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Figure 1: Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-training, we incorporate
view-invariant and geometric priors from color-geometry information given by RGB-D datasets, imbuing geometric priors
into learned features. We show that these 3D-imbued learned features can effectively transfer to improved performance on
2D tasks such as semantic segmentation, object detection, and instance segmentation.

Abstract

Recent advances in 3D perception have shown impres-
sive progress in understanding geometric structures of 3D
shapes and even scenes. Inspired by these advances in ge-
ometric understanding, we aim to imbue image-based per-
ception with representations learned under geometric con-
straints. We introduce an approach to learn view-invariant,
geometry-aware representations for network pre-training,
based on multi-view RGB-D data, that can then be effec-
tively transferred to downstream 2D tasks. We propose
to employ contrastive learning under both multi-view im-
age constraints and image-geometry constraints to encode
3D priors into learned 2D representations. This results
not only in improvement over 2D-only representation learn-
ing on the image-based tasks of semantic segmentation, in-
stance segmentation and object detection on real-world in-
door datasets, but moreover, provides significant improve-
ment in the low data regime. We show significant improve-
ment of 6.0% on semantic segmentation on full data as
well as 11.9% on 20% data against baselines on ScanNet.
Our code is open sourced at https://github.com/
Sekunde/Pri3D.

1. Introduction

In recent years, we have seen rapid progress in learning-
based approaches for semantic understanding of 3D scenes,
particularly in the tasks of 3D semantic segmentation, 3D
object detection, and 3D semantic instance segmentation
[40, 8, 51, 28, 22, 17, 12, 29, 38]. Such approaches lever-
age geometric observations, exploiting the representation of
points [40, 41], voxels [8, 22], or meshes [28] to obtain ac-
curate 3D semantics. These have shown significant promise
towards realizing applications such as depth-based scene
understanding for robotics, as well as augmented or virtual
reality. In parallel to the development of such methods, the
availability of large-scale RGB-D datasets [46, 27, 3, 7], has
further accelerated the research in this area.

One advantage of learning directly in 3D in contrast to
learning solely from 2D images is that methods operate in
metric 3D space; hence, it is not necessary to learn view-
dependent effects and/or projective mappings. This allows
training 3D neural networks from scratch in a relatively
short time frame and typically requires a (relatively) small
number of training samples; e.g., state-of-the-art 3D neu-
ral networks can be trained with around 1000 scenes from
ScanNet. Our main idea is to leverage these advantages in
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the form of 3D priors for image-based scene understanding.
Simultaneously, we have seen tremendous progress on

representation learning in the image domain, mostly pow-
ered by the success of recent contrastive learning based
methods [54, 18, 4, 15, 2]. The exploration in 2D rep-
resentation learning heavily relies on the paradigm of in-
stance discrimination, where different augmented copies of
the same instance are drawn closer. Different invariances
can be encoded from those low-level augmentations such
as random cropping, flipping and scaling, as well as color
jittering. However, despite the common belief that 3D view-
invariance is an essential property for a capable visual sys-
tem [33], there remains little study linking the 3D priors
and 2D representation learning. The goal of our work is to
explore the combination of contrastive representation learn-
ing with 3D priors, and offer some preliminary evidence to-
wards answering an important question: can 3D priors help
2D representation learning?

To this end, we introduce Pri3D, which aims to learn
with 3D priors in a pre-training stage and subsequently use
them as initialization for fine-tuning on image-based down-
stream tasks such as semantic segmentation, detection, and
instance segmentation. More specifically, we introduce ge-
ometric constraints to a contrastive learning scheme, which
are enabled by multi-view RGB-D data that is readily avail-
able. We propose to exploit geometric correlations through
implicit multi-view constraints between different images
through the correspondence of pixels which correspond to
the same geometry, as well as explicit correspondence of
geometric patches which correspond to image regions. This
imbues geometric knowledge into the learned representa-
tions of the image inputs which can then be leveraged as
pre-trained features for various image-based vision tasks,
particularly in the low training data regime.

We demonstrate our approach by pre-training on Scan-
Net [7] under these geometric constraints for representation
learning, and show that such self-supervised pre-training
(i.e., no semantic labels are used) results in improved per-
formance on 2D semantic segmentation, instance segmen-
tation and detection tasks. We demonstrate this not only
on ScanNet data, but also generalizing to improved per-
formance on NYUv2 [46] semantic segmentation, instance
segmentation and detection tasks. Moreover, leveraging
such geometric priors for pre-training provides robust fea-
tures which can consistently improve performance under a
wide range of amount of training data available. While we
focus on indoor scene understanding in this paper, we be-
lieve our results can shed light on the the paradigm of repre-
sentation learning with 3D priors and open new opportuni-
ties towards more general 3D-aware image understanding.

