrations, as well as
a series of baseline experiments and reference implementa-
tions. We make all code available: https://github.
com/learn-to-race/l2r.

1. Introduction

Progress in the field of autonomous driving relies on
the existence of challenging tasks and well-defined evalua-

*Equal contribution.

Figure 1: Learn-to-Race interfaces with a racing simulator,
which features numerous real-world racetracks such as the Thrux-
ton Circuit (top-left) and Las Vegas Motor Speedway (top-right).
Simulated race cars (bottom) are empowered with learning agents,
tasked with the challenge of learning to race for the fastest lap-
times and best metrics.

tion metrics, which enable researchers to effectively assess
and improve algorithms. Models developed in learning-to-
drive settings continue to struggle with issues in sample-
complexity, safety, and unseen generalisation, calling for
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more suitable benchmarks [9, 16, 28]. We hypothesise that
high-fidelity simulation environments, together with well-
defined metrics and evaluation procedures, are conducive
to developing more sophisticated agents; and, in turn, such
agents will be better-suited to real-world deployment.

Simulated autonomous racing exhibits task complexity
on several factors: (i) agents must perform real-time deci-
sion making, requiring computationally-efficient policy up-
dates as well as robustness to latency; (ii) agents must be
able to deal with realistic vehicle and environmental dynam-
ics (whereas agents in less-realistic environments have been
able to achieve super-human performance); (iii) agents must
leverage more informative intrinsic reward schemes that en-
able replication of human-like driving behaviour, e.g., trad-
ing off safety and performance; and (iv) agents must use
offline demonstrations effectively, without overfitting, and
must leverage interactions with the environment sample-
efficiently. We highlight simulated racing (Figure 1) as an
opportunity for developing learning strategies that are capa-
ble of meeting these stringent requirements.

In this work, we release the Arrival Autonomous Rac-
ing Simulator, which includes numerous interfaces for both
simulated and real vehicle instrumentation. Furthermore,
we introduce Learn-to-Race (L2R), a multimodal and
continuous control environment for training and evaluat-
ing autonomous racing agents. Through the L2R envi-
ronment, we simulate competition-style racetracks that are
based off real-world counterparts, we provide mechanisms
for fully-characterising realistic racing agents (e.g., flexible
sensor placements, multimodal cameras, and various ve-
hicle dynamics profiles), and we provide numerous tools
for fine-grained agent evaluation (e.g., random and fixed
spawn locations, custom racing map construction, and in-
jection of external disturbances). Using these facilities, we
enable research in problems that require agents to make
safety-critical, sub-second decisions in dynamically unsta-
ble contexts, such as autonomous racing, real-time uncer-
tainty analysis in highway driving, and trajectory forecast-
ing. In this paper, we exemplify algorithm development and
benchmarking of methods under learning from demonstra-
tions, reinforcement learning, and model-predictive control.

Concretely, our contributions include: (i) the Arrival Au-
tonomous Racing Simulator, which simulates high-fidelity
competition-style tracks, vehicles, and various sensor sig-
nals; (ii) the Learn-to-Race (L2R) framework, a plug-
and-play environment, which defines interfaces for vari-
ous sensor modalities and provides an OpenAI-gym com-
pliant training and testing environment for learning-based
agents; (iii) an official L2R task and dataset with expert
demonstrations, metrics, and reference evaluation proce-
dures; and (iv) an academic release of the simulator, code
for the L2R framework, and implementations of baseline
agents to facilitate full reproducibility and extension.

2. Related Work

2.1. Reinforcement Learning Environments

Research progress in the fields of Reinforcement Learn-
ing (RL), Planning, and Control has relied on various sim-
ulation environments, for benchmarking agent performance
on game-playing and robot control tasks [32, 8, 33, 18, 30].
These tasks require sequential decision-making in order
to complete objectives and are generally characterised by
their state dimensionality, the nature of their action space
(e.g., discrete or continuous), agent cardinality (i.e., single-
or multi-agent), and by the capability of the underly-
ing simulator in capturing real-world physical dynamics
[18]. Whereas the vast majority of tasks offered by, e.g.,
the DeepMind Control Suite [32], OpenAI Gym [8], and
the MuJoCo physics engine [33] have been solved—with
agents often achieving superhuman performance—no exist-
ing environments focus on high-fidelity simulation of high-
speed driving, in dynamically unstable contexts.

