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Abstract

Most prior works on physical adversarial attacks mainly
focus on the attack performance but seldom enforce any
restrictions over the appearance of the generated adver-
sarial patches. This leads to conspicuous and attention-
grabbing patterns for the generated patches which can be
easily identified by humans. To address this issue, we pro-
pose a method to craft physical adversarial patches for ob-
ject detectors by leveraging the learned image manifold of
a pretrained generative adversarial network (GAN) (e.g.,
BigGAN and StyleGAN) upon real-world images. Through
sampling the optimal image from the GAN, our method can
generate natural looking adversarial patches while main-
taining high attack performance. With extensive experi-
ments on both digital and physical domains and several
independent subjective surveys, the results show that our
proposed method produces significantly more realistic and
natural looking patches than several state-of-the-art base-
lines while achieving competitive attack performance. 1

1. Introduction

With the advancement of deep learning technologies,
modern computer vision models can achieve comparable or
even surpassing human performance on tasks such as face
detection [10] and face recognition [10]. Although these
technologies bring convenience to humans by automating
daily routine tasks, they also significantly hurt our privacy
since malicious people could easily utilize them to automat-
ically collect private and sensitive personal information. To
address this issue, some researchers propose to protect peo-
ple from these threats by leveraging the adversarial exam-
ples which can be used to fool deep learning systems by
adding small or imperceptible perturbations to system in-
puts. Adversarial attacks for deep learning systems can be
categorized by two settings: (1) digital attacks, where deep

1Code is available at: https://github.com/aiiu-lab/
Naturalistic-Adversarial-Patch

Figure 1. It shows the crafted adversarial patch generated by the
proposed approach along with others by recent methods (a) [47]
(b) [45] (c) [42] (d) [19] (e) ours. Our patch is more natural look-
ing and less conspicuous than others so it is harder to human ob-
servers to identify it.

learning models takes the digital attack images as inputs and
(2) physical attacks, where the models take attack inputs
that are retaken by a camera.

In this work, we focus on the second category due to its
practical use in the real-world setting against the surveil-
lance of various indoor and outdoor cameras around the
world. Adversarial patch is one of most effective physi-
cal adversarial examples for this purpose. There are several
works developed in this direction, including [19,42,45,47].
To the best of our knowledge, most of prior works on phys-
ical adversarial attacks mainly focus on the attack perfor-
mance, and increasing adversarial strength of the perturba-
tion is one of the most effective and direct ways for them.
However, this usually leads to conspicuous and attention-
grabbing patterns for the generated patches, which can be
easily identified by human observers. To address this issue,
we propose a method to craft physical adversarial patches
for object detectors by leveraging the learned image mani-
fold of generative adversarial networks (GANs) (e.g., Big-
GAN [5] and StyleGAN [23, 24]) pretrained on real-world
images. Through sampling images from GANs that mini-
mizes detection score of a target object (e.g., person), our
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method can generate natural looking adversarial patches
while maintaining acceptable attack performance. In addi-
tion, we also apply a clipping strategy to constrain the range
of traversal from the initial starting point for optimization
on the latent space of GAN for better image quality of gen-
erated patches. With extensive experiments on both digital
and physical settings along with several independent sub-
jective surveys, the results show that our proposed method
produces significantly more realistic and natural looking
patches than several state-of-the-art baselines while achiev-
ing competitive attack performance. A qualitative example
is shown in Figure 1, where the patch generated by the pro-
posed approach is more naturalistic and much less conspic-
uous than other compared methods.

From a security perspective, the existence of natural
looking adversarial patches, which can not only fool detec-
tors but also prevent suspicion from humans, is a potential
issue. Thus, our work focuses on generating those natural-
looking adversarial patches, verifying its existence and an-
alyzing its properties.The main contributions of this work
are summarized as follows:

• We leverage pretrained deep generative models (i.e.,
StyleGAN, BigGAN) by traversing upon their la-
tent spaces to craft more natural looking adversar-
ial patches than other state-of-the-art baselines while
maintaining the comparable attack capability.

