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Abstract

Re-assembling multiple pots accurately from numerous
3D scanned fragments remains a challenging task to this
date. Previous methods extract all potential matching pairs
of pot sherds and considers them simultaneously to search
for an optimal global pot configuration. In this work, we
empirically show such global approach greatly suffers from
false positive matches between sherds inflicted by indistinc-
tive sharp fracture surfaces in pot fragments. To mitigate
this problem, we take inspirations from the field of structure-
from-motion (SfM), where many pipelines have matured in
reconstructing a 3D scene from multiple images. Motivated
by the success of the incremental approach in robust SfM,
we present an efficient reassembly method for axially sym-
metric pots based on iterative registration of one sherd at
a time. Our method goes beyond replicating incremen-
tal SfM and addresses indistinguishable false matches by
embracing beam search to explore multitudes of registra-
tion possibilities. Additionally, we utilize multiple roots
in each step to allow simultaneous reassembly of multiple
pots. The proposed approach shows above 80% reassem-
bly accuracy on a dataset of real 80 fragments mixed from
5 pots, pushing the state-of-the-art and paving the way to-
wards the goal of large-scale pot reassembly. Our code and
preprocessed data is available at https://github.com/
SeongJong-Yoo/structure-from-sherds.

1. Introduction

Ceramic pots are fundamental cultural relics in human
history. Most of them are made on a spinning wheel, en-
compassing axial symmetry. While they provide meaning-
ful information to understanding ancestral lifestyles, many
pots are excavated as broken pieces (known as sherds), ne-
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Figure 1. An illustration of 5 real pots simultaneously reassem-
bled from 80 unclustered sherds (3D point clouds) using our
pipeline. It can handle some degree of non-axially symmetric dec-
orations on the pot surface as shown in pot C. Ground truth (manu-
ally restored) pot images are shown above each reassembly result.

cessitating accurate reassembly from these sherds for the
purpose of recovering historical records.

Currently, the process of reassembly is relied upon ex-
tensive manual efforts from restoration experts. Despite
years of experience, however, reconstructing each pot can
often require hours of concentration even for the qualified
professionals as fragments are mixed from multiple pots.
Furthermore, pieces are fitted on a trial-and-error basis, po-
tentially incurring undesired abrasions on the break surfaces
of sherds. These motivate strong need for an efficient frame-
work that can virtually reassemble axially symmetric pots.

Recent studies have proposed pipelines [18, 13] majorly
comprising 3 stages, first extracting features from each pot
sherd, second computing potential matches between each
pair of sherds, and last performing global combinatorial
optimization to deduce the most likely 3D pot configu-
ration from these matches. These are known as global
approaches since the last stage can be viewed as finding
true positive sherd matches from the global pot configura-
tion graph. Nevertheless, our effort of implementing such
pipeline raises an inherent issue illustrated in Fig. 2, that a
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Figure 2. The top row shows some exemplary false positive loops
formed in pot A from Fig 1. (True configurations in green and
false in red.) Some pairwise matches are difficult to detect even
at the cycle level just by looking at the break lines and the axis
profile curve (in white). The global method only succeeds when
false positive matches are removed. Our incremental method with
beam search outputs the correct result in spite of false matches.

global method is sensitive to false positive matches between
pot sherds as it directly derives each sherd’s configuration
from these matches. Unfortunately, such false positives are
widespread due to lack of distinctive features on the fracture
surfaces as the result of sharply broken edges (see Fig. 3).

In addressing above issue, we turn our attention to
structure-from-motion (SfM), which have enjoyed tremen-
dous success over the last few decades in reconstructing 3D
scenes from thousands of images [17, 1, 22, 16]. Behind
this achievement lies the incremental method, which mains
robustness to numerous false positive matches by iteratively
registering one camera view at a time in descending order
of connectivity. The essence of the incremental method lies
in its ability to iteratively improve pairwise matches and
discover initially undetected (false negative) matches as the
model grows, which can be tricky for the global approaches
that relies on pruning initial pairwise matches only.