In summary, our contributions are:
• A first exploration of the effect of 3D priors for 2D

image understanding tasks, where we demonstrate the

benefit of 3D geometric pre-training towards complex
2D perception such as semantic segmentation, object
detection, and instance segmentation.

• A new pre-training approach based on 3D-guided
view-invariant constraints and geometric priors from
color-geometry correspondence, which learns features
that can be transferred to 2D representations, comple-
menting and improving image understanding across
multiple datasets.

2. Related Work
3D Scene Understanding. Research in 3D scene under-
standing has recently been spurred forward with the in-
troduction of larger-scale, real-world 3D scanned scene
datasets [1, 7, 3, 13]. We have seen notable progress in
development of methods for semantic segmentation [40,
41, 51, 52, 8, 26, 31, 56, 28, 59], object detection [48,
49, 38, 39, 37, 61, 34], and instance segmentation [22, 58,
57, 30, 23, 12, 17, 29] in 3D. In particular, the introduc-
tion of sparse convolutional neural networks [14, 6] have
presented a computationally-efficient paradigm producing
state-of-the-art results in such tasks. Inspired by the devel-
opments in 3D scene understanding, we introduce learned
geometric priors to representation learning for image-based
vision tasks, leveraging a sparse convolutional backbone for
3D features used during pre-training.

In the past year, we have also seen new developments in
3D representation learning. PointContrast [55] first showed
that unsupervised, contrastive-based pre-training improves
performance across various 3D semantic understanding
tasks. Hou et al. [24] introduces spatial context into 3D con-
trastive pre-training, resulting in improved performance in
3D limited annotation and data scenarios. Zhang et al. [60]
introduces a instance-discrimination-style pre-training ap-
proach that directly operates on depth frames. Our ap-
proach bridges these concepts into feature learning that can
be transferred to 2D image understanding tasks.

2D Contrastive Representation Learning. Representa-
tion learning has driven significant efforts in deep learn-
ing; on the image domain, pre-training a network on a
rich set of data has been shown to improve performance in
fine-tuning for a smaller target dataset for various applica-
tions. In particular, the contrastive learning framework [16]
to learn representations from similar/dissimilar pairs of
data has been demonstrated to show incredible promise
[36, 21, 54, 18, 4, 5, 15, 2]. Notably, using an instance
discrimination task in which positive pairs are created with
data augmentation, MoCo [18] shows that unsupervised
pre-training can surpass various supervised counterparts in
detection and segmentation tasks, and SimCLR [4] further
reduces the gap to supervised pre-training in linear classifier
performance. Our approach leverages multi-view geomet-
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Figure 2: Method Overview. During pre-training, we use geometric constraints from RGB-D reconstructions to learn 3D
priors for image-based representations. Specifically, we propose a contrastive learning formulation that models multi-view
correspondences (View-Invariant Contrastive Loss) as well as geometry-to-image alignments (Geometric Prior Contrastive
Loss). Our Pri3D pre-training strategy embeds geometric priors into the learned representations (in a form of pre-trained 2D
convolutional network weights) that can be further leveraged for downstream 2D-only image understanding tasks.

ric information to augment contrastive learning and imbue
robust geometric priors into learned feature representations.

Multi-Modality Learning CLIP [42] firstly proposes to
train on images but with natural language supervision, and
achieves significant results on zero-shot learning. BP-
Net [25] proposes a bidirectional projection module to mu-
tually leverage 2D and 3D information for semantic seg-
mentation task. 3D-to-2D Distillation [32] introduces addi-
tional 3D network in the training phase to embed 3D fea-
tures for 2D semantic segmentation task. Existing works
need to modify networks or add fusion modules in the train-
ing and/or inference phases. To this end, our method is more
flexible as our pre-trained weights can be directly used like
the ImageNet pre-trained model without any further mod-
ules or 3D/NLP data in the downstream tasks.

Correspondences Matching Schmidt et al. [44] advo-
cates a new approach to learning visual descriptors for
dense correspondence estimation for the re-localization pur-
pose, e.g., in the SLAM context. Schuster et al. [45]
presents a robust, unified descriptor network leveraging
stacked dilated convolutions (SDC) for larger receptive field
to better estimate dense pixel matching. HumanGPS [50]
estimates dense correspondences between human images
under arbitrary camera viewpoints and body poses. Existing
works focus on 2D-2D correspondences matching problem
itself. Our approach uses 2D-3D as well as 2D-2D view-
invariant correspondences matching as pretext task to em-
bed 3D priors for 2D downstream tasks.

