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Abstract

Recent works have made great success in semantic seg-
mentation by exploiting contextual information in a local
or global manner within individual image and supervis-
ing the model with pixel-wise cross entropy loss. However,
from the holistic view of the whole dataset, semantic rela-
tions not only exist inside one single image, but also prevail
in the whole training data, which makes solely consider-
ing intra-image correlations insufficient. Inspired by recent
progress in unsupervised contrastive learning, we propose
the region-aware contrastive learning (RegionContrast) for
semantic segmentation in the supervised manner. In or-
der to enhance the similarity of semantically similar pix-
els while keeping the discrimination from others, we em-
ploy contrastive learning to realize this objective. With the
help of memory bank, we explore to store all the represen-
tative features into the memory. Without loss of generality,
to efficiently incorporate all training data into the memory
bank while avoiding taking too much computation resource,
we propose to construct region centers to represent features
from different categories for every image. Hence, the pro-
posed region-aware contrastive learning is performed in
a region level for all the training data, which saves much
more memory than methods exploring the pixel-level rela-
tions. The proposed RegionContrast brings little computa-
tion cost during training and requires no extra overhead for
testing. Extensive experiments demonstrate that our method
achieves state-of-the-art performance on three benchmark
datasets including Cityscapes, ADE20K and COCO Stuff.

1. Introduction

Semantic segmentation, which aims to assign a category
label to each pixel in an image, is a fundamental and chal-
lenging problem in computer vision. It has been widely
applied to many applications, such as autonomous driving,
scene understanding and image editing.

In the past few years, benefiting from the availabil-
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(a) Most Current Methods

(b) Proposed RegionContrast

Figure 1. Main difference between our method and previous ones.
1(a) Most existing methods only focus on intra-image relations.
1(b) Our proposed RegionContrast, apart from solely focusing on
intra-image information, also considers inter-image correlations in
a region level.

ity of large-scale datasets such as ImageNet [11] and
Cityscapes [10], semantic segmentation has achieved sig-
nificant progress. In particular, based on the fully convo-
lutional network (FCN) [30], many state-of-the-art meth-
ods emerge, which focus on exploiting contextual informa-
tion. DeepLabV3 [5] proposes ASPP module which ag-
gregates spatial regularly sampled pixels at different dilated
rates while PSPNet [52] proposes pyramid pooling module
which partitions the feature maps into multiple regions be-
fore pooling. Non-local Network [40] adopts self-attention
mechanism to enable every pixel to receive information
from all other pixels, resulting in a much more complete
pixel-wise representation.

Aforementioned methods, though achieving satisfactory
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segmentation results in most occasions, are still faced with
critical drawback. Concretely, most current methods fo-
cus on mining contextual information in all kinds of ways
within the image, neglecting the potential relation informa-
tion from other images. As illustrated in Fig. 1, inter-class
relations are also worth exploring. For one region of an im-
age, dilation convolution or self-attention mechanism can
only enable it to receive information from some specific fea-
tures of surrounding categories, while in reality, this kind of
region could get in touch with much more kinds of features.
Hence, only exploring intra-image relations is not compre-
hensive enough, which results in a demand for feature learn-
ing from the holistic view of the whole dataset.

Recently, unsupervised contrastive learning has gained
much attention in pre-training a strong feature extractor for
downstream tasks such as image classification or object de-
tection. In brief, most works perform contrastive learning
in the image level where all other images from the dataset
are considered as negative samples while the very image
with random augmentations is treated as the postive sam-
ple. Benefiting from the utilization of memory bank, large
amount of negative samples can be brought in to assist the
contrastive learning for better feature representations. Note
that most unsupervised contrastive learning methods focus
on the classification problem, while semantic segmentation,
on the other hand, requires much more semantic informa-
tion than classification. Intuitively, to adapt to segmenta-
tion problem, instead of performing image-level contrastive
learning, we can adjust to a pixel-level one where pixels in-
side and outside the very image get contrasted, as depicted
in [41]. However, this kind of formulation suffers from a
serious issue: pixels from different images may belong to
the same category, which would deteriorate the subsequent
feature learning. Hence, instead of sticking to unsupervised
settings, we explore contrastive learning in the fully super-
vised manner to obtain abundant category information.

