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Abstract

Multi-scale and multi-patch deep models have been
shown effective in removing blurs of dynamic scenes. How-
ever, these methods still suffer from one major obstacle:
manually designing a lightweight and high-efficiency net-
work is challenging and time-consuming. To tackle this
obstacle, we propose a novel deblurring method, dubbed
PyNAS (pyramid neural architecture search network), to-
wards automatically designing hyper-parameters includ-
ing the scales, patches, and standard cell operators. The
proposed PyNAS adopts gradient-based search strategies
and innovatively searches the hierarchy patch and scale
scheme not limited to cell searching. Specifically, we in-
troduce a hierarchical search strategy tailored to the multi-
scale and multi-patch deblurring task. The strategy follows
the principle that the first distinguishes between the top-
level (pyramid-scales and pyramid-patches) and bottom-
level variables (cell operators) and then searches multi-
scale variables using the top-to-bottom principle. During
the search stage, PyNAS employs an early stopping strat-
egy to avoid the collapse and computational issues. Fur-
thermore, we use a path-level binarization mechanism for
multi-scale cell searching to save the memory consumption.
Our primary contribution is a real-time deblurring algo-
rithm (around 58 fps) for 720p images while achieves state-
of-the-art deblurring performance on the GoPro and Video
Deblurring datasets.

1. Introduction

Blind motion deblurring is an ill-posed problem aim-
ing to rehabilitate the sharp image from a degraded image
caused by depth variation, camera shakes, and object mo-
tions [21, 26, 35]. In the past decades, image deblurring has
attracted massive attention from the computer vision com-
munity, especially in applications of surveillance, remote
sensing, and cameras. Traditional deblurring approaches
remove the undesirable blur via the blur kernel estimation
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Figure 1. PSNR vs. test runtime of state-of-the-art deep motion
deblurring methods and the proposed PyNAS on the GoPro dataset
[21]. The pink zone indicates that the inference time of a 720p
image is less than 33ms (i.e., 30fps). The architecture found by
our PyNAS achieves better performance and less inference time
(17 ms) than other handcrafted or NAS-based networks.

[7, 25], which approximates the hidden degradation knowl-
edge. However, obtaining a satisfactory blur kernel ramains
as an open problem.

Deep learning-based models [31, 35, &] have verified
the superiority in learning the regression between blurry in-
puts and the corresponding sharp images. Especially, the
‘coarse-to-fine’ scheme has been applied to deblurring sce-
narios via a multi-scale architecture to exploit the deblur-
ring priors at different levels. However, there still exist
some challenges: i) expensive runtime caused by the large
number of training parameters due to large filter size; ii)
structure redundancy attributed to the ineffectual increas-
ing depth for very low-resolution or small patch input in a
multi-scale model [21].

Recently, a growing interest is witnessed in developing
algorithms to automatically design deep learning architec-
tures instead of the manual process. Architectures found
by the searching algorithms have achieved highly competi-
tive performance especially on high-level tasks such as im-
age classification [16], object detection [37, 6] and seman-
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tic segmentation [41, 17]. Inspired by this, we aim to fig-
ure out an effective algorithm to tackle the above deblurring
challenges. Specifically, we design a searching algorithm
to automatically optimize the lightweight pyramid structure
hyper-parameters, including the scale-pyramid and patch-
pyramid. Our main contributions are summarized as:

e We propose a lightweight multi-scale pyramid neu-
ral architecture search approach for image deblurring,
termed PyNAS. To our knowledge, this is the first at-
tempt to design a multi-scale architecture search algo-
rithm to handle dynamic scene deblurring tasks.

e The proposed PyNAS innovatively includes the
pyramid structure (scale-pyramid and patch-pyramid
schemes) into the search space to tackle the challenge
of non-uniform motion blurs in dynamic scenes.

e We define the hierarchical relationship among opti-
mization variables as the top-level (patch and scale
scheme) and bottom level (basic operators), and we
train the model with a top-to-bottom approach.

We apply our algorithms on the GoPro and VideoDe-
blurring datasets for evaluation. We qualitatively and quan-
titatively evaluate the proposed algorithm on the real-time
video deblurring task. Shown in Figure 1, the proposed net-
work achieves better performance compared to SOTA meth-
ods using less inference time.