3. Learning Representations from 3D Priors

In this section, we introduce Pri3D; our key idea is
to leverage constraints from RGB-D reconstructions, now

readily available in various datasets [13, 47, 7, 3], to em-
bed 3D priors in image-based representations. From a
dataset of RGB-D sequences, each sequence consists of
depth and color frames, {Di} and {Ci}, respectively, as
well as automatically-computed 6-DoF camera pose align-
ments {Ti} (mapping from each camera space to world
space) from state-of-the-art SLAM, all resulting in a recon-
structed 3D surface geometry S. Specifically, we observe
that multi-view constraints can be exploited in order to learn
view-invariance without the need of costly semantic labels.
In addition, we learn features through geometric represen-
tations given by the obtained geometry in RGB-D scans,
again, without the need of human annotations. For both, we
use state-of-the-art contrastive learning in order to constrain
the multi-modal input for training. We show that these pri-
ors can be embedded in the image-based representations
such that the learned features can be used as pre-trained
features for purely image-based perception tasks; i.e., we
can perform tasks such as image segmentation or instance
segmentation on a single RGB image. An overview of our
approach is shown in Figure 2.

3.1. View-Invariant Learning

In 2D constrative pre-training algorithms, a variety of
data augmentations are used for finding positive matching
pairs, such as MoCo [18] and SimCLR [4]. For instance,
they use random crops as self-supervised constraints within
the same image for positive pairs, and correspondences to
crops from other images as negative pairs. Our key idea is
that with the availability of 3D data for training, we can
leverage geometric knowledge to provide matching con-
straints between multiple images that see the same points.
To this end, we use the ScanNet RGB-D dataset [7] which
provides a sequence of RGB-D images with camera poses
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computed by a state-of-the-art SLAM method [9], and re-
constructed surface geometry S [35]. Note that both the
pose alignments and the 3D reconstructions were obtained
in a fully-automated fashion without any user input.

For a given RGB-D sequence in the train set, our method
then leverages the 3D data to finding pixel-level correspon-
dences between 2D frames. We consider all pairs of frames
(i, j) from the RGB-D sequence. We then back-project
frame i’s depth map Di to camera space, and transform the
points into world space by Ti. The depth values of frame
j are similarly transformed into world space. Pixel cor-
respondences between the two frames are then determined
as those whose 3D world locations lie within 2cm of each
other (see Figure 3). We use the pairs of frames which have
at least 30% pixel overlap, with overlap computed as num-
ber of corresponding pixels in both frames divided by total
number points in the two frames. In total, we sample around
840k pairs of images from the ScanNet training data.

In the training phase, a pair of sampled images is input
to a shared 2D network backbone. In our experiments, we
use a UNet-style [43] backbone with ResNet [20] architec-
ture as an encoder, but note that our method is agnostic to
the underlying encoder backbone. We then consider the
feature map from decoder of the 2D backbone, where its
size is half of the input resolution. For each image in the
pair, we use the aforementioned pixel-to-pixel correspon-
dences which refer to the same physical 3D point. Note that
these correspondences may have different color values due
to view-dependent lighting effects but represent the same
3D world location; additionally, the regions surrounding the
correspondences appear different due to different viewing
angles. In this fashion, we treat these pairs of correspon-
dences as positive samples in contrastive learning; we use
all non-matching pixels as negatives. Non-matching pixels
are also defined within the set of correspondences. For a
pair of frames with n pairs of correspondences as positive
samples, we use all n(n− 1) negative pairs (each of n pix-
els from the first frame with each n− 1 non-matching pixel
from the second). Non-matching pixel-voxels are defined
similarly but from a pair of frame and 3D chunk.

Between the features of matching and non-matching
pixel locations, we then compute a PointInfoNCE loss [55],
which is defined as:

Lp = −
∑

(a,b)∈M

log
exp(fa · fb/τ)∑

(·,k)∈M exp(fa · fk/τ)
, (1)

where M is the set of pairs of pixel correspondences, and f
represents the associated feature vector of a pixel in the fea-
ture map. By leveraging multi-view correspondences, we
apply implicit 3D priors – without any explicit 3D learn-
ing, we imbue view-invariance in the learned image-based
features.

Figure 3: Illustration of finding correspondences between
frames via epipolar geometry; world space as intermediary.