• We conduct a thorough performance and naturalness
analysis of the proposed method under different digital
and physical settings in both indoors and outdoors.

2. Related Work
In this Section, we briefly review the recent relevant

works on adversarial examples and deep image generation
as follows:

2.1. Adversarial Examples

Adversarial examples are carefully crafted inputs to a
model that will cause it to make mistakes. Szegedy et al.
[41] first demonstrated that these adversarial examples can
be easily made by adding small visually imperceptible noise
towards the direction of an incorrect class. Their findings
challenged the robustness and generalization of deep neural
networks, sparking a whole new research field that follows
a two-player game wherein attackers [6, 13, 19, 42, 45, 47]
develop new ways to maliciously manipulate outputs of a
model while defenders [18, 28, 37, 43, 49] try to develop
ways to protect against them.

Adversarial examples can be broadly grouped into two
types: digital adversarial examples and physical adversarial
examples. Our work focuses on creating physical adversar-
ial examples for object detectors.

Digital Adversarial Examples are crafted with the as-
sumption that they have access to the digital image and can
directly manipulate any of the pixels right before it is fed
into the model. While it is an unrealistic assumption for
practical scenarios, it elucidates a crucial flaw common to
all deep neural networks and provides a test bed to gain in-
sights on why such attacks work [16] and how to defend
against it. Earlier works such as Fast Gradient Sign Method
(FGSM) [16] and Projected Gradient Descent (PGD) [32]
focused on methods for generating adversarial examples
that can be efficiently incorporated inside the training loop
as a form of augmentation, making networks more robust as
a result. However, these are white-box methods that require
access to the target model parameters, which limits the ap-
plicability and generalizability of the generated adversarial
examples to other deep neural network models that we do
not have access to [44]. To circumvent this requirement,
several black-box techniques [11, 12, 44, 46] relied instead
on querying the model with controlled inputs and observing
their predicted classes or predicted probabilities. This im-
proved the generalizability to different models, albeit lesser
attack success rate. Recently, there are also works propos-
ing a no-box [7, 29] method wherein they assume a setting
where they cannot query the target model. Instead, they rely
on generating adversarial examples from substitute models
trained on a similar domain as the target model.

Physical Adversarial Examples are crafted with the
purpose of them being printed out and recaptured by a cam-
era [27]. As a result, the attacker can only control a subset of
the pixels that will be fed into the victim model. Moreover,
the attacker has no control over perspective, scale, and other
processing that cameras perform, making it more challeng-
ing since the adversarial examples need to be robust to these
various transformations for the attack to succeed in a phys-
ical setting [4]. Physical adversarial examples are usually
generated in relation to a physical object which can be dy-
namically moving (such as wearable t-shirts [19,42,45,47],
eye-glass frames [38–40], or car license plates [48]), or
static with respect to the scene (such as stickers [6, 14, 30],
posters [26], and traffic signs [8, 36, 42]).

While prior methods achieved reasonable attack success
rates, they typically have no control over the appearance
and produce bright saturated colors with uncanny patterns,
making them look unnatural (flamboyant, and attention-
grabbing). These properties are undesirable for attackers
since they are likely to get caught before being able to carry
out the attack. Therefore, we desire methods for generating
discreet and natural looking adversarial patches. Some re-
cent works [13, 31] that tries to address this by restricting
the deformations to blend with its surroundings. In con-
trast to these works, we leverage the natural image mani-
fold learned by generative adversarial networks to generate
natural looking adversarial patches.
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2.2. Deep Image Generation