In this work, we propose a new contrastive learning
paradigm in a fully supervised way, targeting at semantic
segmentation problem. With the corresponding categories
of pixels as prior knowledge, the contrastive learning can
be performed in a much more efficient way. We will first
describe the most straightforward approach. Specifically,
when the category of each pixel is known which arises from
the prediction of the model, different memory banks that
conforms to each class are built to store different classes of
pixel embeddings. And for each pixel of an image, its corre-
sponding positive and negative samples can be retrived from
the memory banks, which would complete the contrastive
learning process. Though simple and effective, this method
would result in heavy memory burden since the number
of pixels of an entire dataste is too large, which will also
severely slow down the training speed.

To tackle the above issue while restoring enough em-

beddings, we propose the region-aware contrastive learn-
ing (RegionContrast). In particular, since the region fea-
tures for one class in an image are composed of all the
pixel features belonging to this category, we can construct
the region centers for different categories within one im-
age. In that way, instead of pushing all the pixel embed-
dings into memory banks, we just push several region cen-
ters from different categories into the banks. Although an
image may contain multiple regions that belong to the same
category, the features in the embedding space are similar.
Thus for simplicity, we generate one region center for each
class of one single image. To facilitate the feature learning
for hard-to-classify pixels, we further propose a dynamic
sampling method when generating the regions centers to
allocate more attention to hard samples. After building
the memory banks for different classes, region-aware con-
trastive learning can be performed. Specifically, for one re-
gion center of an image, its corresponding positive samples
come from the embeddings in the memory bank of the same
class, while its negative samples are embeddings from other
memory banks. With positive and negative samples pro-
vided, contrastive learning procedure can be implemented.

The overall framework of our RegionContrast is shown
in Fig. 2, where conventional cross entropy loss works
as a pixel-wise supervision and RegionContrast focuses on
inter-image relation learning. Most importantly, the pro-
posed RegionContrast can be easily applied into any seg-
mentation models, and only demands little computation re-
sources during training while requiring no extra overhead
for testing.

To sum up, our contributions are summarized as follows:

• We propose a new contrastive learning setting in the
fully supervised manner and target at the specific se-
mantic segmentation problem.

• To adapt to segmentation scenario in a memory-
efficient way, we design an effective region-aware con-
trastive learning (RegionContrast) to explore semantic
relations from the holistic view of the whole dataset.

• We conduct extensive experiments on several public
datasets, and obtain state-of-the-art performance on
three semantic segmentation benchmarks, including
Cityscapes, ADE20K and COCO Stuff.

2. Related Work
2.1. Semantic Segmentation

With the success of deep neural networks [25, 35,
19], semantic segmentation has achieved great progress.
FCN [30] is the first approach to adopt fully convolutional
network for semantic segmentation. Later, many FCN-baed
works are proposed, such as UNet [33], RefineNet [29],
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PSPNet [52], DeepLab series[3, 4, 5, 6]. Chen et al. [4]
and Yu et al. [45] remove the last two downsample layers to
obtain a dense prediction and utilized dilated convolutions
to enlarge the receptive field. We choose DeepLabV3 as the
basic segmentation network for convenience. And we also
adopt the above paradigm to get a better feature map and
thus improve the performance of the model. However, most
of the previous methods utilize a typical pixel-wise cross-
entropy loss to supervise the training of the model, neglect-
ing the intrinsic correlations between different pixels.

2.2. Context

Contextual information is critical for semantic segmen-
tation to generate better feature representations. From the
local perspective, DeepLabV3 [5] employs multiple atrous
convolutions with different dilation rates to capture contex-
tual information, while PSPNet [52] utilizes pyramid pool-
ing over sub-regions to harvest information. While from the
global perspective, Wang et al. [40] apply the idea of self-
attention from transformer [37] into vision problems and
propose the non-local module where correlations between
all pixels are calculated to guide the dense contextual in-
formation aggregation. These methods, though effectively
harness contextual information within the image, all suffer
from the drawback that inter-image relations are neglected.
Hence, to learn a more comprehensive feature representa-
tion, we propose to further explore inter-image relations on
a region level.