3.2. Geometric Prior

In addition to multi-view constraints, we also lever-
age explicit geometry-color correspondences inherent to the
RGB-D data during training. For an RGB-D train sequence,
the geometry-color correspondences are given by associat-
ing the surface reconstruction S with the RGB frames of
the sequence. For each frame i, we compute its view frus-
tum in the world space. A volumetric chunk Vi of S is then
cropped from the axis-aligned bounding box of the view
frustum. We represent Vi as a 2cm resolution volumetric
occupancy grid from the surface. We thus consider pairs of
color frames and geometric chunks (Ci, Vi).

From the color-geometry pairs (Ci, Vi), we compute
pixel-voxel correspondences by projecting the depth values
for each pixel in the corresponding frame Di into world
space to find an associated occupied voxel in Vi that lies
within 2cm of the 3D location of the pixel.

During training, we leverage the color-geometry corre-
spondences with a 2D network backbone and a 3D net-
work backbone. We use a UNet-style [43] architecture with
ResNet [20] encoder for the 2D network backbone, and a
UNet-style sparse convolutional [14, 6] 3D network back-
bone. Similarly to view-invariant training, we also take the
output from the decoder of 2D network backbone where
its output size is half of the input resolution. We then use
the pixel-voxel correspondences in (Ci, Vi) for contrastive
learning, with positives as all matching pixel-voxel pairs
and negatives as all non-matching pixel-voxel pairs. We
apply the PointInfoNCE loss (Equation 1) with fi as the 2D
features of a pixel, and fj is the feature vector from its 3D
correspondence, and M the set of 2D-3D pixel-voxel corre-
spondence pairs.

3.3. Joint Learning

We can leverage not only the view-invariant constraints
and geometric priors during training, but also learn jointly
from the combination of both constraints. We can thus em-
ploy a shared 2D network backbone and a 3D network back-
bone, with the 2D network backbone constrained by both
view-invariant constraints and as the 2D part of the geomet-
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ric prior constraint.
During training, we consider (Ci, Cj , Vi, Vj) of overlap-

ping color frames Ci and Cj as well as Vi and Vj which
have geometric correspondence with Ci, Cj respectively.
The shared 2D network backbone then processes Ci, Cj and
computes the view-invariant loss from Section 3.1. At the
same time, Vi and Vj are processed by the 3D sparse convo-
lutional backbone, with the loss (discussed in 3.2) relative
to the features of Ci and Cj respectively. This embeds both
constraints into the learned 2D representations.

4. Experimental Setup
Our approach aims to embed 3D priors into the learned

2D representation by leveraging our view-invariant and ge-
ometric prior constraints. In this section, we introduce our
detailed experimental setup for pre-training with an RGB-
D dataset and fine-tuning on downstream 2D scene under-
standing tasks.

Architecture for Pre-training. As described in the pre-
vious section, our pre-training method leverages the pixel-
to-pixel and geometry-to-color correspondences for view-
invariant contrastive learning. The specific form of our pre-
training objective requires a feature extractor capable of
providing per-pixel or per-3D-point features for the back-
bone architecture, as the positive and negative matches are
defined over 2D pixels or 3D locations.

Our meta-architectures for both view-invariant con-
straints and geometric priors are U-Nets [43] with resid-
ual connections. The encoder part of the U-Net is a stan-
dard ResNet. For view-invariant learning with 2D image
inputs, we use ResNet18 or ResNet50 as encoders. The
decoder part of the U-Net architecture consists of convo-
lutional layers and bi-linear interpolation layers. For learn-
ing geometric priors from 3D volumetric occupancy input,
we use sparse convolutions [14], specifically a Residual U-
Net-32 backbone implemented with MinkowskiEngine [6],
using a 2cm voxel size.

Stage I: Pri3D encoder initialization. We empirically
found that for the pre-training phase, good initialization of
the encoder network is critical to make learning robust. In-
stead of starting with random initialization, we initialize the
encoder with network weights trained on ImageNet (i.e. we
pre-train the network for pre-training). The whole pipeline
can be seen as a two-stage framework. We note that our
method aims to improve the general representation learn-
ing, thus is not tied to a specific learning paradigm (e.g. su-
pervised pre-training or self-supervised pre-training). From
this perspective, we can leverage supervised pre-training of
ResNet [20] encoders with ImageNet [10] data for encoder
initialization for pre-training. We name this model Pri3D.