A naturally following question is, can we apply the find-
ings from incremental SfM to devise a reliable method for
reassembling axially symmetric pots from fragments? As
will be illustrated in Sec. 2.2, we find both tasks share a
great deal of analogy in terms of the problem and (global)
pipeline structures, potentially allowing a smooth transfer
of the incremental method from the domain of SfM to pot
reassembly. Yet, pot reassembly requires handling addi-
tional challenges such as mitigating incorrect sherd regis-
tration triggered by many indistinguishable false positive
sherd matches (due to ambiguous geometric features) and
enabling reassembly of multiple pot models.

To this end, we propose structure-from-sherds (SfS), an
efficient incremental method for reassembling multiple pots
from fragments. Our method follows the iterative sherd reg-
istration scheme to grow the reassembly model like in in-
cremental SfM, but some extensions are without which the
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Figure 3. Illustration of some challenges in reassembling multi-
ple axially symmetric pots. (a) shows sharp, thin fracture surfaces
with little distinct features triggering false positive sherd matches.
(b) shows the sparse nature of connectivity between sherds from
the same pot (59% filled across 8 sherds of pot A in Table 2). (c) il-
lustrates the noisy block-diagonal sparsity structure of the problem
when sherds are mixed from different fragments (See Sec. 2.1).

reassembly performance is limited (see Table 3). These in-
clude adopting beam search to explore multiple registration
possibilities in each step to compensate for indistinguish-
able false matches, and employing multiple sherd roots in
each beam state to reassemble multiple pots simultaneously.

Our main technical contributions are as follows:
+ a new pot reassembly pipeline derived from our uni-

fication of structure-from-motion and pot reassembly
(Sec. 2.2) and based on multi-root beam search, yield-
ing more complete pots from more fragments [18],

+ a new axis-based geometric descriptor for the break
line points, removing a need to use surface point cloud
for efficient initial sherd matching(Sec. 3.4)

+ simple algorithms for extracting and utilizing rim,
base and thickness to reduce false matches and further
improve registration accuracy (Table 3), and

+ a new challenging dataset of 80 real pot sherds from
5 different pots made for evaluation (Table 2).

Conversely, our implementation has some limitations:
currently, it requires at least part of the base fragment for
each pot to be correctly reassembled (see Sec. 5.4). Also,
we do not utilize fragment texture (like in [18]) because the
3D scanner often fails in stitching the texture correctly and
suffers from light saturation. Nonetheless, we believe this
work would serve as the basis for further improvements.

1.1. Related work

The problem of virtually reassembling archaeological
pots has received consistent attention in computer vision
and graphics [12, 8, 20, 18, 24] over the last two decades.

In the early days, several works showed ways to extract
geometric properties of the axially symmetric pot from in-
dividual fragments such as the axis of symmetry [14, 3, 11]
or the profile shape (i.e. axis profile curve) [19]. Mcbride an
Kimia [12] devised a method for matching pairs of sherds,
and noted this process is much more involved than solving
a jigsaw puzzle due to the non-unique break lines.

It was Willis and Cooper [20] who first pioneered a re-
assembly pipeline for axially symmetric pots. Their method
follows an incremental registration procedure like ours,
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Structure-from-motion (SfM) Pot reassembly

Input RGB images 3D point cloud of pot sherds
Outputs camera poses & sparse 3D scene sherd poses & axially symmetric pot models

Extracted features SIFT [10] keypoints axis, edge line descriptor, rim, thickness, base
Pairwise matching criteria SIFT feature distance Weighted sum of above features

Geometric verification
inliers from fundamental (or essential)

matrix or homography estimation
inliers from iterative closest point (ICP)

Sanity check cheirality constraint overlap, thickness & profile curve constraints
Registered quantity camera views sherds
Triangulated model 3D scene points 3D pot model (axis of symmetry & profile curve)

Joint estimation bundle adjustment global sherd and axis alignment via ICP
Table 1. A list of analogies formed between an incremental structure-from-motion pipeline [16] and our pot reassembly method.

adding each fragment one by one to gradually grow the
global consensus of the outputted model. In each step, the
best candidate sherd is chosen by considering its matching
degree of break line points, the corresponding surface nor-
mals and the axis profile curve. Nevertheless, it requires
manual effort to extract features known as the T-junctions
on the break lines, and has only been tested on a single pot
case of 10 sherds. Furthermore, there is no backtracking
procedure that avoids failures from incorrect registration.

