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Abstract

Hand gesture serves as a critical role in sign lan-
guage. Current deep-learning-based sign language recog-
nition (SLR) methods may suffer insufficient interpretabil-
ity and overfitting due to limited sign data sources. In this
paper, we introduce the first self-supervised pre-trainable
SignBERT with incorporated hand prior for SLR. Sign-
BERT views the hand pose as a visual token, which is de-
rived from an off-the-shelf pose extractor. The visual tokens
are then embedded with gesture state, temporal and hand
chirality information. To take full advantage of available
sign data sources, SignBERT first performs self-supervised
pre-training by masking and reconstructing visual tokens.
Jointly with several mask modeling strategies, we attempt to
incorporate hand prior in a model-aware method to better
model hierarchical context over the hand sequence. Then
with the prediction head added, SignBERT is fine-tuned to
perform the downstream SLR task. To validate the effec-
tiveness of our method on SLR, we perform extensive exper-
iments on four public benchmark datasets, i.e., NMFs-CSL,
SLR500, MSASL and WLASL. Experiment results demon-
strate the effectiveness of both self-supervised learning and
imported hand prior. Furthermore, we achieve state-of-the-
art performance on all benchmarks with a notable gain.

1. Introduction

Sign language, as a visual language, is the primary com-
munication tool for the deaf community. To facilitate the
communication between the deaf and hearing people, sign
language recognition (SLR) has been widely studied with
broad social influence. Isolated SLR serves as a fundamen-
tal task in visual sign language research. It aims to recog-
nize sign language at the word-level and is a challenging
fine-grained classification problem.
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Figure 1. The overview of our framework, which contains self-
supervised pre-training and downstream-task fine-tuning.

Hand gesture serves as a dominant role during the ex-
pression of sign language. It occupies a relatively small
area with dynamic backgrounds, exhibits similar appear-
ance and encounters self-occlusion among joints. Such fact
leads to the difficulty in hand representation learning. Cur-
rent deep-learning-based methods [5, 28, 23] learn feature
representations adaptively from the cropped RGB hand se-
quence. Given the highly articulated characteristic of hand,
some methods represent them as sparse poses for recog-
nition [1, 34, 24]. Pose is a compact and semantic repre-
sentation, which is robust to appearance change and brings
potential computation efficiency. However, hand poses are
usually extracted from the off-the-shelf extractor, which
suffers failure detection. Therefore, the performance of
pose-based methods lags largely behind RGB-based coun-
terparts. Besides, the aforementioned methods all follow
a data-driven paradigm and may suffer insufficient inter-
pretability and overfitting due to limited sign data sources.

Meanwhile, the effectiveness of pre-training has been
validated for computer vision (CV) and natural language
processing (NLP). Recent advance in NLP is largely de-
rived from self-supervised pre-training strategies on large
text corpus [43, 14, 56]. Among them, BERT [14] is one of
the most popular methods due to its simplicity and superior
performance. Its success is largely attributed to the power-
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ful attention-based Transformer backbone [53], jointly with
a well-designed pre-training strategy for modeling context
inherent in text sequence.

To tackle the aforementioned issues, we develop a self-
supervised pre-trainable framework with model-aware hand
prior incorporated, namely SignBERT, as shown in Fig-
ure 1. Considering the compactness and expressiveness of
hand pose representation, we view hand pose as a visual to-
ken. Each hand token is embedded with gesture state, tem-
poral and hand chirality information, and both hands are
involved as input. SignBERT first performs self-supervised
pre-training on a large volume of hand pose data, which is
derived from sign language data sources using the off-the-
shelf extractor. Specifically, inspired by BERT [14], we pre-
train our framework on the encoder-decoder backbone by
masking and reconstructing visual tokens. We design sev-
eral mask modeling strategies to enforce the network cap-
turing hierarchical contextual information. To better cap-
ture context and ease optimization, the decoder introduces
hand prior in a model-aware method. For the downstream
isolated SLR, the pre-trained encoder is fine-tuned with the
added prediction head to perform recognition.

Our contributions are summarized as follows,
• To our best knowledge, we propose the first model-

aware pre-trainable framework for sign language
recognition, namely SignBERT. It performs self-
supervised learning on a large volume of hand pose
data for better performance on the downstream task.