Although the use of a supervised ImageNet pre-trained
initialization is a common practice, for completeness we

also evaluate Pri3D in an unsupervised pipeline without us-
ing ImageNet labels. Results suggest that Pri3D does not
rely on any semantic supervision (e.g. ImageNet labels) to
succeed, and still is able to achieve a substantial gain in this
setup. We name this variant Unsupervised Pri3D. Further
results of Unsupervised Pri3D are demonstrated in supple-
mentary materials.

Stage II: Pri3D pre-training on ScanNet. Our pre-
training method is enabled by the inherent geometry and
color information present in the RGB-D data sequences.
For pre-training, we leverage the color image and geomet-
ric reconstructions provided by the automatic reconstruc-
tion pipeline of ScanNet [7]; note that we do not use the
semantic annotations during pre-training. ScanNet contains
2.5M images from 1513 ScanNet train video sequences. We
regularly sample every 25th frame without any other filter-
ing (e.g., no control on viewpoint variation), and compute
the set of overlapping pairs of frames that have > 30%
pixel overlap, resulting in ≈ 840k frame pairs for which
we compute their corresponding geometric chunks for each
image, in order to apply both our view-invariant and geo-
metric prior constraints.

Downstream Fine-tuning. We evaluate our Pri3D mod-
els by fine-tuning them on a suite of downstream image-
based scene understanding tasks. We use two datasets,
ScanNet [7] and NYUv2 [46], and the three tasks of seman-
tic segmentation, object detection, and instance segmenta-
tion. As our pre-training dataset is ImageNet and ScanNet,
fine-tuning on ScanNet represents a scenario of in-domain
transfer—it would be interesting to know if the 3D pri-
ors can help with 2D representations for image-based tasks
on the same dataset. We further evaluate the performance
of Pri3D on the NYUv2 dataset which maintains different
statistics. This represents a out-of-domain transfer scenario.
For semantic segmentation tasks, we directly use the U-Net
architecture for dense prediction. The encoder and decoder
networks are both pre-trained with Pri3D. For instance seg-
mentation and detection tasks, we use Mask-RCNN [19]
framework implemented in Detectron2 [53]. Only the back-
bone encoder part is pre-trained.

Implementation details. For pre-training, we use an
SGD optimizer with learning rate 0.1 and batch-size of 64.
The learning rate is decreased by a factor of 0.99 every
1000 steps, and our method is trained for 60,000 iterations.
For MoCoV2 [5], we use the official PyTorch implemen-
tation. MoCoV2 is trained for 100 epochs with batch size
256. The fine-tuning experiments on semantic segmentation
are trained with a batch size of 64 for 80 epochs. The initial
learning rate is 0.01, with polynomial decay with power 0.9.
All experiments are conducted on 8 NVIDIA V100 GPUs.
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Baselines. As we are using additional RGB-D data from
ScanNet, it is important to benchmark our method against
relevant baselines in order to answer the question: are 3D
priors useful for 2D representation learning?

• Supervised ImageNet Pre-training (IN). We use the
ImageNet pre-trained weights provided in torchvision;
this represents a widely adopted paradigm for image-
based tasks. No ScanNet data is involved.

• 1-Stage MoCoV2 (MoCoV2-IN+SN). We train Mo-
CoV2 on an expanded dataset that combines ImageNet
with ScanNet. We explore two strategies: 1) Directly
combining the two datasets with shuffled images and
2) mixing minibatches (sampling half images from Im-
ageNet and the other half from ScanNet). In this case,
we use ScanNet data but no 3D priors are considered.

• 2-Stage MoCoV2 (MoCoV2-supIN→SN). As we use
supervised pre-training (IN) in our method as encoder
initialization, for fair comparison, we also try one ver-
sion with (supervised) IN as the encoder initialization,
then add another stage to fine-tune MoCoV2 with ran-
domly shuffled ScanNet images. In this case, we use
ScanNet data but no 3D priors are used.

• Trivial Correspondences. We use our framework
but instead of learning from multi-view correspon-
dences, we take one single-view image and create two
copies by applying color space augmentations includ-
ing: RGB jittering, random color dropping and Gaus-
sian blur. Positive matches are defined on pixels at the
same location. In this case, we use ScanNet data but
no 3D priors are considered.

• Depth Prediction We use single frame depth predic-
tion as a pretext task. Our approach can leverage depth
prediction as proxy loss. In this regard, we use Scan-
Net data and a simple 3D prior is considered.

Through above baselines, we aim to justify that Pri3D
learns to embed 3D priors in 2D representations that lead
to an improved downstream performance; it is nontrivial to
achieve the goal, given the auxiliary RGB-D dataset.