1.1. Related Work

Because of the spatially invariant blur kernels, con-
ventional image deblurring methods fail to remove non-
uniform motion blurs [13, 12]. Besides, the long-time
processing inference cannot meet the real-time demand of
video deblurring. CNNs have been used in non-uniform
image deblurring to deal with the motion blur in a time-
efficient inference [24, 29, 39, 47, 5]. Considering the dif-
ference in network architectures and patch schemes, we
categorize these methods as single-scale, multi-scale, and
multi-patch algorithms.

Single-Scale Networks. The single-scale deblurring meth-
ods [31, 34, 48, 30] aim to recover highly-realistic images
mainly based on well-developed network blocks for high-
level vision tasks, which usually leading to a heavy and
time-consuming network. For example, following residual
learning [10], DeblurGAN [14] and DeblurGAN-V2 [15]
remove blurs by adversarial learning. The attention mecha-
nism is also introduced into image restoration [49]. To ob-
tain the multi-scale priors for the singe-scale architecture,
some researchers refer to the U-Net [28] and dilated convo-
lution [40] for image restoration tasks [15].

Multi-Scale Networks. Multi-scale architectures have
been verified effective in image restoration [8, 35], espe-
cially in image deblurring [21]. It can restore sharp images

in a progressive manner by a network at each scale. Essen-
tially, multi-scale architecture is to mimic the conventional
coarse-to-fine framework to decompose a challenging task
into smaller easier subtasks. For example, Nah er al. [21]
proposed a multi-scale CNN for image deblurring by imi-
tating the coarse-to-fine strategy in conventional deblurring
approaches. A scale-recurrent network (SRN-DeblurNet)
is proposed in [35] by exploiting ConvLSTM to aggregate
feature maps from coarse to fine scales. Gao et al. [5] pro-
posed an effective selective sharing scheme for constraining
the deblurring network and a nested skip connection struc-
ture for the nonlinear transformation. Zamir et al. [43] in-
troduced a multi-stage architecture progressively learning
restoration functions for degraded images.

Although the multi-scale network can boost the perfor-
mance of image deblurring, all the above existing algo-
rithms are designed in a labor-intensive handcrafted man-
ner. It leaves an open and challenging question how to op-
timize a multi-scale architecture in the aspects of removing
ineffectual scale depth and unnecessary large filters to re-
duce the runtime while keeping competitive performance.

Multi-Patch Networks. Zhang et al. [45] proposed a hier-
archical multi-patch scheme (DMPHN) to keep spatial in-
formation without any image down-sampling like [21]. The
multi-patch input for each scale is generated by dividing the
original blurry input into multiple non-overlapping patches,
shown in Fig. 2. Following this work, some recent re-
searches [43, 33] also utilized the multi-patch scheme for
multi-scale image deblurring. Intuitively, for non-uniform
deblurring, the blur kernel of global image is different from
the blur kernel of local patches. Compared with the infor-
mation loss of blur kernel due to the image degradation of
multi-scale framework, we utilize the multi-patch scheme to
exploit the blur kernel priors and better represent the global
non-uniform knowledge. However, all the above work fixed
patch scheme in a manual manner and the further optimiza-
tion of the multi-patch mechanism is still unexplored so far.

Neural Architecture Search (NAS). Neural architecture
search aims to automatically design a high-performance ar-
chitecture such that it largely eliminates the tedious and
heuristic manual design of neural architecture. Early work
introduced evolutionary algorithms (EAs) to optimize neu-
ral architecture by iteratively mutating a population of can-
didate architectures [18]. Reinforcement learning (e.g., pol-
icy gradients[51, 37, 2, 38] and Q-learning [50]) is an alter-
native algorithm to optimize potential architectures by ex-
ploring the search space. But these methods require massive
computation in the procedure of searching. Thus, speed-
up techniques [ 1] (e.g., hyper-networks [44] and shared
weights [27]) were proposed to redress this issue.