2.3. Contrastive Learning

Recently, contrastive learning [36, 42, 7, 18, 8] which is
based on Siamese networks [1] has achieved great progress
in unsupervised learning problem, and significantly outper-
form the previous pretext task based methods [26, 16, 13,
31]. SimCLR [7] proposes a simple framework to per-
form contrastive learning, where positive pairs are gener-
ated with two random augmented views of the same image
and negative ones are obtained with different images, form-
ing a image-level discrimination task. Contrastive learning
aims to increase the instance discriminative power between
different images and mainly benefits from the large num-
ber of negative samples. Furthermore, MoCo [18] main-
tains a queue of negative samples and turns one branch
of Siamese network into a momentum encoder to improve
consistency of the queue. Moreover, targeting at specific
semantic segmentation problem, DenseCL [41] performs
dense contrastive learning at the level of pixels. Besides, a
few previous methods [23, 22, 51] propose to perform un-
supervised clustering for segmentation problem using con-
trastive losses. However, above works using contrastive
learning mainly focus on unsupervised pre-training task or
clustering. Without the guidance of labels, some serious
problems may occur. In particular, these methods treat in-

stances or pixels from different images as negative pairs,
which may come from the same category. With contrastive
learning pushing away these features, the final performance
for downstream tasks would get jeopardized. To overcome
this issue, we choose to explore contrastive learning from
the view of fully supervised manner. Based on the avail-
able segmentation labels, deeper level of specific semantic
relations can be explored and contrastive learning can help
enhance the feature similarity within the same class and in-
crease the discrimination power between different classes.

3. Method
In this section, we will describe the proposed Region-

aware Contrastive Learning (RegionContrast) in detail. We
will first revisit the background knowledge about conven-
tional contrastive learning in unsupervised representation
learning. Then we will present the details of our proposed
RegionContrast which is in a supervised manner.

3.1. Background

Unsupervised Contrastive Learning. Recently, unsuper-
vised (self-supervised) representation learning has gained
considerable progress. Breakthrough approaches such as
SimCLR [7], MoCo-v1/v2 [18, 8] utilize contrastive learn-
ing to obtain good representations from unlabeled data,
which aims to learn a CNN encoder to transform the in-
put images to feature representations. Given an unlabeled
dataset, an instance discrimination pretext task is employed
where the feature of each image in the training set is pulled
away from that of other images. For each input image,
random ‘views’ are generated by random data augmenta-
tions. Each view is fed into an encoder to extract high-
dimensional feature that holistically encodes the input view.
The encoder consists of a backbone network and a projec-
tion head. The backbone network is the model to be used
for downstream tasks after pre-training and the project head
will be discarded afterwards. The parameters of encoders
for different views can be shared or momentum-updated for
the other. Encoders are optimized by a pairwise contrastive
loss which measures the similarity of different feature vec-
tors generated from the projection heads.
Memory Bank. To better optimize the encoder, posi-
tive and negative samples are indispensable for contrastive
learning. While different views of the same image gener-
ated from augmentations are considered as positive sam-
ples, other images can be treated as negative ones. Since
the size of mini-batch is limited, a large memory bank
which stores embeddings of training images is adopted in
[42, 18, 8]. During training, negative samples can be ef-
fectively retrieved from the memory bank to construct the
complete contractive loss function.
Loss Function. Following MoCo [18, 8], the contrastive
learning can be considered as a dictionary look-up task.
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Formally, for each encoded query q, a set of encoded keys
{k0, k1, ...} can be retrieved from the memory bank, among
which a single positive key k+ corresponds to query q while
other negative keys k− encode views of other images. A
contrastive loss function InfoNCE [36] is employed to pull
q close to k+ while pushing it away from negative keys k−:

LNCE
q = − log

exp(q · k+/τ)
exp(q · k+/τ) +

∑
k−

exp(q · k−/τ)
,

(1)
where τ denotes a temperature hyper-parameter. All the
embeddings in the loss function are L2-normalized.

3.2. Region-aware Contrastive Learning

In this work, we explore contrastive learning in a su-
pervised manner. Benefiting from the available labeled
data, the contrastive learning is exployed in a category level
rather than instance level as in previous methods, hence bet-
ter enhancing the feature representation.

3.2.1 Overall Framework

As illustrated in Fig. 2, we present the overall framework
of our proposed RegionContrast. We choose DeepLabV3
[5] as the basic segmentation network. We use the ResNet
pretrained on ImageNet dataset as the backbone, replace
the last two down-sampling operations and employ dilation
convolutions in the subsequent convolutional layers, enlarg-
ing the resolution and receptive field of the feature map, so
the output stride becomes 8 instead of 16. The model is
supervised with conventional pixel-wise cross entropy loss
together with the proposed region-aware contrastive loss.