5. Results
In this section, we present the results of our downstream

fine-tuning results as well as relevant baselines mentioned
in the previous section.

5.1. ScanNet

We use our pre-trained network weights learned with
Pri3D, and fine-tune for 2D semantic segmentation, object
detection, and instance segmentation tasks on ScanNet [7]
images, demonstrating the effectiveness of representation

learning with 3D geometric priors. For fine-tuning, follow-
ing the standard protocol in the ScanNet benchmark [7]: we
sample every 100 2D frames, resulting in 20,000 train im-
ages and 5,000 validation images.

2D Semantic Segmentation. We first show fine-tuning for
semantic segmentation results in Table 1, in comparison
with several baselines that also use ScanNet RGB-D data.
We show the applicability of our approach with a standard
ResNet50 backbone and a smaller ResNet18 backbone.

Comparing to just training the semantic segmentation
model from scratch on downstream dataset (39.1% with
ResNet50), all pre-training methods help significantly, even
just using the ImageNet pre-training. This confirms the
common belief in computer vision that a good 2D repre-
sentation is essential for good performance on the target
task. Several baselines, when adding the ScanNet RGB-D
data, also works reasonably well, but not much better than
the naive ImageNet Pre-training baseline. This suggests
that simply adding the ScanNet data into the representation
learning pipeline does not necessarily lead to better results.
Our Pri3D variants, including the view-invariant contrastive
learning, geometry-color correspondence based contrastive
learning and the combination of the two, provides substan-
tially better representation quality that leads to improved se-
mantic segmentation performance. We note that our method
has a major performance boost (+6.0% absolute mIoU)
even compared with the ImageNet Pre-training results. We
believe this is an encouraging result and represents a prac-
tical use case as ImageNet pre-trained networks are often
readily available.

Moreover, we evaluate our approach under limited data
scenarios in Figure 5. Our Pri3D pre-training shows an even
larger gap when using a small subset of the training images,
again compared to the strong ImageNet pre-training base-
line. With only 20% of the training data, we are able to re-
cover 84% and 80% of the finetuning performance when us-
ing 100% training data, with ResNet50 and ResNet18 back-
bone respectively.

2D Object Detection and Instance Segmentation. To
demonstrate that Pri3D is generalizable for different image-
based tasks, we show results on fine-tuning for object de-
tection in Table 2 and instance segmentation in Table 3. For
both tasks, we observe similar behavior to the semantic seg-
mentation counterpart. All pre-training methods bring sub-
stantial improvement over training from scratch, but Pri3D
models stand out and yield more gain compared to Ima-
geNet Pre-training alone (+3.2% and +2.8% AP@0.5 for
instance segmentation and detection, respectively). We note
that for this set of experiments, we only transfer the encoder
weights, discarding the decoder weights in the U-Net archi-
tecture for pre-training. This resembles similar practice in
language domains (e.g. BERT [11]) and shows that the main
gain of Pri3D is better encoder representations.
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Figure 4: We show qualitative results on 2D semantic segmentation of ScanNet [7] and NYUv2 [46]. By encoding 3D priors,
we obtain better segmentation results, in particular where when there are appearance variations over objects.

Method ResNet50 ResNet18
Scratch 39.1 37.5
ImageNet Pre-training (IN) 55.7 51.0
MoCoV2-supIN→SN 56.6 (+0.9) 52.9 (+1.9)

MoCoV2-IN+SN(combine) 54.9 (-0.8) -
MoCoV2-IN+SN(mixing batch) 54.5 (-1.2) -
Trivial Correspondences 56.4 (+0.7) 52.1 (+1.1)

Depth Prediction 58.4 (+2.7) -
Pri3D (View) 61.3 (+5.6) 54.4 (+3.4)

Pri3D (Geo) 61.1 (+5.4) 55.3 (+4.3)

Pri3D (View + Geo) 61.7 (+6.0) 55.7 (+4.7)

Table 1: 2D Semantic Segmentation on ScanNet. Fine-
tuning with Pri3D pre-trained models leads to significantly
improved results compared to ImageNet pre-training. Pri3D
learns better representations with 3D priors and compares
favorably with other baselines that also uses auxiliary RGB-
D data. Please refer to Sec. 4 for the detailed setup for those
baselines. Metric is mean intersection-over-union (mIoU).

SOTA Segmentation Network. To demonstrate our
method is agnostic to semantic segmentation back-
bones, we further show results with PSPNet and
DeepLabV3/DeepLabV3+ in Table 4. Pri3D (Ours) consis-
tently outperforms the baseline across different backbone
choices.