2.2. Simulation of Autonomous Driving

Urban driving. CARLA [14] is an open-source simulator
for autonomous driving, wherein various tasks have been
defined to challenge agents’ street-legal urban driving abili-
ties. Duckietown [29, 10] provides a customisable platform
for urban autonomous driving, as well as hardware support
for miniature vehicles controlled via RaspberryPi’s. In this
paper, we focus primarily on autonomous racing environ-
ments, which present challenges outside the conventional
scope of urban and highway driving.
Track racing. In autonomous racing, agents must make
sub-second decisions in regimes of unstable physical dy-
namics, wherein the ramifications of control actions can be
amplified or suppressed, non-linearly, depending on vehicu-
lar and environmental state. CarRacing-v0, an OpenAI-gym
environment [8], is a simple racing environment, which
uses only bird’s-eye-view (BEV) observations. In [17], re-
searchers trained agents to race in the video game Gran
Turismo Sport, but have not yet released their environment.
Moreover, instead of using sensory perception, agents were
directly provided with privileged information, e.g., distance
to obstacles and road boundaries. TORCS [3] is an open-
source simulator and is used by the Simulated Car Racing
Championship [27], despite its game-like qualities. As the
goal of simulators should be to accurately model the dynam-
ics of the real-world, we assert that the potential for model
transfer from these frameworks remains limited.

2.3. Learning Paradigms

We discuss various learning paradigms that are enabled by
the simulation of autonomous driving.
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Figure 2: Learn-to-Race allows agents to interact with the racing simulator through a series
of interfaces for observations, actions, and simulator control.

Simulation-to-real transfer. DeepRacer [5], developed by
Amazon Web Services, provides an end-to-end framework
for training and deploying 1/18th-scale autonomous rac-
ing cars. The Indy Autonomous Challenge [1] encourages
institutions to create autonomous vehicle technology; par-
ticipants are given the proprietary VRXPERIENCE driv-
ing simulator, which focuses more on optimising human-
machine interactions within the vehicle, in the context of
situational highway driving, which contrasts with our fo-
cus in this work on autonomous racing. Roborace [2] is
the first international championship for full-size, real-world
autonomous racing. Here, teams develop self-driving soft-
ware and compete in challenges, using Roborace-owned ve-
hicles. Roborace provides teams with proprietary software-
in-the-loop (SIL) and hardware-in-the-loop (HIL) simula-
tors, with a base driving stack. These simulators are pre-
dominately used for developing classical control methods,
however, and do not include facilities for training learning-
based agents [7, 22, 23, 31]. The authors obtained a podium
finish at the Thruxton Circuit (UK), in the Season Beta Rob-
orace competitions (2020-2021), and we now wish to enable
new technologies through open-sourcing our autonomous
racing research: to our knowledge, we publicly release the
first environment that is specifically intended for simulating
autonomous competition-style track racing and for transfer-
ring learning-based agents to the real world.

Safe and efficient learning. Imposing safety constraints
in, e.g., RL algorithms, has become popular for the poten-
tial of reducing failures in simulation-to-real transfer set-
tings and for enabling agent robustness to environmental
stochasticity [20]. The goal is to embed safety guaran-
tees in policies, without compromising their performance
or sample-efficiency. While a few works consider detection
and avoidance of unsafe states, in urban driving [13] and
human-assistive robotics [19], no existing works focus on
safe learning and control, for autonomous racing in dynami-
cally unstable contexts. Popular Safe-RL benchmarks (e.g.,

OpenAI Safety Gym) lack realistic dynamics and they eval-
uate agents at much lower speeds; thus, the numerous lim-
itations of existing methods cannot be studied comprehen-
sively. We assert that the physical realism that L2R provides
facilitates improvement of those underlying approaches.