In later years, Son et al. [18] presented a type of global
approach to tackling the reassembly problem with 48 frag-
ments from 3 pots. The method considers all potential
pairwise matches across all pot sherds jointly and solves
a combinatorial optimization problem of finding true pos-
itive fragment pairs to directly retrieve the 3D pot model.
This is carried out by minimizing algebraic costs promot-
ing consistency of the axis of symmetry and the axis profile
curve using a spectral method [9]. While the results have
demonstrated state-of-the-art performance, it is unclear as
to how the false positive matches are handled—they are
sometimes indistinguishable from ground truth [20], which
can be detrimental for global approaches as shown in Fig. 2.

Other studies include the work of Huang et al. [8], which
proposes an incremental method for reassembling geomet-
ric objects, but this relies on existence of rich unique fea-
tures on the break surface which is often not visible in pot
sherds (see Fig. 3a). Also, the method has only been tested
for reassembling single objects. Zhang et al. [24] presented
a template-based matching technique, but this is also lim-
ited to single object cases with known pot templates.

2. Devising a robust reassembly pipeline

We now review the challenging aspects of axially sym-
metric pot reassembly, compare this problem to well-
established SfM to gain intuitions for a successful method-
ology and propose our pipeline for the pot reassembly task.

2.1. Review of problem characteristics

Some main problem characteristics exhibited in reassem-
bling axially symmetric pots are summarized below:

Existence of numerous false positive matches Fig. 3
shows the fracture surface (often used for matching [8, 24])
is thin and sharply broken for ceramic pots. It is therefore
difficult to detect features and distinguish between break
lines, raising the number of false positive matches.

Sparse intra-pot connectivity For pot reassembly,
each sherd pair must be physically adjacent, resulting in a
sparse connectivity graph between sherds. This is shown in
Fig. 3, where pot A (Fig. 2) contains only 59% filled graph.

Sparse but noisy inter-pot connectivity For multiple
pot reassembly, fragments end up in different pots, yielding
a block-diagonal pot configuration graph plagued by false
positive matches as shown in Fig. 3. This further raises the
problem difficulty, and subsequently a reassembly pipeline
needs to handle noisy but originally-disconnected graphs.
(otherwise one may recover only one pot at best.)

2.2. Comparing axially symmetric pot reassembly
with structure-from-motion

We now present an analogy between the task of pot re-
assembly and structure-from-motion (SfM) that allows us
to intuitively derive a similar pipeline for pot reassembly.

Problem analogy Structure-from-motion (SfM) is a
multi-stage pipeline jointly estimating 3D scene points and
camera poses from a set of input images. We can also think
of pot reassembly as jointly estimating a 3D pot model (de-
fined by the axis of symmetry and the axis profile curve) and
sherd transformations from 3D point cloud data of sherds.
In this regards, both tasks amount to solving an optimization
problem over a sparsely connected graph (see Fig. 3).

Procedural similarities There are noticeable similari-
ties between the SfM pipeline and pot reassembly methods.

Regarding the global methods, global SfM proceeds by
first extracting features from individual images, second
searching for pairwise matches between images, and last
pruning these matches via triplet or loop filtering [23] to
yield a global model of camera poses and 3D points (involv-
ing rotation averaging [4] and translation averaging [21] fol-
lowed by bundle adjustment [5]). Similarly, Son et al.’s
approach [18], which is a type of global pot reassembly
method, comprises similar steps, extracting axis-based and
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Figure 4. A detailed overview of our pipeline. Multiple arrows (1, ..., b) in registrator branch 1 represent multiple branches formed. The
grey dotted lines indicate the incremental registration step during base part reassembly has a similar structure to registrator branch 1.

break line-based features for each sherd, searching for pair-
wise matches between sherds and last solving a graph op-
timization problem (via spectral method) to find a global
pot model (defined by the axis of symmetry and axis profile
curve) and respective sherd transformations.

Analogical connections in procedures From the pro-
cedural similarities outlined above, we can yield a full list
of analogies (see Table 1) formed between SfM and axially
symmetric pot reassembly. This enables us to effectively
import the architecture of the well-established incremental
SfM pipeline to reassembling axially symmetric pots.

Empirical differences As shown in Fig. 2, we have em-
pirically found false positive pairwise matches are highly
problematic in pot reassembly as some are almost indis-
tinguishable from the true positives even from the human
eye perspective (even after applying false cycle filtering as
in [23]). Also, pot reassembly needs to build multiple dis-
connected models whereas SfM often builds a single scene.