Generative models for image generation advanced
rapidly in terms of image quality and fidelity due to GANs
[15]. It introduced the notion of a learnable loss function
where the target of the image generator network is defined
by a separate discriminator network that tries to distinguish
real from fake images. Through this two-player game, the
generator gradually learns to synthesize fake images that are
indistinguishable from the real images. While GANs pro-
duce visually appealing images, it often suffers from insta-
bility, vanishing gradients, and mode collapse. Succeeding
works addressed these issues by either modifying the loss
function [3,21,33], imposing gradient penalties [17,25,34],
or adding normalizations [35]. However, even with these
improvements, it is still challenging for GANs to generate
high resolution images. This is because at higher resolu-
tions, it is much easier to differentiate fake from real, which
reduces the overlap between the fake and real distributions
[22], making it hard for the discriminator to provide mean-
ingful gradients to the generator. Progressive GANs [22]
solved this by first training on low resolution images and
then gradually increase its resolution. BigGANs [5] fur-
ther improved upon the image quality of generating high
resolution images by introducing several tricks to scale the
training of GANs to very large batch sizes. Different from
these approaches that focused on training strategies, Style-
GAN [23] focused on improving the generator by separat-
ing the representations of content and style, allowing for
not only very high quality images but also control of the
synthesized image. This is further improved [24] in their
second version (StyleGAN2) by introducing weight mod-
ulation and demodulation which significantly reduced the
artifacts produced by GANs.

3. The Proposed Method

Our goal is to generate physical adversarial patches that
are natural looking while still maintaining their attack per-
formance. To achieve this, we propose to use a pretrained
GAN generator to restrict the space of generated adversar-
ial patches. Figure 2 shows an overview of our framework.
Given a pretrained generator (Section 3.1), we search for an
input latent vector corresponding to a generated image that
causes the victim object detector to fail. This involves an
optimization procedure where we compute the adversarial
gradient direction (Section 3.2) for a target object detector
and iteratively perform gradient updates to the input latent
vector until a suitable adversarial patch is found. Addition-
ally, we impose a threshold on the norm of the input latent
vector that allows us to control the trade-off between real-
ism and attack performance (Section 3.3).

Figure 2. Overview of our naturalistic adversarial patch genera-
tion framework which crafts the patches for object detectors by
leveraging the learned image manifold of a pretrained GAN upon
real-world images and sampling the optimal image from the GAN
through the iterative optimization process for the final patch.

3.1. Generating Adversarial Patches

Prior works optimize for an adversarial patch in the pixel
space. In contrast, we optimize for an adversarial patch in
the latent space of a GAN generator. Since GANs learn a
latent space that approximates the manifold of natural im-
ages, our resulting adversarial patch would then be closer to
the manifold of natural images, and thus, look more natu-
ralistic.

We use a generator G pretrained on a set of natural im-
ages using a GAN framework and traverse its learned nat-
ural image manifold. We start with a latent vector z ∈ Rd

randomly drawn from a standard normal distribution to gen-
erate an initial adversarial patch P = G(z) ∈ RH×W×3.
Next, we iteratively perform gradient updates on the latent
vector z to look for a suitable z that optimizes our objective
defined as follows:

Ltotal = Ldet + λtvLtv. (1)

The first term Ldet is the adversarial detection loss coming
from the target object detector (discussed in Section 3.2).
The second term Ltv is a total variation loss on the gener-
ated image to encourage smoothness. It is defined as:

Ltv =
∑
i,j

√
(Pi+1,j − Pi,j)2 + (Pi,j+1 − Pi,j)2, (2)

where the subindices i and j refer to the pixel coordinate of
the patch P . We used λtv = 0.1 in all the experiments of
this paper.

3.2. Adversarial Gradient

The generator relies on adversarial gradients to guide it
in synthesizing images that can fool the target object detec-
tor. To get these adversarial gradients, we first render our
adversarial patch onto a scene. Then, we feed it to an object
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detector and compute an adversarial loss for the box detec-
tions.