3. Simulation Environment

3.1. Arrival Autonomous Racing Simulator

The Arrival simulator is a powerful tool for the devel-
opment and testing of autonomous vehicles. It is based on
Unreal Engine 4 and includes such features as: (i) a ve-
hicle prototyping framework; (ii) full software-in-the-loop
(SIL) simulation, to model all vehicle control devices; (iii)
controller area network (CAN) bus interface; (iv) camera,
inertial measurement unit (IMU), light detection and rang-
ing (LiDAR), ultrasonic, and radar sensor models; (v) se-
mantic segmentation; (vi) sensor placement and configu-
ration facilities; (vii) V2V/V2I interface subsystem; (vii)
dynamic racing scenario creation; (viii) race track genera-
tion from scanned datasets; (ix) support for full integration
with the CARLA simulator [14]; and (x) an application pro-
gramming interface (API), which is automatically generated
based on C++ code analysis. Details in supplementary.

3.2. Learn-to-Race Environment

Learn-to-Race (L2R) is a multimodal control envi-
ronment that provides a series of interfaces for an agent to
interact with the racing simulator, including the capabilities
to send control commands and make observations of the en-
vironment and vehicle state via different sensors (Figure 2).
L2R is implemented as a Gym environment [8], enabling
quick prototyping of control policies. While we release the
L2R environment and task (Section 4) alongside the Arrival
simulator, we note that other simulators may be used with
L2R, including those provided by [2].
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Agent-Simulator Interaction. At each step t, an agent se-
lects an action at, based on its current observation st, us-
ing its policy πθ: at ∼ πθ(·|st). The control action from
the agent is forwarded to the simulator as a UDP message.
L2R receives updates from the simulator, i.e., images from
the virtual camera and/or measurements from other vehicle
sensors, through TCP and UDP socket connections. As in
reality, update frequencies across the various sensor modal-
ities are not equal, so L2R synchronizes observations by
providing agents with the most recent data from each (Al-
gorithm 1). The step method of the environment returns
the new observation st+1, along with a calculated reward
to the agent, rt = R(st, at, st+1), and a Boolean terminal
state flag. The reward function and evaluation metrics are
defined in Section 4.3.

Algorithm 1 Agent-Simulator Interaction

1: function SENSOR THREAD
2: data← Initial value
3: function GET DATA
4: return data
5: while not terminated do
6: data← Receive Data
7:
8: function STEP(at)
9: Send at as UDP message

10: st+1 ← Get Data ∀ Sensor Threads
11: rt ← R(st, at, st+1)
12: done← IsTerminal(st, st+1)
13: return st+1, rt, done

Episodic control. The control interface communicates with
the simulator to automatically setup and execute simula-
tions in an episodic manner. L2R conveniently allows for
training to be launched in one command, as all aspects of
the racing simulator and learning environment are parame-
terised. A state is considered terminal if all laps are success-
fully completed, if at least 2 of the vehicle’s wheels go out-
side of the drivable area, or if progress is minimally insuffi-
cient. The episode begins by resetting the vehicle to a stand-
ing start position, at a parameterised location along with
configured sensor interfaces and initialised reward function.
Discrete steps are taken by the agent until one of the afore-
mentioned episode termination criteria is met.

4. Task: Learn-to-Race

The Learn-to-Race (L2R) task tests an agent’s abil-
ity to execute the requisite behaviours for competition-style
track racing, through multimodal perceptual input. In this
section, we provide a task overview and describe task prop-
erties, dataset characteristics, and metrics.