2.3. An overview of the proposed pipeline

Our proposed pipeline for reassembling axially symmet-
ric pots is founded upon the findings from Sec. 2.2.

As shown in Fig. 4, our pipeline is modified and ex-
tended from a standard incremental pipeline to achieve
more accurate reassembly results in spite of large number of
false matches and existence of multiple disconnected pots.

First, the method incorporates beam search during the
incremental sherd registration phase, exploring many more
paths of possibilites in each step thereby increasing the
chance of arriving at the correct solution.

Second, the pipeline efficiently reassembles the base re-
gions first to determine the number of pots to be recon-
structed as well as yield a good initial starting point. (A

base is the flat region at the bottom of each pot.)
Each pipeline stage is illustrated in the next sections.

3. Feature extraction from individual sherds
We extract features from each sherd, including the inner

and outer surfaces and edge line, estimating the axis of sym-
metry and detecting base and rim parts in each fragment.

3.1. Extracting surfaces and edge lines

We first extract two surfaces corresponding to inner and
outer surfaces. (we later use the axis of symmetry to clas-
sify between the two surfaces [7].) Then for each of the
surfaces, we extract an ordered line of points around the
edge of each surface which we defined as an edge line. This
is essentially a vector of ordered (counter-clockwise) 3D
points and respective surface normals on the surface bound-
ary. Rather than storing the actual surface normal of each
edge point (which can be noisy due to the fracture surface),
we fit a B-spline curve to the surface and compute the esti-
mated normal of the edge point from the curve. This vector
is further segmented to different parts, which is later used
for detecting rim and break lines (see Fig. 5.)

Additionally, we extract thickness information (t in
Fig. 7). Details can be found in our supplementary URL [7].

3.2. Estimating the axis of symmetry

From the analogy in Table 1, estimating the axis of sym-
metry can be seen as inferring the underlying pot model.

Amongst the algorithms for estimating the axis of sym-
metry [3, 11, 18, 6], the state-of-the-art performance is
achieved by PotSAC [6]. While the original PotSAC is lim-
ited to outputting a single axis even for ambiguous sherds,
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Figure 5. Features extracted in Sec. 3.1. Yellow and red denote
inner and outer surfaces. Each edge line along the boundary of the
surface contains normals computed from its nearest surface point.

(a) Original image (b) Top view (c) Side view
Figure 6. Axis estimation results using modified PotSAC on sherd
#7 from Pot A. Original PotSAC outputs incorrect #1 for the axis.

we present a slight modification that can output multiple
axes which allows us to avoid failures for these cases.

The basic idea is simple: instead of just taking the win-
ner axis from RANSAC, we take top-10 candidates, refine
them as in ordinary PotSAC and prune them to yield a set
of distinctive axes candidates. For the pruning purpose, we
check the angle made between each pair of axes—if this an-
gle is below 10◦ for any pair, then those pairs are assumed
redundant, and thus the one with higher cost is discarded.
To make the algorithm efficient, we use 10% subsampled
surface points for the above steps, after which we run re-
finement on the survived axes with all surface points.

Fig. 6 shows the modified algorithm outputting 2 axes of
which #2 is correct, in contrast to the original PotSAC only
yielding the (incorrect) #1 axis. This has allowed complete
reassembly of pot A as shown in Fig. 2 at the expense of
increased number of pairwise sherd matches from two axes.

3.3. Base sherd and rim detection

The axis of symmetry provides a mean to efficient detect
sherds with the base region and the rims.

Base sherd detection We use two sets of information
to determine that a sherd contains the base. First, we check
the proximity of the sherd with respect to the axis of sym-
metry. If more than 50 surface points with surface normals
aligned within 10◦ from the axis of symmetry are found
within 20mm radially from the axis, the sherd is considered
a base fragment. Second, we check if there is any sudden
change in the sherd’s profile curve along the z-axis, which
is common for the type of Celadon pots. We form bins ev-
ery 5mm along the z-axis, and for each bin we compute the
mean of the angles between the constituent surface points’
normal vectors and the axis of symmetry. If any adjacent
bins yield more than 30◦ difference in the mean surface nor-
mal angle, the sherd is also considered a base fragment.
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Figure 7. An illustration of our axis-based edge line descriptor.
Unfiltered results are computed via finite difference method. The
Savitzky-Golay filter is used for smoothing and differentiation fol-
lowed by a Gaussian filter of width 7 and σ=2.0. Thickness (t) is
not filtered as this is sometimes missing in some edge points.