Scene Rendering. For physical attacks, we have no con-
trol over the perspective, position, and scale of the adversar-
ial patch with respect to the captured image. Thus, to make
our adversarial patch robust to a wide range of possibilities,
we render it on top of the clothes of humans and simulate
different scenes at different settings. We also perform sev-
eral transformations on our generated adversarial patch P
such as rotation and occlusions to simulate different appear-
ances that our adversarial patch may take in a practical sce-
nario. Next, we use the object detector to get the locations
of persons in a given image I . We create a mask around the
clothing area of each person and place our adversarial patch
P on these masks. We denote the new rendered image con-
taining our adversarial patch as I ′.

Adversarial Detection Loss. Object detectors, such
as YOLO, output an arbitrary number of boxes or detec-
tions. For each detection j, we are interested in attack-
ing two quantities: its objectness probability Dj

obj and its
class probability Dj

cls. Minimizing the objectness probabil-
ity Dj

obj causes the j-th object not to get detected. Mini-
mizing class probability Dj

cls causes the j-th object to get
classified into a wrong class (e.g. person gets classified as
a dog.). In this paper, we focused on targeting the person
class. Thus, we minimized both the objectness Dj

obj and
class probabilities Dj

cls pertaining the the person class. For
faster iterations, we do not compute the loss over all de-
tected boxes. Instead, we only use the detected box having
the highest objectness and class probabilities [42]. Our ad-
versarial detection loss is defined below:

Ldet =
1

N

N∑
i=1

max
j

[
Dj

obj(I
′
i)D

j
cls(I

′
i)
]
, (3)

where I ′i is the i-th image in a batch with size N . Iteratively
optimizing for Eq. 3 pushes the highest scoring detection to
be low, thus, encouraging all the target objects to be either
invisible or misclassified by the detector.

3.3. Realism vs Attack Performance Trade-off

Without any constraints, the model can optimize for la-
tent vector z that is not contained within the high density
region learned by the generator, therefore we can no longer
expect the generated images to look realistic. Since the gen-
erator is trained by sampling random vectors from a stan-
dard normal distribution, we expect the high density region
to be centered around the origin. Therefore, there is a higher
probability of generating realistic images if z is closer to the
origin.

To preserve realism, we ensure that the latent vector z
will not have a norm greater than a threshold τ . Adjust-
ing the norm threshold τ allows us to trade-off realism for

attack performance. More details can be referred to the ex-
perimental section.

Similar to PGD, we adopt ℓ∞ norm to constrain z. We
update z using equations below:

zt = κ(zt−1 + η∇Ltotal), (4)

κ(z) = {zi|zi ← min(max(zi,−τ), τ), zi ∼ z}, (5)

where t is the time step, η is the step size,∇Ltotal is the gra-
dient of the objective, and κ is the clipping function defined
in Eq. 5, where zi is the i-th element of z.

4. Experimental Results
In this Section, we first describe the implementation de-

tails of the proposed approach followed by various qualita-
tive and quantitative experiments for the proposed adver-
sarial patch in the digital (i.e., INRIA person dataset [9]
and MPII Human Pose dataset [2]) and physical (i.e., our
recorded videos in different scenes) environments. In ad-
dition, we also provide various ablation studies for differ-
ent parameters to get a more natural looking physical ad-
versarial patch with comparable attack performance along
with subjective evaluation of the naturalness of the gener-
ated patches.

4.1. Implementation Details

The whole optimization is performed using Adam op-
timizer with a learning rate of 0.01, β1 = 0.5 and β2 =
0.999. We reduce the learning rate if the change in losses is
consistently below 1e−4 for at least 50 epochs. The batch-
size is 8, and the total epoch is 1,000. Unless otherwise
specified, we set τ = 50. We used BigGAN2 with an out-
put resolution of 128 × 128 pretrained on the ImageNet-
1k dataset, and StyleGAN2 with an output resolution of
512 × 512 pretrained on an anime character dataset as our
generators3. In addition, since the BigGAN generator we
used is a class conditional generator, it can guarantee that
the generated patch is a certain class. We simply set the
class vector to the dog and will test more classes in the
next section. For the dimension d of the latent vector z, we
used 120 for BigGAN, and 512 for StyleGAN2. For object
detectors, we used YOLOv24, YOLOv35, YOLOv3tiny5,
YOLOv46, YOLOv4tiny6, and FasterRCNN with an input
image with the resolution of 416× 416. Without explicitly
stating, we use YOLOv4tiny to generate adversarial patches
for the experiments. For the evaluation of the physical at-
tack, we print the generated patches in the size of 40 cm ×
30 cm onto a T-shirt.