• To better exploit hierarchical contextual information
contained in the sign data sources, we design mask
modeling strategies and incorporate model-aware hand
prior during self-supervised pre-training.

• We perform extensive experiments to validate the fea-
sibility of our framework and its effectiveness on the
downstream SLR task. Our method achieves state-of-
the-art performance on four popular benchmarks, i.e.,
NMFs-CSL, SLR500, MSASL and WLASL.

2. Relate Work
In this section, we will briefly review the related topics,

including sign language recognition, pre-training strategy
and hand-modeling technique.

2.1. Sign Language Recognition

Previous works [27] on sign language recognition are
generally grouped into two categories based on the input
modality, i.e., RGB-based (using the RGB video) and pose-
based (using the pose sequence) methods.
RGB-based methods. With the strong representation capa-
bility of CNNs, many works in SLR adopt it as the back-
bone [10, 29, 24, 59]. Necati et al. [6] introduce a net-
work consisting of 2D-CNNs for spatial representation and

Transformer for modeling temporal dependencies by super-
vised learning. Some other works [22, 24, 33, 34, 1] utilize
3D-CNNs for modeling spatio-temporal information.
Pose-based methods. As compact and semantic-aware
data, pose sequences are processed by CNNs [32, 7, 1] or
RNNs [15, 37, 45]. Considering its well-structured nature,
more and more works represent it as a graph and adopt
graph convolutional networks (GCNs) to model its repre-
sentation [15, 45, 51]. Yan et al. [55] first propose a spatial-
temporal GCN for action recognition. These GCN-based
methods show both efficiency and promising performance.
There also exists work combining Transformer without pre-
training for SLR [51].

2.2. Pre-Training Strategy

Pre-training, a common strategy in NLP and CV, pro-
duces more generic feature representation and may allevi-
ate overfitting for target tasks. In NLP tasks, early works
focused on improving word embedding [40, 26]. With the
advance of Transformer [53], many works propose to pre-
train generic feature representations [14, 43, 56]. Of them,
BERT is one of the most popular methods due to its sim-
plicity and superior performance. Specifically, two tasks are
adopted in BERT pre-training, i.e., masked language mod-
eling (MLM) and next sentence prediction (NSP). In MLM,
BERT attempts to predict the masked words based on the
cues from unmasked context words. In NSP, it defines a bi-
nary classification problem, which tries to predict whether
two input sentences are consecutive.

In CV counterparts, it is common to pre-train the
backbone on ImageNet [13], Kinetics [8] or large web
sources [16] for the downstream tasks. There also ex-
ist works attempting to leverage the idea of BERT to CV
tasks [48, 47, 35, 60, 9]. In sign language, Albanie et al. [1]
propose to pre-train on a large annotated dataset and directly
fine-tune on a small-scale one. Li et al. [33] fertilize recog-
nition models by transferring knowledge of subtitled news
sign videos to them. To our best knowledge, there exists no
work focusing on the self-supervised pre-training for SLR.

2.3. Hand-Modeling Technique

There have been many works to model the hand using
various techniques, including sum-of-Gaussians [46], shape
primitives [38, 41] and sphere-meshes [50]. In order to
model the hand shape more precisely, some works [2, 52]
propose to utilize a triangulated mesh with Linear Blend
Skinning (LBS) [31]. Recently, MANO [44] has become
the most popular model with successful applications [18, 3,
19, 20]. As a statistical model, MANO is learned from a
large volume of high-quality hand scans. Considering its
capability of representing hand geometric changes in the
low-dimensional shape and pose space, we adopt it as a con-
straint in the pose decoder to import hand prior.
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Figure 2. Illustration of our SignBERT framework, which contains self-supervised pre-training and fine-tuning for the downstream sign
language recognition. The pre-extracted 2D hand pose sequence of both hands is fed into the framework. Each hand pose is viewed as a
visual token, embedded with gesture state, temporal and hand chirality information. In self-supervised pre-training, we design several mask
modeling strategies and incorporate model-aware hand prior to better exploit hierarchical contextual representation. For the downstream
SLR task, the pre-trained Transformer encoder is fine-tuned with the prediction head to perform recognition.