4.1. Task Overview

L2R provides an OpenAI Gym [8] compliant learn-
ing environment, where researchers could flexibly select
among the available sensor modalities. This early version
of the environment enables single-agent racing on three
racetracks (with custom track construction facility), mod-
eled after their real-world counterparts. Included tracks
are the Thruxton Circuit (Track01:Thruxton) and An-
glesey National Circuit (Track02:Anglesey) from the
United Kingdom, and the North Road Track at Las Ve-
gas Motor Speedway (Track03:Vegas), located in the
United States. Analogous to having separate town maps
for training and testing in other simulation environments,
e.g., CARLA [14], we use Track01 and Track02 for
training and Track03 for testing. Consequently, we gen-
erate expert traces from the training tracks, for inclusion in
our initial dataset release (see Section 4.2). Many avenues
for research can be explored within L2R, including various
learning paradigms, such as: (constrained) reinforcement
learning, learning from demonstrations, multitask learning,
transfer learning and domain adaptation, simulation-to-real
transfer, fast decision-making, classical/neural hybrid mod-
eling, etc. Regardless of the method chosen, agents’ multi-
modal perception capabilities—i.e., their ability to fuse and
align sensory information—are of critical importance.

4.2. Learn-to-Race Dataset

We generate a rich, multimodal dataset of expert demon-
strations from training tracks, Track01:Thruxton and
Track02:Anglesey, in order to facilitate pre-training
of agents via, e.g., imitation learning (IL). The L2R dataset
contains multi-sensory input at a 100-millisecond resolu-
tion, in both the observation and action spaces. Depending
on the selected simulator perception mode, agents have ac-
cess to one (vision-only mode) or all modalities (multimodal
mode). See Table 1 for a complete list of available modal-
ities. The action space is defined by continuous values for
acceleration and steering, in the ranges [−1.0, 1.0], where
negative acceleration values will decelerate the vehicle to a
halted position. Note that Gear is a controllable action, but
fixed to drive in all our experiments.

The expert demonstrations were collected using a model
predictive controller (MPC) (Section 5), which follows the
centerline of the race track at a pre-specified reference
speed. This first version of the dataset contains 10,600 sam-
ples of each sensor and action dimension, for 9 complete
laps around each track. Future version releases of L2R will
include access to new simulated tracks (modeled after other
real tracks, around the world) as well as expert traces gen-
erated from these additional tracks—across various weather
conditions, in challenging multi-agent settings, and within
dangerous obstacle-avoidance scenarios.
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Table 1: Summary of the observation and continuous action spaces, for the Learn-to-Race task. When
the simulator is initialised in vision-only mode, the observation space consists of just the images from the ego-
vehicle’s front-facing camera. The additional observation data, all of which is realistically accessible on a real
racing car, is available in multimodal mode. *Whereas gear is permitted as a controllable parameter, we do not
use it in our experiments.

Signal Description Dimension

Action Acceleration Command in [-1.0, 1.0] R1

Steering Command in [-1.0, 1.0] R1

Gear {park, drive, neutral, reverse} —

Observation

Image RGB image RW×H×3

Steering Observed steering direction R1

Gear {park, drive, neutral, reverse} —
Mode Vehicle mode R1

Velocity In ENU coordinate (m/s) R3

Acceleration In ENU coordinate (m/s2) R3

Yaw, Pitch, Roll Orientation of the car (rad) R3

Angular Velocity Rate of change of the orientation (rad/s) R3

Location Location of the vehicle center in ENU (m) R3

Wheel Rotational Speed per wheel (RPM) R4

Braking Brake pressure per wheel (Pa) R4

Torque per wheel (Nṁ) R4

4.3. Task Metrics

The primary objective of the L2R task is to minimise the
time taken for an agent to successfully complete racing laps,
with additional requirements on the agent’s driving quality.
We do not restrict the agent’s learning paradigms to, e.g.,
IL or RL; on the contrary, we can envision a wealth of com-
bination strategies and other methods that are applicable to
the task. While we do not include planning-only approaches
as those that are consistent with the official L2R task, (i) we
do encourage hybrid or model-based learning approaches;
furthermore, (ii) we do encourage the simulator and the
L2R interface to be used to further research in these areas,
more generally. Agnostic to the learning paradigm used,
and inspired by concepts from high-speed driving, robot
navigation [18], and trajectory forecasting [28], we define
the core modalities, metrics, and objectives that shall be
used to train L2R agents and assess their performance. We
summarise agents’ action and observation spaces in Table 1
and the official L2R task metrics in Table 2.