2Pretrained model: https://github.com/anvoynov/GANLatentDiscovery
3Pretrained model: https://github.com/justinpinkney/awesome-

pretrained-stylegan2
4https://gitlab.com/EAVISE/adversarial-yolo
5https://github.com/eriklindernoren/PyTorch-YOLOv3
6https://github.com/Tianxiaomo/pytorch-YOLOv4
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Trained on Victim YOLOv2 YOLOv3 YOLO3tiny YOLOv4 YOLOv4tiny FasterRCNN
(P1)Ours-YOLOv2 12.06 43.50 32.12 50.56 24.89 52.54
(P2)Ours-YOLOv3 56.67 34.93 41.46 56.29 37.46 61.78
(P3)Ours-YOLOv3tiny 31.61 28.81 10.02 65.13 18.61 55.08
(P4)Ours-YOLOv4 44.27 56.59 56.61 22.63 50.04 59.42
(P5)Ours-YOLOv4tiny 34.68 37.79 21.69 46.80 8.67 59.97
(P6)Ours-FasterRCNN 28.26 39.05 37.06 51.46 29.06 42.47
(P7)Ours-ensemble† 49.42 35.46 25.29 51.71 18.51 61.28
Gray 72.66 74.17 67.52 66.52 64.74 61.54
(P8)Random 75.03 73.75 78.91 76.71 75.74 73.00
White 69.63 74.93 66.45 72.48 59.66 65.40
(P9)Adversarial Patches∗ [42] 2.13 22.51 8.74 12.89 3.25 39.41
(P10)UPC∗∗ [19] 48.62 54.40 63.82 64.21 57.93 61.87
†trained on YOLOv2+YOLOv3+YOLOv4tiny ∗ trained on YOLO ∗∗ trained on FasterRCNN

Table 1. Different patches evaluations in mAP(%) for the INRIA dataset using BigGAN. P1 to P10 indicate the corresponding patches,
which are shown at the bottom of this table. The proposed patches not only attack detectors effectively but also are natural looking.

(a) training-data bbox-rate (b) testing-data bbox-rate

Figure 3. The ratios of the area per person bounding box with re-
spect to the image size for the INRIA dataset, where y-axis repre-
sents the ratio and x-axis indicate the index of each person bound-
ing box sorted in ascending order of the ratios. We can find there
is a large size variations of the INRIA person dataset.

4.2. Datasets

For the training and evaluation of the proposed approach,
we mainly use the INRIA person dataset. It consists of 614
training images and 288 test images. All the images are first
resized to the resolution of 416 × 416. Since the outputs
(i.e., the size and tightness of the detected bounding boxes.)
of various object detectors are slightly different from each
other, we re-normalize the ground-truth bounding boxes by
replacing them with the corresponding outputs of each de-
tector with the largest Intersection-over-Union (IoU) score
on the clean images for fair comparisons. As shown in Fig-
ure 3, the ratios for the area of each person’s bounding box
with respect to the whole image range from 0.002 to 0.448,
and this makes the dataset suitable for training and test un-
der the situation of different scales.

We also performed cross-dataset evaluations using the
MPII Human Pose dataset to test the generalization of the
proposed approach. We selected pictures in categories “run-
ning”, “walking”, and “dancing” classes. This results to a
total of 1,646 images, which we split into 1,317 training and
329 testing images. Similarly, all the images are scaled to
416× 416.