3. Our Approach

Overview. As shown in Figure 2, SignBERT contains two
stages, i.e., pre-training for modeling context in sign videos
and fine-tuning for the downstream SLR task. The hand
poses, as visual tokens, are embedded with their gesture
state, temporal and hand chirality information. Since sign
language is performed by two hands, we jointly feed them
into our framework. During pre-training, the whole frame-
work works in a self-supervised paradigm by masking and
reconstructing visual tokens. Jointly with the mask model-
ing strategies, the decoder incorporates hand prior for better
capturing hierarchical context of both hands and temporal
dependencies during the sign. When applying SignBERT
to downstream recognition task, the hand-model-aware de-
coder is replaced by the prediction head, which is learned in
a supervised paradigm by the corresponding video label.

In the following, we will first elaborate each component
of our framework. Then we will describe the proposed pre-
training and fine-tuning procedures, respectively.

3.1. Framework Architecture

The hand pose in each frame is viewed as a visual token.
For each visual token, its input representation is constructed
by summing the corresponding gesture state, temporal and
hand chirality embeddings.
Gesture state embedding fp. Since the hand pose is well-
structured with the physical connection among joints, we
organize it as a spatial graph. In this work, we adopt the
spectral-based GCN from [4, 55] with a few modifications.

Given a 2D hand pose J̃t representing the 2D location (x
and y coordinates) at frame t, an undirected spatial graph
is defined by the node V and edge E set, respectively. The
node set includes all the corresponding hand joints, while
the edge set contains the physical and symmetrical connec-
tions. The hand pose sequence is first fed into several graph
convolutional layers frame-by-frame. Then graph pooling
is performed based on neighbors to generate the frame-level
semantics representation fp,t.
Temporal embedding fo. Temporal information matters in
video-level SLR. Since self-attention does not consider the
order information, we add the temporal order information
by utilizing the position encoding strategy in [53]. Specifi-
cally, for the same hand, we add different temporal embed-
dings for different moments. Meanwhile, since two hands
simultaneously convey the meaning during sign, we add the
same temporal embedding for the same moment, regardless
of hand chirality.
Hand chirality embedding fh. Considering the meaning
of sign language is conveyed by both hands, we introduce
two special tokens to represent hand chirality of each frame,
i.e., ‘L’ and ‘R’ for the left and right hand, respectively. Spe-
cially, it is implemented by the WordPiece embeddings [54]
with the same dimension as the gesture state and temporal
embedding. Notably, all the frames belonging to the same
hand contain the identical hand chirality embedding.
Transformer encoder. Given the aforementioned embed-
ding representing the gesture status, temporal index and
hand chirality, we sum them and feed it into the Transformer
encoder following the original architecture [53], which con-
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tains a multi-head attention module and a feed forward net-
work. The encoder output FN , which retains the same size
with the input, is computed as follows,

F0 = {fp + fo + fh},

F̃i = L(M(Fi−1) + Fi−1),

Fi = L(C(F̃i) + F̃i),

(1)

where i denotes the i-th layer of the Transformer encoder,
and we utilize totally N layers. L(·), M(·) and C(·) de-
note the layer normalization, multi-head self-attention and
feed forward network, respectively. Fi denotes the feature
representation in i-th layer.
Hand-model-aware decoder. In our self-supervised pre-
training paradigm, the framework needs to reconstruct the
masked input sequence, in which the hand-model-aware de-
coder converts the feature to the pose sequence. Specifi-
cally, a fully-connected layer D(·) first extracts a latent se-
mantic embedding describing the hand status and camera
parameters from the representation generated by the Trans-
former encoder, which is formulated as follows,

Fla = {θ,β, cr, co, cs}Tt=1 = D(FN ), (2)

where θ ∈ R25 and β ∈ R10 are the pose and shape embed-
ding for the following MANO, while cr ∈ R3×3, co ∈ R2,
and cs ∈ R are the weak-perspective camera parameters,
indicating the rotation, translation and scale, respectively.