Inspired by this idea, we propose a pyramid neural archi-
tecture search network to automatically design a multi-scale
and multi-patch mechanism. Closest to ours is the work of
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Figure 2. The proposed pyramid architecture search (PyNAS) algorithm. We use the pyramid patch scheme (1-2-4-8) and scale depth (4)
for the illustration. The non-overlap multi-patch hierarchy is fed to the network. PyNAS searches the whole encoder £; and decoder D;
structure of each scale from the operator candidates. I’, B?, h' are the estimated latent sharp, blurry images, and hidden features at the ¢-th
scale. Note that our PyNAS finds a better pyramid network architecture (1-3-9) using less inference time and shallower scale depth.

ProxylessNAS [1] and DARTS [19], in which the authors
exploited the gradient descent strategy after a continuous
relaxation on the architecture representations and achieved
competitive performance on the image classification task.
Our method differs from [1] and [19] in several important
ways: 1) Considering the significant advantage of the spe-
cialized multi-scale [21] and multi-patch [45] mechanism
for image deblurring, we innovatively extend the search
space to include the multi-scale structure and patch com-
position, and then search a high-performance hierarchical
scale-pyramid and patch-pyramid network for image de-
blurring; ii) our proposed multi-scale search strategy is dif-
ferent from the existing NAS search strategies including the
CLEARER [8] and HiNAS [46]. Specifically, we define
the hierarchical relationship among optimization variables
as the top-level (patch and scale schemes) and bottom level
(basic operators) when some work [1, 19] assumed that all
variables are parallel; iii) we train the model in a top-to-
bottom manner and adopt the random policy for the top-
level variables initialization and the gradients-based pol-
icy for the bottom-level variables searching, respectively.
Besides, shown in algorithm 1, we run the iterative opti-
mization and stack previous well-searched networks until
all scale networks are searched.

2. Proposed Method
2.1. Problem Formulation

Blur artifacts are caused by different reasons (e.g., cam-
era shakes and object movement). Typically, the mathemat-

ical formulation of the blurring process can be described as:
B = KS +n, )

where B, S and n denote blurry, sharp images, and additive
noise, respectively. K is the blur kernel. We adopt a multi-
patch structure across multiple scales in the coarse-to-fine
strategy to solve the deburring formulation. Specifically, at
each scale, sharp latent images are generated by this scale
network, and then imported and concatenated as the input
of the next scale sub-network, which can be expressed as:

I',h" = Net;(B', I'"' h't1; 6,), )

where ¢ is scale index and the first scale ¢ = 1 is the finest
scale. As shown in Figure 2, I’ and B? are the estimated
latent sharp and blurry images at the ¢-th scale, respectively,
while h’ means hidden state features across scales. N et; 18
the i-th scale network architecture consisting of encoder E*
and decoder D? with training parameters 6;.

Following [43, 33, 45], we introduce the multi-patch hi-
erarchy as input to keep the same spatial resolution even
at different scales, which alleviates expensive runtime on
the deconvolution/upsampling operation. Further, the main
idea that setting the number of patches at each scale dif-
ferent is to make the coarse scales focus on local infor-
mation to produce residual information for the next finer
scale. We assume that the scale depth of the network
is N and accordingly its multi-patch hierarchy scheme is
(1,..., P;, ..., Py). Patch scheme P; denotes the number of
image non-overlapping patches at the specific scale 7. It is
worth noting that our algorithm can automatically optimize
the scale depth and multi-patch hierarchy scheme.
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The overall architecture of our PyNAS network is illus-
trated in Figure 2. The deblurring operation starts at the
bottom scale N=4. In this scale, the whole blurred im-
age B! is divided into PV non-overlapping patches BJN
(7 = 1,..., Py). Each scale of our network consists of one
encoder E and one decoder D. Then, we feed the patches
into the N-th scale encoder EV to produce the latent feature
representation:

hi’ =EY(Bj'), jel,.. Py, (3)

Afterward, we concatenate (Num=Pp /Py _1) adjacent fea-

. =N
tures to form a new feature representation h;, as follows:

~N
hy =hY @ . © B N, @)

where k € 1, .., Py_1 and @ means the concatenation op-
~N
erator. Then, h, is passed through decoder Dy to pro-

duce I) = Dy (H,iv) which has the same spatial size as the
patches BkN 1 (g, Ii and Bi in Figure 2). The features
at all scales are concatenated along the spatial dimension.
In other words, fitting together neighboring patches forms a
larger patch.