4.3. Evaluations

4.3.1 In-dataset Evaluation: INRIA

We evaluate our naturalistic adversarial patch in compar-
ison with three standard patches and two state-of-the-art
baselines (Adversarial Patch [42] and UPC [19]). We use
mean average precision (mAP) as our main evaluation met-
ric. Following the experimental settings of [42], we use the
box detections of each detector on the clean dataset as the
ground truth boxes (i.e., the mAP of detectors will be 100%
if there is no adversarial patch.) and report the average pre-
cision (AP) when evaluated with the adversarial patches.
We evaluate on the setting where the adversarial patches
are facing front, i.e., no additional transformations on both
training and testing. Table 17 shows the evaluation results
on INRIA dataset. We utilize six different detectors to train
the patches. In addition, we also ensemble some of them to
jointly train the patch. P1 to P10 indicate the detectors and
the corresponding patches.

7Different from initial version, we added two new detectors (Faster-
RCNN and ensemble YOLO). We also further optimized each patch for
better performance.
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Naturally, we achieve a very good attack performance
when the victim detector during training matches the vic-
tim detector during testing. But surprisingly, our method
can also perform well to other detectors despite not hav-
ing any direct supervision from them. Note that although
Adversarial Patch [42] achieves the best attack perfor-
mance, its generated patches does not look naturalistic and
is very attention-grabbing. On the other hand, our pro-
posed method can generate very natural looking adversarial
patches while still achieving reasonable attack performance.

4.3.2 Cross-dataset Evaluation: MPII Dataset

Furthermore, we also use the MPII dataset to evaluate the
attack performance. The YOLOv4tiny results are shown in
Table 2. Due to different nature of each dataset, we use
different initial points to optimize each patch. It can be
seen that the proposed method can also work in different
datasets. However, we observe that if we use both INRIA
and MPII to train the patch, it does not achieve better per-
formance. We conjecture that it is due to the distribution
difference between these two datasets.

Train on
Test on

INRIA MPII Mix

INRIA 8.67 0.51 2.69
MPII 22.05 7.92 14.12
Mix 18.45 6.32 11.68

Table 2. Attack performance (mAP%) in different datasets using
YOLOv4tiny.

4.3.3 Subjective Evaluation for the Naturalness of Dif-
ferent Adversarial Patches

The focus of the proposed approach is the naturalness and
conspicuousness of the generated adversarial patch to hu-
mans. Therefore, we conduct a formal set of subjective
evaluations to estimate the naturalness of our proposed
patches as compared with baselines and real images. We
conducted two subjective surveys, each with their own in-
dependent set of 24 participants. In the first subjective sur-
vey, we showed the patches in random order to the partici-
pants. For comparison, we generated 3 adversarial patches
and gathered 12 off-the-shelf adversarial patches generated
by [42] and [45]. We asked the participants to place a vote
on each patch that looks natural for them. We compute the
naturalness score as the percentage of votes for each patch
respectively. As shown in Table 3 (Part 1), our proposed
patches have higher naturalness scores than other baselines.

In the second subjective survey, we showed 6 of our gen-
erated patches together with 6 real images and ask them
to vote for naturalness. As shown in Table 3 (Part 2), our
generated adversarial patch achieves promising results rel-
ative to real images. There is still a quality gap between

ours and real ones, which we conjecture the reason is due
to the limited generation power of current GANs. We ex-
pect this can be bridged in the future by leveraging more
advanced GANs or other deep generative models for more
photo-realistic and higher-fidelity generated patches.

4.3.4 Physical Attack Evaluations

We performed physical attack evaluations on both indoor
and outdoor settings by taking a video of one person wear-
ing an adversarial shirt side-by-side with another person
wearing an ordinary shirt as a baseline for comparison. We
used the adversarial patch shown in Table 1 (P5). We se-
lected YOLOv4tiny trained patch and utilized YOLOv4tiny
as the evaluation detector. We quantified the attack perfor-
mance based on recall. The two participants stand beside
each other and are approximately two meters away from
the camera. We asked the participants to move one step
back and forth as well as side-to-side within the duration
of the video. As shown in Table 4, our adversarial shirt
can reduce the detection recall to approximately 23.80% in
indoor settings (lab, living room, hallway), and down to ap-
proximately 43.14% in the much more challenging outdoor
settings (balcony, grass field).