We define the successful completion of an episode in
the L2R task to be 3 completed laps, from a standing
start; Episode Completion Percentage (ECP) measures the
amount of the episode completed, and Episode Duration
(ED) measures the minimum amount of time that the agent
took to progress to its furthest extent, through the episode.
We define Average Adjusted Track Speed (AATS) as a met-
ric that measures the average speed of the agent, across all
three laps of the episode. Metrics may also include adjust-

ments for environmental factors, such as wheel slippage and
weather effects as the task matures. Average Displacement
Error (ADE), a common metric in trajectory forecasting
[28], measures the agent’s average deviation from a refer-
ence path—in this case, the centerline of the track. Trajec-
tory Admissibility (TrA) is the dimensionless metric α, de-
fined in Equation 1, where te is the duration of the episode
and tu is the cumulative time spent driving unsafely with
exactly one wheel outside of the drivable area.

α = 1−
√

tu

te
(1)

We also utilise metrics that measure the smoothness of
agent behaviour: Trajectory Efficiency (TrE) measures the
ratio of track curvature to agent trajectory curvature, i.e., in
terms of agent heading deviations; Movement Smoothness
(MS) quantifies the smoothness of the agent’s acceleration
profile, adjusted for gravity, using the negated log dimen-
sionless jerk, ηldj in Equation 2, inspired by [6]:

ηldj = ln

(
(t2 − t1)

3

v2peak

∫ t2

t1

∣∣∣∣d2vdt2

∣∣∣∣2 dt
)

(2)

Rather than restricting agents to predefined incentive poli-
cies, input dimensions, or even input modalities, L2R al-
lows and encourages flexibility so that agents can learn to
race effectively. The default reward function for L2R is in-
spired by [17]: this policy provides dense rewards for pro-
gression, consistent with the goal of minimising lap times,
and negative rewards for going out-of-bounds.
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4.4. Task Evaluation Procedure

Agent assessment is conducted through a leaderboard
competition, with two distinct stages: (1) pre-evaluation
and (2) evaluation. Predicated on industry standards, we
adopt a racing-centric pre-evaluation step, for assessing
agent performance, giving agents a warm start on the test
track before formal evaluation. Much like how human rac-
ing drivers are permitted to acquaint themselves with a new
racing track, before competition, we run a pre-evaluation
on models, with unfrozen weights, allowing for some initial
(albeit constrained) exploration. In this pre-evaluation pe-
riod, agents may explore the environment for a fixed time of
60 minutes, defined in the number of time-steps of discrete
observation from the L2R framework. In the pre-evaluation,
we further define a “competency check” that agents must
pass, in order to successfully proceed through to the main
evaluation phase. For the North Road track at Las Ve-
gas Motor Speedway, the only competency check is that
agents are able to successfully complete a lap during the
pre-evaluation period with acceleration capped at 50% of
maximum allowed in the action space. A successful episode
is defined the completion of 3 laps from a standing start and
the agent not going out of the driveable areas of the track.
If the agent is unsuccessful in the pre-evaluation phase, it
is disqualified and not evaluated further. As we continue
to provide support for new tracks (necessitating more novel
driving maneuvers), we will also continue to add and per-
mute the driving competency checks, to maintain fairness
of evaluation on those tracks.

Post a successful pre-evaluation stage, the final test stage
occurs: agents are provided all the various input modal-
ities and have to compete on the metrics defined Section
4.3. When the agent successfully passes through the pre-
evaluation stage, the user is not provided with the results of
the competency checks and instead is able to view the re-
sults of the complete evaluation directly on the leaderboard.

5. Baseline Agents

We define a series of learning-free (e.g., RANDOM, MPC)
and learning-based (e.g., reinforcement learning, imitation
learning) baselines, to illustrate the performance of various
algorithmic classes on the L2R task. We also benchmark
human performance, through a series of expert trials.