Specifically, to perform region-level contrastive learn-
ing, region features need to be extracted. Given an input
image I ∈ RC×H×W , we feed it through the backbone and
ASPP module to obtain the feature map F ∈ RC×H×W .
Region features will be further extracted from the feature
map F under the guidance of predictions of the network,
which are achieved by adding a segmentation head onto the
feature map. For simplicity, we choose to represent each
class in one image with one region center that encodes the
most essential information about the very class. In prac-
tice, the generated region center is a vector Ri ∈ RC for
class i. Subsequently, region centers from the same cate-
gory are positive samples while those from other categories
become negative samples. The key of the proposed super-
vised region-aware contrastive learning is to pull region fea-
tures of the same class together while keeping discrimina-
tive power between different classes.

3.2.2 Region Center

Intuitively, the region center of class i can be defined as the
average of features of all pixels belonging to class i in a sin-

gle image. Formally, given the feature map F ∈ RC×H×W ,
where C,H and W denote the dimension, height and width
of the feature map respectively, the straightforward defini-
tion of a region center of class i can be defined as,

Ri =

∑
x,y F(x,y)1[L(x,y) = i]∑

x,y 1[L(x,y) = i]
, (2)

where L(x,y) is the label of the pixel which is predicted by
the basic segmentation network and 1(·) is the binary indi-
cator denoting whether the pixel belongs to class i.

However, with the formulation depicted above, the con-
structed region center covers ambiguous features of pix-
els since the network prediction contains false prediction,
which would mislead the learning process of region cen-
ters. In order to allocate more attention to hard-to-classify
pixels, we further propose a dynamic sampling method to
construct the region centers.

Apart from feature map F ∈ RC×H×W and prediction
map P ∈ RN×H×W , groundtruth map G ∈ RH×W is in-
corporated to mine out hard pixels, where C is the feature
dimension and N is the number of classes. With the guid-
ance of groudtruth, hard negative pixels can be filtered out
while hard positive ones can be retrieved. To pay more at-
tention to hard samples, the weights of different pixel fea-
tures when producing the region center should be different,
where pixels of hard samples require higher weights than
easy positive ones. To this end, we harness the predicted
confidence map to allocate weights to easy positive sam-
ples, where the value on each position of confidence map
ci,j ∈ [0, 1]. Hence, the weight of easy positive pixel (i, j)
is 1− ci,j , while the weight of hard positive pixel is 1. For-
mally, easy positive samples for class i can be denoted as
EPi =

∑
x,y 1[L(x,y) = i] ∩ 1[G(x,y) = i], and hard pos-

itive samples can be denoted as HPi =
∑

x,y 1[G(x,y) =
i] − 1[L(x,y) = i] ∩ 1[G(x,y) = i]. The final definition of
regions centers of class i can be defined as,

Ri =

∑
x,y F(x,y)((1− c(x,y)) · EPi +HPi)∑

x,y 1[G(x,y) = i]
, (3)

3.2.3 RegionContrast

After constructing the region centers of all categories for
each image, region-aware contrastive loss for a region cen-
ter from class i can be directly defined as,

LNCE
i =

1

|Mi|
∑

k+∈Mi

−log exp(q · k+/τ)
exp(q · k+/τ) +

∑
k−

exp(q · k−/τ)
,

(4)
where Mi denotes the memory bank collecting region cen-
ters from category i of the whole training set and k− comes
from the memory banks for other categories.

As stated in Section. 3.1, memory bank that contains
negative samples is vital in learning good feature represen-
tations. Previous methods [41, 54, 39] that apply contrastive
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Figure 2. The overall framework of our proposed region-aware contrastive learning (RegionContrast). The memory banks for all the
categories contain region centers generated from images before the current iteration. Given an input image for the current iteration, we
first feed it into the feature extractor (Backbone + ASPP module) to obtain its deep features. With the proposed dynamic sampling method,
we construct the region centers from the image and push them into the memory banks according to the corresponding category. Within
the memory banks, region-aware contrastive learning is performed, where red arrows denote pushing force and green ones denote pulling
force (different colors of dots denote region centers of different classes). The model is jointly supervised with cross entropy loss and the
proposed RegionContrast.

learning in semantic segmentation have to maintain a large
memory bank to store embeddings in a pixel level, which
leads to a serious demand for large capacity of memory
bank and slow training speed due to the heavy memory bur-
den. While our method, on the other hand, benefits from the
introduction of region centers and thus requires much fewer
memory during training. Formally, for a training set with
D images from N categories, N memory banks are con-
structed, each with the size of D×C where C is the feature
dimension of the embeddings which are also known as re-
gion centers. Specifically, we maintain these N memory
banks as different queues during training. For each mini-
batch, region centers of different categories are generated
and pulled into the corresponding queue and get updated in
the next training epoch.