5.2. NYUv2

We show that our method learns transferable features
across datasets. With Pri3D pre-trained on ScanNet RGB-
D data, we explore fine-tuning on NYUv2 [46] for down-
stream 2D tasks. The NYU-Depth V2 dataset is com-

Method AP@0.5 AP@0.75 AP
Scratch 32.7 17.7 16.9
ImageNet (IN) 41.7 25.9 25.1
MoCoV2-supIN→SN 43.5 (+1.8) 26.8 (+0.9) 25.8 (+0.7)

Pri3D (View) 43.7 (+2.0) 27.0 (+1.1) 26.3 (+1.2)

Pri3D (Geo) 44.2 (+2.5) 27.6 (+1.7) 26.6 (+1.5)

Pri3D (View+Geo) 44.5 (+2.8) 27.4 (+1.5) 26.6 (+1.5)

Table 2: 2D Detection on ScanNet. Fine-tuning with Pri3D
pre-trained models leads to improved object detection re-
sults across different metrics compared to ImageNet pre-
training and a strong MoCo-style pre-training method.

Method AP@0.5 AP@0.75 AP
Scratch 25.8 13.1 12.2
ImageNet (IN) 32.6 17.8 17.6
MoCoV2-supIN→SN 33.9 (+1.3) 18.1 (+0.3) 18.3 (+0.7)

Pri3D (view) 34.3 (+1.7) 18.7 (+0.9) 18.3 (+0.7)

Pri3D (geo). 34.4 (+1.8) 18.7 (+0.9) 18.3 (+0.7)

Pri3D (view+geo) 35.8 (+3.2) 19.3 (+1.5) 18.7 (+1.1)

Table 3: Instance Segmentation on ScanNet. Fine-tuning
with Pri3D pre-trained models leads to improved instance
segmentation results compared to ImageNet pre-training
and a strong MoCo-style pre-training method.

prised of video sequences from a variety of indoor scenes,
recorded by Microsoft Kinect RGB-D sensors. It contains
1449 densely labeled pairs of aligned RGB and depth im-
ages. We use the official split: 795 images for training, 654
images for test. Similar to ScanNet, we also evaluate on 3
popular downstream tasks, 2D semantic segmentation, ob-
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Figure 5: Data Efficient Learning on ScanNet (ResNet50
Backbone). Using only 40% of the training data, our pre-
training can outperform supervised ImageNet pretraining
when fine-tuned with 100% data available for semantic seg-
mentation. We see similar trends with a ResNet18 back-
bone, which is included in the appendix.

Method ResNet50
DeepLabV3 (ImageNet) 57.0
DeepLabV3 (Pri3D) 61.3 (+4.3)

DeepLabV3+ (ImageNet) 57.8
DeepLabV3+ (Pri3D) 61.6 (+3.8)

PSPNet (ImageNet) 59.7
PSPNet (Pri3D) 62.8 (+3.1)

Table 4: 2D Semantic Segmentation on ScanNet (mIoU).

ject detection, and instance segmentation. Table 5 shows
the semantic segmentation performance on NYUv2.

We show the semantic segmentation fine-tuning perfor-
mance on NYUv2 in Table 5; the object detection fine-
tuning results in Table 6; and the instance segmentation
fine-tuning results in Table 7. The experimental setup is
similar to the ScanNet downstream fine-tuning counterpart,
and we use supervised ImageNet pre-trained weights for
encoder initialization of all methods. For all three tasks,
we observe improved performance over different baselines
such as training from scratch, training with ImageNet pre-
trained weights, and MoCoV2-style pre-training on ad-
ditional ScanNet data. Compared to the ImageNet pre-
training baseline, we achieve a margin of +4.4% AP@0.5
for instance segmentation, +4.8% mIoU for semantic seg-
mentation (ResNet50 backbone) and +4.1% AP@0.5 for
object detection.

6. Conclusion
We have introduced Pri3D, a new method for represen-

tation learning for image-based scene understanding tasks.

Method ResNet50 ResNet18
Scratch 24.8 22.5
ImageNet Pre-training (IN) 50.0 44.7
MoCoV2-supIN→SN 47.6 (-2.4) 45.1 (+0.4)

Pri3D (View) 54.2 (+4.2) 48.2 (+3.5)

Pri3D (Geo) 54.8 (+4.8) 48.6 (+3.9)

Pri3D (View+Geo) 54.7 (+4.7) 48.1 (+3.4)

Table 5: 2D Semantic Segmentation on NYUv2. Fine-
tuning with Pri3D pre-trained models leads to improved
semantic segmentation results compared to ImageNet pre-
training and a strong MoCo-style pre-training method. Met-
ric is Mean Intersection-Over-Union (mIoU).