Random. The RANDOM agent is mainly intended as a sim-
ple demonstration of how to interface with the L2R envi-
ronment. The RANDOM agent is spawned at the start of the
track, and uniformly samples actions, i.e., steering and ac-
celeration, from the action space. The agent then proceeds
to execute these random actions.
MPC. The MPC was used to generate expert demonstra-
tions (Section 4.2) and is intended as a reference solution

of L2R via classical control approaches. The MPC mini-
mizes the tracking error with respect to the centerline of the
race track at a pre-specified reference speed. We use the it-
erative linear quadratic regulator (iLQR) proposed in [26],
which iteratively linearizes the non-linear dynamics along
the current estimate of trajectory, solves a linear quadratic
regulator problem based on the linearized dynamics, and re-
peats the process until convergence. Specifically, we used
the implementation for iLQR from [4]. We adopt the kine-
matic bike model [25] to characterize the vehicle dynamics.
Further MPC details are provided in the supplementary.

While MPC implies optimal control performance, we
want to point out the limitations of our current implementa-
tion. Firstly, the ground truth vehicle parameters were not
known to us and we used estimated values. Secondly, we
asked the MPC to follow the centerline of the track, which
is not the trajectory expert drivers would have taken, espe-
cially when cornering. Finally, we pre-specified the MPC
to drive at a conservative speed (12.5m/s), which makes the
expert demonstrations easier to learn from.
Conditional Imitation Learning. We adopted the same
neural architecture from [11], except that we do not have
different commands in our case, e.g., turn left, turn right,
go straight, and stop. Thus, we used a single branch for
decoding actions. We assume both front view images and
sensor measurements are available for the IL agent. In each
sample, the input consists of a 512 × 384 image and 30
sensor measurements, and output is 2 actions (as listed in
Table 1). The implementation of CIL automatically adjusts
the neural network architecture based on specified input-
output dimensions. The imitation loss (Equation 3) is the
mean squared error between the predicted action, ât, and
the action taken by the expert, at.

L =

n∑
i=1

||âi − ai||22 (3)

Soft Actor-Critic. We provide a reference implementation
of Soft-Actor Critic (SAC) [12, 21], which is generally per-
formant and known to be robust [15]. SAC belongs to the
family of maximum entropy reinforcement learning (RL)
algorithms, wherein an agent maximizes expected return,
subject to an entropy regularization term (Equation 4), as a
principled way to trade-off exploration and exploitation.

J (θ) =
T∑

t=1

Eπθ
[R(st, at)−H(πθ(at|st))] (4)

Our RL-SAC agent demonstrates several of features in the
environment: it operates in vision-only mode, but rather
than learning directly from pixels, we pre-trained a con-
volutional, variational auto-encoder [24] made on sample
camera images. Therefore, our agent only need to learns to
decode actions from image embeddings using a multi-layer
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Table 2: Learn-to-Race defines multiple metrics for the assessment of agent performance. These metrics
measure overall success—e.g., whether and how fast the task is completed—along with more specific properties,
such as trajectory admissibility and smoothness.

Metric Definition

Episode Completion Percentage Percentage of the 3-lap episode completed
Episode Duration Duration of the episode, in seconds
Average Adjusted Track Speed Average speed, across all three laps, adjusted for environmental conditions, in km/h
Average Displacement Error Euclidean displacement from (unobserved) track centerline, in meters
Trajectory Admissibility Complement of the square root of the proportion of cumulative time spent unsafe
Trajectory Efficiency Ratio of track curvature to trajectory curvature (i.e., in agent heading)
Movement Smoothness Log dimensionless jerk based on accelerometer data, adjusted for gravity

Table 3: Baseline agent results on Learn-to-Race task while training on Thruxton track, with respect
to the task metrics in Table 2: Episode Completion Percentage (ECP), Episode Duration (ED), Average Ad-
justed Track Speed (AATS), Average Displacement Error (ADE), Trajectory Admissibility (TrA), Trajectory
Efficiency (TrE), and Movement Smoothness (MS). Arrows (↑↓) indicate directions of better performance.
Asterisks (*) in Tables 3 and 4 indicate metrics which may be misleading, for incomplete racing episodes.