2.2. Architectural Search Methodology

To effectively process hierarchical patches from each
scale, we utilize a gradient-based NAS technique to opti-
mize each scale structure, scale depth, and multi-patch hi-
erarchy scheme. In this section, we first introduce how to
search for architecture cells using a continuous relaxation
and path binarization. Then we explain how to define the
scale depth and multi-patch hierarchy scheme space. Lastly,
we elaborate on our multi-scale search strategy and loss
function.

2.3. Cell Architecture Search

Continuous Relaxation. Following the continuous relax-
ation in [ 1], in each block integrated all possible layer types,
the output tensor 77 is linked to all the input tensor I!
through a searched operation O;_,;

T} = Z 0;-i(T}), ()

Tiel!

In order to make the search space continuous, we estimate
the searching step O;_,; with a continuous relaxation, yield-
iIlg O j—i-

O = Z aji0j-i(T)), (6)
0e0
where 3" . aji=1and O € O, 0?..., OF are all possi-

ble S layer candidates, aé? _,,; denotes the weight of operator
OF.

Path Binarization. In case of the memory limitation of
hardware with a large design space, we employ the opera-
tion based on path binarization. Specifically, N real-valued
architecture parameters «; denote the path weights and are
then transformed into binary gates:

[1,0,...,0] with probability p;,
g = binarize(py, ..,pN) -
[0,0, ..., 1] with probability py,

@)
Applying the binary gates g, the output of the mixed opera-
tion is reformulated as :

_ N o01(x) with probability p;,
mgy™ = Zgioi(ac) =< ..
i=1 on (z) with probability py,

®)

Shown in Eqgs. 7 and 8, instead of the path weights, by us-

ing the binary gates, only one path of activation is active in

memory at run-time and the memory requirement is reduced

to an acceptable level.

Hierarchical Multi-Scale Search Space. Considering the
contradiction between real-time deblurring and large multi-
scale computation burden, we rely on computation-efficient
operation with an adaptive receptive field such as dilated
convolutions and without using large kernel convolutions.
Besides, for each scale, the input patch size is different and,
accordingly, the demand of receptive field should be opti-
mized. In this paper, we pre-define the following 5 types of
basic operators and two multi-scale optimization variables:

e Pyramid variable: scale depth 1 < D < 4;
e Pyramid variable: multi-patch hierarchy scheme
[1,pa, .., pn], N denotes the patch number at IV scale;

e Conv operators: 3 X 3 convolution;

e Conv operators: 5 X 5 convolution;

e Dilation operators: 3 x 3 convolution with dilation

rate of 2;

e Separable operators: 3 x 3 separable convolution;

e Zero operators: no connection and return zero.

Each convolution operation is followed by a ReLU ac-
tivation layer. Since batch normalization tends to corrupt
the pixel-level correlation, we abandon the batch normal-
ization and employ the mini-batch for training. However,
the training stage using mini-batch leads to great computa-
tion time and largely increases the optimization difficulty of
the multi-scale structure.

2.4. Multi-Scale Search Strategy

Based on the characteristics of the multi-scale deblurring
network, we propose a hierarchical search strategy, separat-
ing all optimization variables into bottom-level (basic op-
erators) and top-level parameters (scale-pyramid and patch-
pyramid). First, we randomly initialize the top-level param-
eters (scale and patch numbers). We note that overly small
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Algorithm 1 Multi-Scale Search Strategy for our system.

Input:
The multi-scale pyramid search space M including the
scale depth (n), patches scheme (p), and the single-
scale layer search space S.
Output:
The well-optimized multi-scale architecture M f;,q; un-
der architecture constraints;
1: while iteration < I do
2:  Fp: Initialize the multi-scale scheme M including
the scale number (n) and patches scheme (p);

32 fori=1;i<n;i++ do

4: So: Initialize the i-th scale network structure;

5: Update: Gradient-based M SEj,ss = S;() net-
work search;

6: S;: i-th scale optimized candidate network;

7: M:: Stack the single-scale candidates .S;;

8:  end for
9: end while
10: return Myip,q;.
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Figure 3. Encoder (left) and decoder (right) structure searching
from the search space. For real-time image deblurring, our PyNAS
aims to obtain a compact network consisting of compact cells and
only keeping one cell in each layer.

patches (16 x16) are not beneficial for removing the motion
bur. Therefore, the maximum patch number of the hierar-
chy scheme is set as 16 to ensure that the patch size of the
last scale is larger than 16x 16.