To sum up, the final supervision for semantic segmen-
tation is summarized as follows. The proposed region-
aware contrastive loss is adopted. Conventional pixel-wise
cross entropy loss is also employed together with the auxil-
iary loss as in previous state-of-the-art works [52, 47, 20].
Specifically, the output of the third stage of our backbone
ResNet is further fed into a auxiliary layer to produce a pre-
diction supervised by the auxiliary loss which is also cross
entropy loss. In a word, the loss can be formulated as fol-
lows,

L = LCE + αLAUX + βLRC , (5)

where α, β are used to balance the main segmentation loss
LCE , auxiliary loss LAUX and region-aware contrastive
loss LRC .

4. Experiments

To evaluate the performance of our proposed Region-
Contrast, we carry out extensive experiments on three
benchmark datasets including Cityscapes [10], ADE20K
[55] and COCO Stuff [2]. Experimental results demonstrate
that the proposed RegionContrast can effectively boost the
performance of the state-of-the-art methods. In the follow-
ing section, we will first introduce the datasets and imple-
mentation details, and then present detailed ablation study
on Cityscapes dataset. Finally, we will report the results on
ADE20K dataset and COCO Stuff dataset.

4.1. Datasets and Evaluation Metrics

Cityscapes. The Cityscapes dataset [10] is tasked for urban
scene understanding, which contains 30 classes and only 19
classes of them are used for scene parsing evaluation. The
dataset contains 5000 finely annotated images and 20000
coarsely annotated images. The finely annotated 5000 im-
ages are divided into 2975/500/1525 images for training,
validation and testing.
ADE20K. The ADE20K dataset [55] is a large scale scene
parsing benchmark which contains dense labels of 150
stuff/object categories. The dataset includes 20K/2K/3K
images for training, validation and testing.
COCO Stuff. The COCO Stuff dataset [2] is a challenging
scene parsing dataset containing 59 semantic classes and 1
background class. The training and test set consist of 9K
and 1K images respectively.
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Method mIoU(%)

CE Baseline 76.4
RegionContrast (intra-image) 77.5
RegionContrast (inter-image) 79.6

Table 1. Performance comparisons of our proposed RegionCon-
trast on Cityscapes validation set.

Evaluation Metric. In our experiments, the mean of class-
wise Intersection over Union (mIoU) is used as the evalua-
tion metric.

4.2. Implementation Details

We choose the ImageNet pretrained ResNet as our back-
bone, remove the last two down-sampling operations and
employ dilated convolutions in the subsequent convolution
layers, making the output stride equal to 8. For training, we
use the stochastic gradient descent (SGD) optimizer with
initial learning rate 0.01, weight decay 0.0005 and momen-
tum 0.9 for Cityscapes dataset. Moreover, we adopt the
‘poly’ learning rate policy, where the initial learning rate
is multiplied by (1 − iter

max iter )
power with power=0.9. For

Cityscapes dataset, we adopt the crop size as 769 × 769,
batch size as 8 and training iterations as 30K. For ADE20K
dataset, we set the initial learning rate as 0.004, weight de-
cay as 0.0001, crop size as 480× 480, batch size as 16 and
training iterations as 150K. For COCO Stuff dataset, we set
initial learning rate as 0.001, weight decay as 0.0001, crop
size as 520 × 520, batch size as 16, and training iterations
as 60K. The loss weights for LAUX and LRC are 0.4 and
0.1 respectively.