Agent ECP (↑) ED (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

HUMAN 100.0(±0.0) 235.8(±1.7) 171.2(±3.4) 2.4(±0.1) 0.93(±0.01) 1.00(±0.02) 11.7(±0.1)

RANDOM 0.5(±0.3) 14.0(±5.5) 11.9(±3.8) 1.5(±0.6) 0.81(±0.04) 0.33(±0.38)∗ 6.7(±1.1)

MPC 100.0(±0.0) 904.2(±0.7) 45.1(±0.0) 0.9(±0.1) 0.98(±0.01) 0.85(±0.03) 10.4(±0.6)

RL-SAC 31.1(±0.0) 251.2(±1.4) 50.5(±0.3) 0.5(±0.0) 0.97(±0.0) 0.48(±0.0)∗ 11.1(±0.4)

Table 4: Baseline agent results on Learn-to-Race task while testing on Las Vegas track.

Agent ECP (↑) ED (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

HUMAN 100.0(±0.0) 176.2(±3.4) 114.2(±2.3) 1.7(±0.1) 0.88(±0.01) 1.09(±0.02) 10.1(±0.3)

RANDOM 1.0(±0.6) 21.9(±9.6) 9.2(±1.5) 1.4(±0.3) 0.74(±0.01) 0.18(±0.05)∗ 8.4(±1.0)

MPC 69.5(±10.7) 353.2(±54.8) 40.5(±0.1) 0.8(±0.1) 0.91(±0.02) 1.07(±0.01)∗ 10.4(±0.2)

RL-SAC 11.8(±0.1) 109.9(±7.5) 22.1(±1.5) 1.3(±0.1) 0.95(±0.01) 0.58(±0.01)∗ 9.9(±0.2)

perceptron with two hidden layers of 64 hidden units each.
Our agent’s reward function was the environment’s default
with the inclusion of a bonus if the agent remained near the
center of the track.

Human. We additionally establish a HUMAN performance
baseline, by collecting simulated racing results from hu-
man expert players. The collection procedure involved a
private crowd-sourcing event, which was split into two sep-
arate phases—practice/training and recording/testing. Ex-
pert players were already familiar with the simulator, task,
and objective, prior to engaging in the event. In the train-
ing phase, players were instructed to engage in the race,
until the variance in finished lap-times, for three consecu-
tive runs, fell below a certain threshold. After this training
phase, players were allowed to proceed to the testing phase,
for which their top-3 laps were recorded. We averaged the
top-3 results in the testing phase, from all experts, for each
track; the training results were discarded.