After determining the pyramid-scales and pyramid-
patches scheme, we first optimize the coarsest scale net-
work and then stack the well-optimized coarse scales to fur-
ther optimize the next finer scale. As illustrated in Figure 3,
each scale network consists of encoder and decoder network
searching and only keeps one cell in each layer for obtain-
ing a compact architecture. We run the iterative optimiza-
tion until all scale networks are searched. Then we train the
well-optimized network with the initial top-level parame-

Table 1. Quantitative results on the GoPro test dataset. Size and
Runtime are addressed in MB and Millisecond (ms). The reported
time is only network inference time excluding the time of writing
generated images to disk. We expand the search space of the hier-
archy multi-patch scheme to odd types (such as [1-3-9]). The best
results are highlighted in bold and the second best is in underline.

GoPro dataset
Models PSNR SSIM Size

Sun et al. [34] 24.64
Nah et al. [21] 29.23
Zhang et al. [47]  29.19
Tao et al. [35] 30.10
Zhang et al. [45]  30.25

Runtime

0.8429  54.1 12000
09162  303.6 4300
09306  37.1 1400
0.9323  33.6 1600
09351 29.0 30

Yuan et al. [42]  29.57  0.9338 3.1 10
Ours (PyNAS,)  30.51 0.9391  20.7 26
Ours (PyNASg)  30.62  0.9405 359 17

ters empirically around 210 epochs to calculate MSE loss.
Afterward, we update the scale depth and patch numbers
to search better top-level parameters, shown in Algorithm
1. To speed up the search procedure and avoid the collapse
when the number of search epochs becomes large, we em-
ploy the early stop principle during optimizing. For top-
level variables, we build up a judgement module to ensure
that the same schemes are not repeatably generated.

2.5. Multi-scale Loss Function

Our multi-scale loss function is based on the Mean
Square Error (MSE) and then modified by considering the
search variable and multi-scale architecture.

L=>|INet{N,P,0,C} - G|?*, )

where N, P, 6, C' mean the scale depth, hierarchy patch
scheme, network weights, and cell operators, respectively.
We follow the principle of residual learning and regard the
intermediate outputs as the residual information capturing
the image priors at different scales. Consequently, we cal-
culate our loss only at the finest scale.

3. Experiments
3.1. Datasets

GoPro Dataset [21] is used to verify the deblurring perfor-
mance of our algorithm. It consists of 3214 pairs of blurred
and sharp images extracted from 33 sequences captured at
720 % 1280 resolution. The blurred images are generated by
averaging successive latent frames to produce varied blur.
We follow the same strategy in [2 1], using the 2103 image
pairs for training and the remaining 1111 pairs for test.

VideoDeblurring Dataset [3 | ] contains videos captured by
different devices such as GoPro Hero 4, iPhone 6s, and
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Figure 4. The Peak signal-to-noise ratio (PSNR) vs. parameters of
state-of-the-art networks and our PyNAS on the GoPro dataset.

Nexus 5x. The quantitative subset consists of 6708 blurry
frames and corresponding sharp images from 71 videos.
Following previous work [31], total videos are split into 61
training and 10 testing videos.

3.2. Experimental Setting

Searching Settings. We perform network search on the Go-
Pro dataset and randomly choose 10% of training samples
as the validation set. We train the warm-up stage to update
weights of convolutional layers and then the second stage is
used to optimize parameters of the neural architecture. At
second stage, we search for basic operators (bottom vari-
ables) at most 80 epochs with batch size of 32 and apply
early stoping to avoid the model collapse. We employ stan-
dard SGD optimizer and set the learning rate as 0.0005 with
the cosine annealing strategy [20] in convolutional kernels
updating. For the architecture update, Adam optimizer is
used and the learning rate is set to 0.001.