4.4. Discussions

4.4.1 Trade-off between Naturalness and Attack Per-
formance

There is inevitably a trade-off between naturalness and at-
tack performance. Adversarial attacks rely on finding per-
turbations or distortions that object detection models unin-
tentionally have strong responses to [20, 50]. On the other
hand, object detection models desire to ignore these distor-
tions since they should not affect the class of the object. By
training on large scale datasets, these models can already
learn to ignore most naturally occurring distortions. This
means that for adversarial patches, increasing naturalness
will lead to a decrease in attack performance since the gen-
erated patches become closer to the space of distortions that
the detector already learned to ignore, thus necessitating a
sacrifice in either naturalness or attack performance. We
would like to note that our model gives users the freedom
to control this trade-off based on their preferences and re-
quirements by adjusting the norm threshold τ .

To further illustrate this trade-off, we generated five dif-
ferent adversarial patches having different infinity norm val-
ues for their latent codes. In addition, we conducted a sub-
jective survey to rank the naturalness of each patch. We ask
ten people to rank these five patches, and sort them based
on average the ranking. Figure 4 shows the average rank
of each patch, its corresponding mAP, and the infinity norm
of the latent code . It can be seen that the mAP decreases
(i.e., better attack performance), as the patch becomes less
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Part 1 Part 2

Images

Naturalness Scores (%) 8.3 66.7 50.0 75.0 100.0 62.5

Source [42] ours [45] ours [1] ours
Table 3. Subjective tests for the naturalness evaluations of our adversarial patches with other baselines. The Naturalness scores are
the ratios of votes for each test image over the whole group of participants. As shown in the results, ours get more votes than others,
demonstrating its effectiveness. The complete set of patches used in survey are shown in the supplementary materials.

Image

Setting Lab Living room Hallway Balcony Grass

Detection Recall

w/o Adversarial Shirt 100% 100% 100% 100% 100%
w/ Adversarial Shirt 23.80% 24.49% 38.46% 44.33% 43.14%

Table 4. Percentage of detections from YOLOv4tiny with and without adversarial shirts at different physical settings.

Figure 4. Naturalness test average score against attack perfor-
mance using YOLOv4tiny.

natural looking. In addition, it can be seen that the infinity
norm of the latent code is correlated with the naturalness
and attack performance.

4.4.2 The Influence of Different Transformations

We explored various transformation methods for our scene
rendering module to find suitable transformations that can
enhance the attack performance of our adversarial patches.
Table 5 shows the attack performance for each transforma-
tion under different settings, with or without using each

transformation during the patch generation versus with
or without using the corresponding transformation during
evaluation. Surprisingly, using many of the transformations
resulted in unsatisfactory performance. We hypothesize that
the GAN latent space might be too limited to find a patch
that is robust to all the transformations. Among the transfor-
mations considered, we observe that training with in-plane
rotation can improve the attack performance from 13.42%
to 10.16% when evaluated with in-plane rotation. We also
observed that using blur and occlusions often leads to in-
stability during training where the generated patches look
unrealistic, therefore, we did not use them in other exper-
iments. More results and illustration of the transformation
can be found in the supplementary materials.