6. Experiments and Results
We evaluate each of the baseline agents—HUMAN,

RANDOM, MPC, and RL-SAC—on the L2R task, with the
objective of finishing 3 consecutive laps in minimal time.
For all approaches, agents complete model training and
tuning on Track01:Thruxton. We present the aver-
age of each metric across 3 consecutive episodes, in Ta-
ble 3. Afterwards, agents are evaluated based on their per-
formance on Track03:Vegas, following the 1-hour pre-
evaluation period described in Section 4.4. Learning-free
agents, RANDOM and MPC, simply perform inference in the
testing environment. The RL-SAC agent, a learning-based
approach, operates in vision-only mode and utilizes the pre-
evaluation stage to perform simple transfer learning to the
new racetrack. The agent’s image encoder does not have
access to the test track prior to pre-evaluation and is not up-
dated during this phase, but the model weights of the agent
do update as new experience becomes available. Following
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the pre-evaluation phase, agents completed 3 consecutive
episodes, and we present metric averages in Table 4.
Human experts. Human experts strongly outperform dur-
ing both training and testing, suggesting a general under-
standing of racing: they can quickly adapt to a new track,
despite different features, including frequent and severe
turns. Human experts fully complete 3 lap episodes at
speeds near the vehicle’s physical limits and estimate their
lap-time performance to be within 10% of optimal. We ex-
pect strong agents to execute trajectories which are of lower
curvature than the racetrack’s centerline, or a TrE of at least
1.0, allowing the vehicle to maintain higher AATS. Only
human experts were able to achieve this, considering that
failure to complete an episode distorts the metric. However,
such trajectories are aggressive and risky, because they of-
ten involve cutting corners with the wheels nearly outside
of the driveable area; this is apparent by higher ADE values
and relatively low TrA. Additionally, human experts per-
formed well relative to other agents terms of MS, demon-
strating the ability to anticipate the need for acceleration
and to apply smooth control.
Baseline agents. There are several notable conclusions that
we make based on the performance of our baseline agents
which we do not claim to be state-of-the-art. The first is
that the task is indeed challenging, as even the MPC agent
with an approximate car model failed to consistently com-
plete laps on the test track. Even after over 1 million steps
environment steps on the training track, the RL-SAC agent
only completes about 90% of a lap due to the challenging
speed trap near the finish line at Thruxton. However, the
RL-SAC agent demonstrates better control than the MPC in
training in both ADE and MS. Second, we note the lack of
generalization and poor sample efficiency of the RL-SAC
agent whose performance dropped significantly in terms of
ability to progress down the track, ECP, and stay near the
centerline, ADE, despite being directly incentivised to do
so. The agent learns to simply stop altogether to avoid going
out-of-bounds about 1/3rd of the way around the test track.
We note that imitation learning has potential for providing
agents with strong priors. However, in our experiments, au-
tomatic network sizing based on input/output dimensions
and step-wise supervision alone, suggested by [14], did not
yield good performance. This demonstrates the challenge
that L2R poses to this family of approaches, necessitating
consideration of, e.g., joint IL/RL strategies.

7. Discussion
We are confident that agents can achieve superhuman

performance for any given track given that (1) they are suf-
ficiently complex and (2) that they have interacted with that
environment enough times. What is not clear, is how well
agents can generalize to new racetracks in a realistic simula-
tion environment. We believe the Learn-to-Race task

will effectively assess models, based on their general un-
derstanding of vehicle dynamics, high-speed and high-risk
control, racetrack perception, and intelligent racing tactics.

To challenge state-of-the-art learning approaches, which
continue to demonstrate superhuman performance in sim-
plistic environments, we believe that the direction of future
tasks must be towards higher complexity and realism. Our
racing simulator has been used as a primary modeling tool
for autonomous agents which have demonstrated real-world
racing speeds in excess of 200 km/h, an order of magnitude
faster, and more complex, than comparable environments.
Limitations of our simulation environment with respect to
competing simulators include multi-agent racing and a (cur-
rently) limited supply of tracks—however, both multi-agent
racing and additional tracks will follow. Future enhance-
ments also include additional vehicle sensors, domain ran-
domization, and support for distributed training in learning-
based approaches. We believe these enhancements serve as
a precursor to real-world transfer and safety learning.

8. Conclusion

We have presented: (i) a high-fidelity simulator for the
development and testing of autonomous race cars, (ii) the
Learn-to-Race environment which enables rapid pro-
totyping, training, and testing in this simulated environ-
ment, and (iii) the L2R task which defined dataset char-
acteristics and concrete driving-inspired metrics for eval-
uation. L2R addresses the lack of complex learning en-
vironments and introduces the challenging task of simu-
lated, high-performance racing. While human experts have
demonstrated strong results on this task, both using the
L2R framework as well as in competition racing, learning
agents have not. We have provided relevant racing metrics
and baseline results for classical control, RL, and IL agents
as well as human experts, and we are releasing reference im-
plementations and model checkpoints to further advance the
research. The L2R suite of tasks and metrics will continue
to expand in the future including the introduction of multi-
agent racing. We hope to someday see agents reach super-
human, real-world performance in autonomous racing.
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