Training Settings. All the training experiments are imple-
mented in Pytorch with a single TITAN XP GPU. For ran-
dom crop, the patches of 256x256 are randomly cropped
from input images but 288x288 for the odd patch scheme
(for example, [1,3,9]). The initial learning rate is 0.0001
and the decay rate is 0.1 with the Adam solver. We also
normalize images to the range of [0,1] and subtract 0.5 to
keep the pixel-level knowledge. We train the model for
3000 epochs with the mini-batch size 6.

3.3. Comparisons with State-of-the-arts

We compare our networks obtained by PyNAS with
other recent state-of-the-art deblurring methods: a con-
volutional neural network for nonuniform motion blur re-
moval [34], a deep multi-scale convolutional neural net-
work [21], spatially variant recurrent neural networks [47],
a scale-recurrent network [35], a deep stacked hierarchical
multi-patch network [45], and a spatially variant deconvo-
lution network [42]. We propose two models: one is the
lightweight (PyNAS ) which searches the identical cells for
each scale and can share the weight among scales. The other
is PyNAS,; which searches the individual cell structure of

each scale and then stacks them together. The learned
PyNAS; is a pyramid-shape (1-2-4-8) network and mainly
consists of dilation blocks and standard convolution blocks,
while PyNAS, is a 1-3-9 patch scheme network and con-
tains massive dilation blocks and convolution blocks with
large kernel size. Detailed configurations (e.g., kernel size
and operators) of PyNAS,; and PyNAS; can be found in the
supplementary material.

Quantitative Results. As shown in Table 1, our PyNAS,
(different structures of each scale) achieves significantly
better results (1.1 dB higher than the most recent real-
time deblurring method ([42]) while maintaining the second
fastest runtime 17ms for a 720p image compared with [42].
It’s worth noting that both our PyNAS multi-scale architec-
tures (PyNAS; and PyNAS;) obtained by neural architec-
ture search perform much better than the previous manual
multi-scale architecture ([45] and [21]) and meanwhile de-
creasing the inference time. Also shown in Table 2, the
quantitative results on the VideoDeblurring dataset indicate
that our PyNAS methods achieve the better generalization
performance than the very recent method ([45]).

Qualitative Evaluation. The five deblurred examples of
the GoPro dataset [21] are shown in Figure 5. We show
the visualization of different models for images containing
large motion blur and zoom in the main object. Compared
with recent deep learning models, the rehabilitated images
of our method are clearer and sharper at the edges. The con-
tents of our deblurred images are well recovered, e.g., the
numbers of advertisement and license plate are deblurred
properly, while the others fail to show clear numbers.

Real-Time Deblurring. Runtime is expressed as ms and
only calculated by the CNN runtime (writing generated im-
ages to disk is not considered). In order to make the per-
sistence of vision and produce the illusion of moving im-
ages, it requires a short time to process a blurred image
(nowadays, usually 33ms for 30fps or 41ms for 24fps). For
the main motivation of real-time video deblurring, only our
models, [42] and [45] meet the real-time requirement to pro-
cess the 720p images. Moreover, our PyNAS,; can deblur a
1280%720 image with nearly 0.017s per image, which is
40x than Tao et al. [35]. Our PyNAS models achieve the
real-time deblurring and represent high performance of mo-
tion deblurring (over 30.50).

3.4. Multi-Scale Search Strategy vs. Random Policy

To evaluate the multi-scale searching strategy of our Py-
NAS compared with random policy, we randomly sample
10 models from all search spaces. From Table 3, our Py-
NAS can search a well-optimized model (1.5dB higher)
than the model obtained by random policy. It verifies the
effectiveness of multi-scale search strategy for multi-scale
network architecture.
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Figure 5. Visual comparison with state-of-the-art deblurring methods from the GoPro dataset. The first column are the blurry images, the

second column are the deblurred images of [47], and the third column are results of [45]. The last column shows results generated by our
PyNAS 4, which achieves the best performance compared with the others.
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Table 2. Quantitative results (PSNR) on the VideoDeblurring dataset. Our models are trained on the GoPro dataset and then generalized on

the VideoDeblurring dataset.