Method AP@0.5 AP@0.75 AP
Scratch 21.3 10.3 9.0
ImageNet (IN) 29.9 17.3 16.8
MoCoV2-supIN→SN 30.1 (+0.2) 18.1 (+0.8) 17.3 (+0.5)

Pri3D (View) 33.0 (+2.1) 19.8 (+2.6) 18.9 (+2.1)

Pri3D (Geo) 33.8 (+2.9) 20.2 (+2.9) 19.1 (+2.3)

Pri3D (View+Geo) 34.0 (+4.1) 20.4 (+3.1) 19.4 (+2.6)

Table 6: 2D Object Detection on NYUv2. Better object
detection AP can be obtained with Pri3D fine-tuning.

Method AP@0.5 AP@0.75 AP
Scratch 17.2 9.2 8.8
ImageNet (IN) 25.1 13.9 13.4
MoCoV2-supIN→SN 27.2 (+2.1) 14.7 (+0.2) 14.8 (+1.4)

Pri3D (View) 28.1 (+3.0) 15.7 (+1.8) 15.7 (+2.3)

Pri3D (Geo) 29.0 (+3.9) 15.9 (+2.0) 15.2 (+1.8)

Pri3D (View+Geo) 29.5 (+4.4) 16.3 (+2.4) 15.8 (+2.4)

Table 7: 2D Instance Segmentation on NYUv2. Better
instance segmentation AP can be obtained with Pri3D.

Our core idea is to incorporate 3D priors in a pre-training
process whose constraints are applied under a contrastive
loss formulation. We learn view-invariant and geometry-
aware representations by leveraging multi-view and image-
geometry correspondence from existing RGB-D dataset.
We show that this results in significant improvement com-
pared to 2D-only pre-training. With limited training data
available, we outperform the semantic segmentation base-
lines by 11.9% on ScanNet. We hope our results can shed
light on the the general paradigm of representation learn-
ing with 3D priors and open up new opportunities towards
3D-aware image understanding.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. NeurIPS, 2020. 2

[16] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-
ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006. 2

[17] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3d instance segmentation. In CVPR, 2020.
1, 2

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 2, 3

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 5

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4, 5

[21] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua
Bengio. Learning deep representations by mutual informa-
tion estimation and maximization. ICLR, 2019. 2

[22] Ji Hou, Angela Dai, and Matthias Nießner. 3D-SIS: 3D Se-
mantic Instance Segmentation of RGB-D Scans. In CVPR,
2019. 1, 2

[23] Ji Hou, Angela Dai, and Matthias Nießner. RevealNet: See-
ing Behind Objects in RGB-D Scans. In CVPR, 2020. 2

[24] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In CVPR, 2021. 2

[25] Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-
Tsin Wong. Bidirectional projection network for cross di-
mension scene understanding. In CVPR, 2021. 3

[26] Zeyu Hu, Mingmin Zhen, Xuyang Bai, Hongbo Fu, and
Chiew-lan Tai. Jsenet: Joint semantic segmentation and
edge detection network for 3d point clouds. arXiv preprint
arXiv:2007.06888, 2020. 2

[27] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen,
Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. Scenenn:
A scene meshes dataset with annotations. In 2016 Fourth In-
ternational Conference on 3D Vision (3DV), pages 92–101.
IEEE, 2016. 1

[28] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,
Matthias Nießner, and Leonidas J Guibas. Texturenet:
Consistent local parametrizations for learning from high-
resolution signals on meshes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4440–4449, 2019. 1, 2

[29] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. PointGroup: Dual-Set Point Group-
ing for 3D Instance Segmentation. In CVPR, 2020. 1, 2

[30] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-
tin R Oswald. 3d instance segmentation via multi-task metric
learning. In ICCV, 2019. 2

[31] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang
Liu, Shuguang Cui, and Xiaoguang Han. Fpconv: Learn-
ing local flattening for point convolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4293–4302, 2020. 2

5701



[32] Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. 3d-to-2d dis-
tillation for indoor scene parsing. In CVPR, 2021. 3

[33] David Marr and Tomaso Poggio. A computational theory of
human stereo vision. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 204(1156):301–328,
1979. 2

[34] Yinyu Nie, Ji Hou, Xiaoguang Han, and Matthias Nießner.
Rfd-net: Point scene understanding by semantic instance re-
construction. In CVPR, 2021. 2

[35] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
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