4.4.3 The Influence of Patch Size

To evaluate the performance influence of the patch size with
respect to the size of the pedestrian, we conduct several
digital qualitative and quantitative experiments on the IN-
RIA dataset. As shown in the subfigure of Table 6, the
larger the size of the patch is, the stronger its attack perfor-
mance, which follows our expectations. Besides the quali-
tative samples, the quantitative results shown in Table 6 also
demonstrate consistent findings. In addition, for a more pre-
cise evaluation, we further divide the test set of the INRIA
dataset into two sets based on the ratios of the size of pedes-
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Trans.(T ) Trained w/ T w/ T w/o any T
Test w/o any T w/ T w/ T

No trans. 8.67 8.67 8.67
In-plane rotation 15.11 10.16 13.42
Random translation 10.77 31.63 30.15
Crease 8.65 15.03 12.77
Out-of-plane rotation 10.4 27.77 26.25
Random occlusion 15.85 37.25 34.92
Blur 13.18 15.07 12.92
All 14.99 60.44 63.37

Table 5. The patches are trained with different transformations (T )
and then tested without or with the corresponding T . It illustrates
the performance influences (mAP%) under different transforma-
tions on the INRIA dataset and YOLOv4tiny.

Patch
Scale

INRIA
0.0-1.0

INRIA
0.0-0.2

INRIA
0.2-1.0

0.3 1.64 1.41 13.50
0.25 5.92 5.39 21.98
0.2 17.27 16.91 27.59
0.15 36.82 36.50 44.83
0.1 74.60 75.48 55.17
0.05 95.04 94.82 100.0

Table 6. The AP(%) of YOLOv4tiny with adversarial patches in
different size settings for the INRIA dataset. “INRIA 0.0-0.2” rep-
resents the test data of the bbox-rate 0.2 to 1.0 of INRIA.

Victim

Patches
trained

on

YOLOv2 YOLOv3tiny YOLO v4 tiny
Bulbul Penguin Peacock

YOLOv2 23.4 38.42 44.47
YOLOv3tiny 22.18 12.57 30.79
YOLOv4tiny 24.36 19.1 25.16

Table 7. Evaluations (mAP%) with different classes generated by
BigGAN (comparable with Table 1).

trians with respect to the whole image. The first set consists
of samples with the ratios from 0 to 0.2 and the second is
from 0.2 to 1. We can observe from Table 6 that targets with
larger size are harder to attack.

4.4.4 Adversarial Patches in Different Classes

With the proposed approach, we can easily generate vari-
ous physical adversarial patches with different classes. For
example, with the conditional BigGAN, we can freely gen-
erate the adversarial patches with our specified class. We
generate adversarial patches for bulbul, penguin, and pea-
cock. The results in Table 7 demonstrate satisfactory attack
performance on the INRIA dataset.

Patch

mAP 36.1 34.34 40.24
Table 8. Evaluations with patches generated by StyleGAN2 and
YOLOv4tiny (comparable with Table 1).

4.4.5 Adversarial Patches using Different GAN

In the previous experiments, we mainly utilize BigGAN
to generate the adversarial patch and analyze the proposed
method. To further evaluate the proposed method and
confirm it can generate adversarial patches with different
GAN, we replace BigGAN with StyleGAN2 as the genera-
tor. Since we consider printing the patch on the clothes, we
use the anime face pretrained weight to generate anime face
patches. Table 8 shows the results. We use YOLOv4tiny to
train three patches, and use YOLOv4tiny to evaluate. It can
be seen that the adversarial patches generated by different
GANs are also effective in attacking detectors. In addition,
the trade-off between naturalness and attack performance
can also be seen in this table.

5. Conclusion
In this work, we propose a method to craft naturalistic

physical adversarial patches for object detectors by leverag-
ing the learned image manifold of pretrained GAN models.
With the astonishing image generation capability of
state-of-the-art GAN models, our method can successfully
generate more natural looking adversarial patches while
maintaining competitive attack performance than other
similar methods from extensive qualitative and quantitative
experiments in both digital and physical domains along
with the subjective naturalness evaluation. Although there
is still a quality gap between ours and real images from the
results of the subjective evaluation, we expect this can be
bridged in the future by leveraging more advanced GANs
or other deep generative models for more photo-realistic
and higher-fidelity generated patches. Meanwhile, a
better non-reference perceptual quality assessment method
could further help enhance the quality of the generated
patches beyond our proposed clipping strategies and will
be explored as the future work.
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