4.3. Ablation Study

In this subsection, we conduct extensive ablation experi-
ments on the validation set of Cityscapes dataset with differ-
ent settings for our proposed RegionContrast. For all the ex-
periments in this subsection, we use the DeepLabV3 as our
segmentation network with dilated ResNet-50 as the back-
bone network.
The Impact of RegionContrast. We carry out experi-
ments to evaluate the effectiveness of the proposed Region-
Contrast. Different levels of RegionContrast are adopted.
Concretely, we choose cross entropy (CE) loss function
as the pixel-wise supervision, which is also our baseline
method. RegionContrast (intra-image) denotes that region-
aware contrastive learning only takes place inside the im-
age, where much fewer positive and negative samples are
used. RegionContrast (inter-image) denotes that region-
aware contrastive learning takes place in the whole train-
ing set, which induce adequate positive and negative sam-
ples to ensure the contrastive learning. As shown in Table

Method mIoU(%)

CE Baseline 76.4
RegionContrast (Direct Average) 78.2
RegionContrast (EP + HP) 78.8
RegionContrast (Weighted EP + HP) 79.6

Table 2. Performance comparisons of different construction meth-
ods of region centers on Cityscapes validation set. ’EP’ and ’HP’
denote easy positive and hard positive samples respectively.

Method Bank Size mIoU(%)

CE Baseline 0 76.4
RegionContrast w/o MB 0 77.5
RegionContrast w/MB 1000 78.5
RegionContrast w/MB 2000 79.1
RegionContrast w/MB 2975 79.6

Table 3. Performance effect of memory banks on Cityscapes vali-
dation set. ‘MB’ denotes the memory bank. ‘2975’ is the size of
training data of Cityscapes dataset.

1, RegionContrast can achieve consistent improvement over
the baseline. Moreover, with inter-image contrastive learn-
ing bringing sufficient negative samples, the performance is
further boosted.
The Impact of Dynamic Sampling. We further perform
expeirments to validate the effectiveness of dynamic sam-
pling method when constructing the region centers. As il-
lustrated in Table 2, we apply different construction meth-
ods, where ‘Direct Average’ corresponds to the plain way
defined in Eq. 2 and ‘Weighted EP + HP’ denotes the final
dynamic sampling construction manner. From line 2 and
line 3 of the table, it can be seen that hard positive sam-
ples are more critical than hard negative ones. Moreover,
the results demonstrate that the dynamic sampling method
can effectively deal with hard samples and provoke a more
robust region representation.
The Impact of Memory Bank. In this subsection, we im-
plement extensive experiments to evaluate the significance
of memory bank. As shown in Table 3, several experimen-
tal settings are adopted. Specifically, when RegionContrast
is performed without memory bank, it becomes the same
as RegionContrast (intra-image) as in Table 1. It can be
induced that as the size of memory bank grows, the per-
formance can be further improved, which validate the ef-
fectiveness of the memory bank. Larger memory bank is
capable of containing more features, providing richer infor-
mation for later contrastive learning.
The impact on Different Models. We carry out ex-
periments to assess the effectiveness of the proposed Re-
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Figure 3. Visualization results of region centers. The model is su-
pervised by cross entropy loss and cross entropy loss together with
RegionContrast, respectively. The points with different colors de-
note region centers from different classes

gionContrast with different models. Different segmentation
models and backbones are adopted, including DeepLabV3
with ResNet [19] and HRNetV2 [38]. As shown in Table
4, RegionContrast improves DeepLabV3 with ResNet-50
by 3.2% in mIoU, DeepLabV3 with ResNet-101 by 2.3%
and HRNetV2 by 1.5%, indicating that the proposed Re-
gionContrast can be applied into any segmentation models.

Visualizations of the effect of RegionContrast. To fur-
ther comprehend the effect of RegionContrast, qualitative
results are shown in Fig. 3. Concretely, we calculate the
region centers for all the classes for every image in the vali-
dation set of Cityscapes and visualize all the features using
t-SNE visualization in Fig. 3, where each point corresponds
to one region center. In Fig. 3(a), with only cross entropy
loss supervision, several region centers get mixed together,
which severely increases the ambiguity among categories

Method Backbone mIoU(%)

DeepLabV3 ResNet-50 76.4
DeepLabV3 + RegionContrast ResNet-50 79.6
DeepLabV3 ResNet-101 79.0
DeepLabV3 + RegionContrast ResNet-101 81.3
HRNetV2 HRNetV2-W48 80.4
HRNetV2 + RegionContrast HRNetV2-W48 81.9

Table 4. Performance effect of RegionContrast with different mod-
els on Cityscapes validation set.