Finally, we align the surface data by the axis of symme-
try and project the points onto the xy-plane. We then plot a
angular histogram of points that are within 25mm from the
axis. If the histogram is evenly spread out, then we regard
the sherd as containing the full base. Otherwise, the sherd
is flagged as a partial base fragment.

Rim detection For each edge line segment (>25 points)
obtained from Sec. 3.1, we check for its consistency in the
radial and z-directions— if the radial and vertical standard
deviations are less than 3.0mm and 1.5mm respectively, the
edge line segment is a rim candidate. We then check if any
nearby points along the z-axis have greater radius, which
implies the rim is incorrectly segmented. In such case, we
drop the edge line from consideration.

3.4. Axis-based edge line descriptor

While previous studies have utilized the axis of symme-
try as a physical constraint for incorrect pairwise match-
ing [18], we make one step further and actually encode the
information about the axis into each break line (part of the
edge line) for efficient matching.

Motivation We note a set of matching break lines from
neighboring sherds should ideally meet at the same posi-
tion from the axis of symmetry. From this observation, we
utilize the height (h), radius (r) and angle (α) with respect
to the axis of symmetry coordinate system (with the x-axis
chosen arbitrarily) as means of providing a description for
each of the edge line points (see Fig. 7). Additionally, we
incorporate the thickness (t) obtained from Sec. 3.

Need for the derivatives There are two issues with di-
rectly using above metrics for matching. First, h and α are
computed with respect to some reference defined in each
fragment’s coordinate system which is almost always dif-
ferent from each other. Second, the absolute value of r can
be unreliable for small fragments with high uncertainty in
axis translation (see [7] for an illustration). For these rea-
sons, we utilize their derivatives except for t.
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Figure 8. Our LCS matching scheme detects multiple intervals of
potential matches between two sherds (<10s for 3160 pairs)

Edge line smoothing Due to noise along the edge lines,
simply applying a naive differention technique such as fi-
nite differences results in noisy features as shown in Fig. 7.
Hence, we apply the Savitzky-Golay digitial differentiator
(S-G method) [15] using 7 points, wrapped with a Gaussian
filter of width 7 and σ=2.0 to obtain smooth edges.

Descriptor definition Finally, our axis-based descrip-
tor for the edge line point pj ∈ R3 are defined as

f(pj) := [∆h(pj),∆r(pj), r∆α(pj), t(pj)]
⊤, (1)

where ∆ involves finite differentiation. (Note r is multi-
plied to ∆α to get geometric tangential distance.)

Above can encode all geometric changes regarding each
edge line, and it has the benefit of not having to refer to the
original point cloud (like in [18]) when checking the axis of
symmetry-derived constraints are satisfied.

4. Pairwise matching
Once the geometric edge line descriptors are extracted,

we search for pairwise matches across all edge lines in 2
steps: descriptor matching followed by match refinement.

4.1. Descriptor matching

We first match pairs of edge lines by using the longest
common subsequence (LCS) algorithm (see [7]). If we de-
note the matched pair of sherds as A and B respectively,
running the algorithm outputs several clusters (known as
intervals) of potential matching regions (see Fig. 8). We
define this interval as IAB

k , where k is the interval index.
Addressing ambiguities There are 2 folds of ambigu-

ities triggered by the sign ambiguity of the symmetric axis.
To account for this, we match each pair of edge lines twice
by inverting the descriptor of one edge line.

Rim constraint If the matched interval contains a rim
segment, we determine the match is false and discard it.

4.2. Refining matches

While the above descriptor provides useful cues for find-
ing initial correspondences, they are inevitably prone to er-
rors from axis estimation. To refine individual matches, we
run iterative closest point (ICP) on the initial pairs of edge
lines. The ICP algorithm comprises two stages: correspon-
dence formation followed by correspondence minimization.
These steps are repeated until function tolerance is reached.

(a) 3D break line overlap test (b) Axis profile curve check
Figure 9. Geometric verification filters 2 cases (a) physically unre-
alistic overlaps between sherds and (b) non-smooth profile curves.