VideoDeblurring Dataset

Models #1 #2 #3 #4 #5 #6 #7 #8 #9 #10  Average
Input 24.14 30.52 2838 2731 22,60 2931 27.74 2386 3059 26.98 27.14
PSDeblur 2442 2877 25.15 2797 2202 2574 26.11 1975 2648 24.62 25.08
WFA [4] 25.89 3233 2897 2836 2399 31.09 2858 2478 3130 2820  28.35
Suetal [31] 2575 31.15 2930 2838 23.63 30.70 29.23 2562 3192 28.06  28.37
Zhang et al. [45] 29.89 3335 31.82 3132 2635 3249 30.51 27.11 3477 30.02 30.76
Ours (PyNAS;)  30.11 33.52 3192 31.54 2644 3273 30.69 27.51 35.07 30.45 31.01

Table 3. The quantitative analysis: the superiority of our multi-
scale search strategy compared with ten random CNN models and
other low-level NAS algorithms.

GoPro Dataset

Models PSNR  SSIM

Average of random models  29.11  0.9251
NAS-DIP [3] 29.01 09176
CLEARER [§] 28.96  0.9188
PyNAS, 30.51  0.9391
PyNASq4 30.62  0.9405

3.5. Comparisons with Other Low-level NAS

Considering that our work is the first attempt for dy-
namic scene deblurring tasks, we compare our PyNAS with
other low-level NAS methods [23, 22, 46, 36, 32], such as
super-resolution [9], denosing[8], and dehazing [3] tasks.
Due to its compact module search space, CLEAR takes
eight GPU hours to find a satisfactory network. NAS-DIP
takes about 3 days ( 72 GPU hours) to find the best architec-
ture. Compared with CLEAR and NAS-DIP, our PyNAS,,
which searches the identical cells for each scale, only takes
8 GPU hours in searching while our PYNAS,; searching the
individual cell structure of each scale takes about 36 GPU
hours. As shown in Table 3, our PyNAS has obtained much
better results (around 1.5dB) than other low-level NAS.
This mainly attributes to the specialized pyramid-patches
and pyramid-scale searching mechanism designed for dy-
namic scenes suffers from spatially-invariant blurs [45]. We
employ the multi-scale and multi-patch scheme to decom-
pose a challenging task into easier subtasks via dividing the
globally spatially-invariant kernel into locally patch-based
spatially-invariant kernels.

3.6. Architecture Analysis

In this subsection, we analyze the main characteristics of

architectures designed by our PyNAS. We can find that:

e In the multi-scale network found by our PyNAS, the
first and second scales are inclined to have a simi-
lar structure combined by the large kernel and dila-
tion convolution, while the third and fourth scales are
prone to having a similar structure consisting of the

smaller kernels and dilation convolution. This phe-
nomenon is mainly caused by the input patch size of
each scale. Accordingly, the various requirements of
receptive field are needed in each scale network.

e The following aspects lead to our PyNAS fast runtime:
i) searching a suitable pyramid parameters with shal-
low scale depth (d=3) and patch scheme (p=1-3-9) and
selecting small-size convolutional filters; ii) cutting off
unnecessary links, e.g., skip or recurrent connections;
iii) reduced the number of upsampling/deconvolution
between convolutional features.

e To decrease the massive search time and computation
of each scale, we define the PyNAS, search model as-
suming that each scale inherits the same network ar-
chitecture. Compared with the model PyNAS; that has
different network architectures for each scale, PyNAS,
still gets satisfactory results for real-time video de-
blurring but only occupies around 1/4 search time of
PyNAS,.

4. Conclusions

In this paper, we proposed a pyramid neural architecture
search algorithm (PyNAS) to optimize hyper-parameters
(hierarchy patch, scale depth, and cells scheme) of the
multi-scale network for the real-time deblurring task. The
multi-scale and multi-patch mechanism are specialized de-
sign to tackle the challenge of non-uniform motion blur for
dynamic deblurring tasks. A multi-scale search strategy is
exploited to sequentially search the multi-parameters from
the top (scale depth and patch scheme) to bottom variables
(cells operator). To make PyNAS both memory and com-
putation efficient, the path binarization and early stoping
strategies are used. Our architecture obtained by the pro-
posed PyNAS achieves better performance compared with
the state-of-the-art algorithms with faster inference time.
Further, our algorithm is applicable in real-time deblurring,
only 17ms run time for one 720p image (i.e., 58fps).
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