Method Backbone mIoU(%)

RefineNet [29] ResNet-101 73.6
GCN [32] ResNet-101 76.9
PSPNet [52] ResNet-101 78.4
AAF [24] ResNet-101 79.1
DFN [44] ResNet-101 79.3
PSANet [53] ResNet-101 80.1
GloRe [9] ResNet-101 80.9
CPNet [43] ResNet-101 81.3
CCNet [21] ResNet-101 81.4
DANet [14] ResNet-101 81.5
OCR [46] ResNet-101 81.8
RegionContrast(Ours) ResNet-101 82.3

Table 5. Comparisons with state-of-art on the Cityscapes test set.

and raises the classification difficulty for the model. With
the introduction of RegionContrast, as shown in Fig. 3(b),
the discriminative power between region centers from dif-
ferent categories gets significantly enhanced. Therefore,
the joint supervision of CE and RegionContrast remarkably
benefits the feature learning in amplifying the discrimina-
tion between classes.

We further provide comparisons of visualization results
on validation set of Cityscapes dataset in Fig. 4. It can be
seen that our proposed RegionContrast can effectively im-
prove the consistency of predictions with region-level inter-
image relation explorations.

4.4. Comparisons with State-of-the-Arts

Cityscapes. Furthermore, we also train the proposed
method using both training and validation set of Cityscapes
dataset and make the evaluation on the test set by submitting
our test results to the official evaluation server. For a fair
comparison, we use ResNet-101 as backbone, OHEM loss
as the pixel-level loss, and our proposed RegionContrast to
supervise the learning process. Moreover, we use the multi-
scale and flipping strategies while testing. From Table 5, it
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Image CE Baseline RegionContrast Ground Truth
Figure 4. Visualization results on Cityscapes validation set. From left to right: input image, predictions made by the baseline method
supervised by cross entropy loss, predictions made by our proposed RegionContrast and groudtruth map.

Method Backbone mIoU(%)

RefineNet [29] ResNet-152 40.70
PSPNet [52] ResNet-101 43.29
DSSPN [28] ResNet-101 43.68
PSANet [53] ResNet-101 43.77
SAC [50] ResNet-101 44.30
EncNet [48] ResNet-101 44.65
CFNet [49] ResNet-101 44.89
APCNet [17] ResNet-101 45.38
CPNet [43] ResNet-101 46.27
RegionContrast(Ours) ResNet-101 46.85

Table 6. Comparisons with state-of-art on the ADE20K validation
set.

can be observed that our proposed RegionContrast achieves
state-of-the-art performance on Cityscapes test set.
ADE20K. We also conduct experiments on the ADE20K
dataset. Performance results on the validation set are re-
ported in Table 6. Our method achieves state-of-the-art re-
sult on the validation set of ADE20K dataset.
COCO Stuff. We also conduct experiments on the COCO
Stuff dataset and report the results in Table 7. Results show
that our model achieves 40.7% in mean IoU which is the
highest record. Hence our method can effectively collect
useful long-range contextual information and obtain better
feature representation in semantic segmentation.

5. Conclusions
In this paper, we have presented the Region-aware

Contrastive Learning (RegionContrast) to incorporate con-
trastive learning into semantic segmentation problem. Dif-

Method Backbone mIoU(%)

FCN-8s [30] VGG-16 22.7
DAG-RNN [34] VGG-16 31.2
RefineNet [29] ResNet-101 33.6
CCL [12] ResNet-101 35.7
DSSPN [28] ResNet-101 38.9
DANet [14] ResNet-101 39.7
EMANet [27] ResNet-101 39.9
ACNet [15] ResNet-101 40.1
RegionContrast (Ours) ResNet-101 40.7

Table 7. Comparisons with state-of-art on the COCO Stuff test set.

ferent from previous unsupervised contrastive learning
methods, we propose a new contrastive learning setting
in the fully supervised manner and target at segmentation
problem. With the availability of labels, we are capable
of exploring more semantic relations. Moreover, we pro-
pose the concept of region centers for different categories
which are stored in the memory and participate in the sub-
sequent contrastive learning procedure. With region-level
embeddings instead of pixel-level embeddings to store the
information of the holistic training set, contrastive learning
can be implemented in a memory-efficient way. The ab-
lation experiements demonstrate the effectiveness of each
component of RegionContrast. Our proposed RegionCon-
trast achieves state-of-the-art results on three benchmark
datasets, i.e. Cityscapes, ADE20K and COCO Stuff.
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