Forming correspondences In the very first iteration,
correspondences are acquired from descriptor matching,
and for later iterations, each pair is formed when both points
are the closest to (and within 20mm from) each other (i.e. a
1-to-1 relationship) and their normals are within 30◦.

Minimizing correspondence distances In the second
step, we iteratively find the transformation matrices of the
sherds which minimize the geometric distance between the
pairs of correspondences while promoting rim segments to
maintain consistent radius r and height z.

We define the transformation of sherd A as TA, which
consists of rotation RA ∈ SO(3) and translation tA ∈ R3

If use the notation (i, j) to denote the correspondence be-
tween the i-th edge line point of sherd A (pA

i ∈ R3) and the
j-th edge line point of sherd B (pB

j ∈ R3), the correspon-
dence distance term can be expressed as dij(T

A, TB) :=
d(pA

i , n̂
A
i ,p

B
j , n̂

B
j , T

A, TB) the correspondence normal de-
viation term as eij(TA, TB) := e(n̂A

i , n̂
B
j , T

A, TB) and the
rim consistency term as gi(TA, r, h) := g(pA

i , T
A, r, h). We

essentially solve
min

TA,TB ,r,h

∑
(i,j)∈ΩAB

ρd(d
2
ij(T

A, TB)) + λρe(e
2
ij(T

A, TB))

+ ν
∑

E∈A,B

∑
i∈ΨE

ρg(g
2
i (T

E , r, h)) (2)

where ρd, ρe and ρg are robust kernels to suppress outlier
correspondences, ΩAB is the set of edge line correspon-
dences between sherds A and B, ΨE is the set of edge line
points classified as rim in sherd E (A or B). While we solve
(2) using the Levenberg-Marquardt (LM) algorithm [2], we
use different correspondence distance metrics during opti-
mization for which full details are provided in [7].

4.3. Geometric verification

Above ICP algorithm is deliberately unconstrained to
yield better empirical convergence properties. Unfortu-
nately, this leads to many false positive matches, requiring
further pruning via geometric verification. Similar to [18],
we use two tests, detecting an overlapped region between
the pair of sherds and checking the axis profile curve. Some
examples are shown in Fig. 9 (see [7] for implementation).
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5. Incremental sherd registration

We now illustrate the sherd registration module in Fig. 4.
We will assume one or more sherds are reassembled in ad-
vance, forming a set-of-sherds {C}.

5.1. Sherd registration

When registering a new sherd (denoted as sherd D) to
the reassembled sherds {C}, we align the coordinates by
the sherd C’s axis of symmetry (defined as the z-axis with-
out loss of generality) and keep it fixed. We then adjust
sherd D’s pose (TD) to align sherd D to sherd C (or sherds
{C}) considering i) the closeness of the edge line matches
between sherd D and sherds {C} in terms of 3D points
and their surface normals, ii) the consistency of the rim in
terms of radius r and height z, and iii) the consistency of the
symmetric-axis between {C} and D. Noting the notations
from (2), we essentially solve
min
TD

∑
E∈{C}

∑
(i,j)∈ΩDE

ρd(d
2
ij(T

D, TE)) + λρe(e
2
ij(T

D, TE))

+ µ
∑
i∈ΩD

ρf (f
2
i (T

D)) + ν
∑
i∈ΨD

ρg(g
2
i (T

D, r, h)) (3)

where ΩD is the set of edge line points in sherd D, ΨD is a
subset of ΩD classified as rim, and fi is a measure of the ax-
ial consistency in sherd D. Specifically, fi is the extended
Cao and Mumford’s objective proposed in eq. (9) of [6],
which is essentially a function of the edge line point pD

i ,
its normal n̂D

i and the axis of symmetry (represented by the
axis direction v̂ and the axis offset u in [6].) Unlike in [6]
where the objective is used to adjust the axis of symmetry
given fixed surface points and normals, we transform each
edge line point and its normal as RDpD

i + tD and RDn̂D
i

respectively under fixed symmetric axis (v̂ = [0, 0, 1]⊤,
u = 0). We again utilize the ICP algorithm (i.e. the corre-
spondences are updated every iteration) as in Sec. 4.2, and
implementation details are provided in [7].

5.2. Priority list

Above registration step yields a set of pairwise matches
between the break lines from 2 or more sherds. We then
calculate each pair’s score based on the number of inliers
from which we decide the ranking of pairs.

Adjusted number of inliers From these, we can cal-
culate the number of inlier correspondences (P ), which is
defined as pairs with less than 1.5 mm. This number is then
multiplied by the factor of proportion of overlapping axis
profile curve (Q) to yield (1 + Q)P as the adjusted num-
ber of inliers. For instance, if a sherd C and sherd D have
100 inlier matches, and they share 70% of the overlap in the
profile curve, then the adjusted number of inliers is 170.

5.3. Batch sherd alignment

After a priority list ranking is decided, we further refine
some of the higher ranked registration results (k × b candi-
dates using our beam search in Sec. 5.4) by allowing previ-
ously re-assembled sherds to move as well. If we suppose
now sherd D becomes part of the set of reassembled sherds
{C}, then by noting notations from (2) and (3), we solve

min
{TC},r,h

∑
(E,F )∈Ω{C}

∑
(i,j)∈ΩEF

(
ρd(d

2
ij(T

E , TF ))

+ λρe(e
2
ij(T

E , TF ))
)
+

∑
F∈Ω{C}

(
µ

∑
i∈ΩF

ρf (f
2
i (T

F ))

+ ν
∑
i∈ΨF

ρg(g
2
i (T

F , r, h))
)

(4)

where (E, F ) denote a pair of sherds in set of sherd pairs
Ω{C}. (Note TE and TF are members of the set {TC}.) As
in Sec. 5.1, we utilize the ICP algorithm to update corre-
spondences via alternation (see [7]).

5.4. Multi-root beam search

We use beam search to explore multitudes of potential
reassembly paths. In each iteration, we make b branches
from each of the current branches (initially set to 1) and
filter k top-ranked beams to bring to the next iteration. Fur-
thermore, to restore multiple pots from the mixed piles of
sherds, we utilize multiple roots in each state of the beam
search (see [7]). This allows efficient matching as each
sherd can only be registered to one root per state.

Merging redundant permutations In each beam
search iteration, some paths can end up with same recon-
struction (with different reassembly order). We consistently
check for these and merge such redundant beams.

Estimating initial number of pots In order to run the
multi-root beam search framework in Fig. 4, we need to set
the number of roots for reassembling pots (which is ideally
equal to the number of pots). We achieve this by first gather-
ing a set of sherds with the base region from Sec. 3.3, merg-
ing all broken bases and using this number with the number
of full (unbroken) bases for initiating the incremental sherd
registration process. The merging process involves itera-
tively selecting an unmerged partial base fragment as root
(for incremental beam search) and reassembling all possi-
ble pieces until all partial base fragments are reassembled.

6. Experimental results
We carried out experiments to observe the performance

of our pipeline under various conditions. The optimization
settings and PC environment can be found in [7].

Datasets We used total of 80 fragments from 5 different
pots. Pots A and B are actual ancient pots estimated to have
been made between the 14–16th century, and Pots C, D and
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Pot ID (# sherds) A (8) B (9) C (4) D (28) E (31) A+B (17) A+B+C (21) D+E (59) All (80)
# base sherds (detected / actual) 1 / 1 1 / 1 1 /1 3 / 3 4 / 4 2 / 2 3 / 3 7 / 7 10 / 10
# rim sherds (detected / actual) 5 / 6 6 / 7 2 / 3 1 / 1 0 / 1 11 / 13 13 / 16 1 / 2 14 / 18
# initial pairwise matches 72 98 51 1742 1063 331 483 4715 6431
Preprocessing runtime (min.) (3.9) (3.4) (10.9) (47.8) (37.2) (7.3) (18.1) (85.0) (103.0)

[b=3, k=5] Accuracy 8 / 8 9 / 9 4 / 4 22 / 28 19 / 31 15 / 17 19 / 21 27 / 59 43 / 80
Runtime (min.) (0.2) (0.2) (0.1) (22.5) (17.0) (1.1) (1.9) (82.3) (167.5)

[b=5, k=10] Accuracy 8 / 8 9 / 9 4 / 4 23 / 28 26 / 31 17 / 17 21 / 21 36 / 59 54 / 80
Runtime (min.) (0.4) (0.4) (0.1) (49.7) (32.8) (2.8) (3.7) (210.2) (256.8)

[b=10, k=20] Accuracy 8 / 8 9 / 9 4 / 4 24 / 28 24 / 31 17 / 17 21 / 21 48 / 59 66 / 80
Runtime (min.) (0.9) (1.2) (0.3) (127.4) (172.6) (4.7) (8.2) (440.8) (592.4)

Table 2. Reassembly results on our data. Pot IDs are assigned in ascending order of difficulty. Data preprocessing was run on a slower PC.

[b=3,k=5] Baseline w/o beam search w/o rim w/o thickness
# initial matches 483 483 634 943
Accuracy 19/21 11/21 18/21 18/21

Table 3. Ablation study of different components proposed in this
work (results from the A+B+C multi-pot reassembly setting).

E are modern pots deliberately broken for the purpose of
this task. Each pot was scanned with a Creaform GoSCAN
20 at maximum resolution of 0.1mm. The output is a trian-
gulated mesh, but we only utilized the point cloud data for
our pipeline. (mesh was used for visualization only.)

We omitted some very small fragments comprising <50
points in the respective surface edge lines (i.e. perimeter ≈
9cm), removing 1 piece in pot C, 3 in pot D and 4 in pot E.

Generating ground truth We were provided with re-
constructed pot images with each piece labelled by a group
of restoration experts. We used these to manually place
sherds in correct locations using CloudCompare, and used
this to perform ICP using the fracture surfaces between indi-
vidual sherds to obtain a set of accurate reassembly models
(see [7]). Then, for each pot, we recorded the relative trans-
formation (TE) of each sherd E from the same pot with
respect to the base fragment’s coordinates.

Counting success For each reconstruction result, we
obtained the transformation of each sherd relative to its con-
stituent base fragment’s coordinates and compared it to the
semi-ground truth data obtained from above. The thresh-
old values for success are 30◦ for 3D rotation (not the axis
deviation) and 20mm for translation.

6.1. Evaluation of our approach

We tested our algorithm under various settings, namely
switching between single pot and multi-pot environments
and varying the number of branches (b) and beams (k).

As shown in Table 2, our method shows stable perfor-
mance across all tested beam search settings for the sin-
gle pot reassembly cases. For the multi-pot setting, beam
search with more branches (b) and ranks (k) overall in-
creases the number of successfully reassembled fragments
as predicted, largely due to the increased number of trials
allowing the pipeline yield a better solution. Interestingly,
in some cases it is the opposite, and we think this is poten-
tially due to earlier-rejected beam paths surviving for larger
k and coming back later to negatively influence the result.

While a direct comparison with Son et al.’s method
(31/48 sherds reassembled in 648 minutes) is difficult due
to difference in datasets, we show over 17.9% improvement
in reassembly accuracy with 32 more fragments.

Ablation study We also checked the performance gain
brought by the individual components we proposed in this
work. Table 3 shows beam search is mandatory for suc-
cessful reassembly and the new set of constraints using the
rim and thickness information helps to reduce the number
of initial pairwise matches by 30–50%.

Note on hyperparameters While we made efforts to
build a generic pipeline, some hyperparameters need to be
tuned correctly. These include parameters for edge line ex-
traction, the threshold for checking sherd overlaps and ICP
weights and kernel widths (see [7] for details).

7. Conclusions
In this work, we have addressed the problem of virtu-

ally reassembling axially symmetric pots from 3D scanned
fragments. We empirically showed a global reassembly
pipeline is sensitive to inaccurate pairwise feature matches
between pot sherds arising from ambiguous geometric cues.
In addressing this intrinsic difficulty, we formed a strong
connection between structure-from-motion (SfM) and pot
reassembly, inspiring us to utilize incremental registration
widely adopted in SfM. Additionally, we proposed several
major extensions, i) an axis-based geometric feature de-
scriptor for matching, ii) adoption of beam search to main-
tain a pool of registration possibilities, and iii) multiple root
nodes in each beam state to reduce the number of false
matches in reassembling multiple pots simultaneously. We
also showed rim and thickness information help in reducing
false matches. Through experiments on a larger number of
pot fragments and pot types than previously reported in the
literature, we showed our method achieves significant im-
provement in reassembly accuracy over the state-of-the-art.
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