Then MANO [44] imports hand prior in a model-aware
method and decodes the latent semantic embedding to hand
representation. MANO is a fully-differentiable model pro-
viding a mapping from low-dimensional pose θ and shape
β space to the triangulated hand mesh M ∈ RNv×3 with
Nv =778 vertices and Nf =1538 faces. To produce a phys-
ically plausible mesh, the pose and shape are constrained in
a PCA space learned from a large volume of hand scan data.
The decoding process is formulated as follows,

M(β,θ) = W (T(β,θ), J(β),θ,W), (3)

T(β,θ) = T̄+BS(β) +BP (θ), (4)

where W is a set of blend weights. BS(·) and BP (·) de-
note shape and pose blend functions, respectively. The hand
template T̄ is first posed and skinned based on the pose
and shape corrective blend shapes, i.e., BP (θ) and BS(β),
Then the mesh is generated by rotating each part around
joints J(β) using the linear skinning function W (·) [25].
Besides, we are able to extract sparse 3D joints J̃3D from
the mesh. To keep consistent with the widely-used hand
annotation format, we further add 5 extra vertices with the
index of 333, 443, 555, 678 and 734 as the fingertips, lead-
ing to total 21 3D joints. Based on the predicted camera
parameter, the predicted 3D joints are projected to the 2D

plane. The projected 2D hand pose is derived as follows,

J̃2D = cs
∏

(crJ̃3D) + co, (5)

where
∏
(·) denotes the orthographic projection.

Prediction head. Since discriminative cues may only con-
tain in certain frames, we utilize a simple attention mecha-
nism to weight features temporally. Then the weighted fea-
tures are summed to perform final classification.

3.2. Pre-Training SignBERT

In this section, we elaborate SignBERT pre-training
paradigm on a large volume of sign data sources to exploit
semantic context hierarchically. Different from the origi-
nal BERT pre-training on discrete word space, we aim to
pre-train on continuous hand pose space. Substantially, the
classification problem is transformed into regression, which
poses new challenges on the reconstruction of the hand pose
sequence. To tackle this issue, we view hand poses as visual
‘words’ (continuous tokens) and jointly utilize the afore-
mentioned model-aware decoder as a constraint with hand
prior incorporated. Given a hand sequence containing both
hands, we first randomly choose 50% tokens. Similar to
BERT, if the token is chosen, we randomly perform one of
three operations with equal probability, i.e., masked joint
modeling, masked frame modeling and identity modeling.
Masked joint modeling. Since current pose detectors may
contain failure detection on some joints, we incorporate
masked joint modeling to mimic the usual failure cases. In
a chosen token, we randomly choose m joints ranging from
1 to M . For these chosen joints, we perform two operations
with equal probability, i.e., zero masking (masking the coor-
dinates of joints with zeros) or random spatial disturbance.
This modeling attempts to embed our framework the capa-
bility to infer the gesture state from remaining hand joints,
thus capturing context at the joint level.
Masked frame modeling. Masked frame modeling is per-
formed on a more holistic view. For a chosen token, all the
joints are zero masked. The framework is enforced to re-
construct this token by observations from remaining pose
tokens of the other hand or different temporal points. In
this way, temporal context in each hand and mutual context
between hands are captured.
Identity modeling. Identity modeling makes the un-
changed token fed into the framework. This operation is
indispensable for the framework to learn identity mapping
on those unmasked tokens.

3.3. Objective Functions in Pre-Training

The proposed three strategies allow the network to max-
imize the likelihood of the joint probability distribution to
reconstruct the hand pose sequence. In this manner, the
context contained in the sequence is captured. During pre-
training, only the output corresponding to chosen tokens are
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included in the following loss calculation as follows,

L = Lrec + λLreg, (6)

where λ denotes the weighting factor.
Hand reconstruction loss Lrec. Since hand pose detection
results J2D serve as the pseudo label, we ignore the joints
with the prediction confidence lower than ϵ and utilize the
remaining joints weighted by the confidence in the calcula-
tion of this loss term.

Lrec =
∑
t,j

1(c(t, j) >= ϵ)c(t, j)
∥∥∥J̃2D(t, j)− J2D(t, j)

∥∥∥
1
,

(7)
where 1(·) denotes the indicator function, and c(t, j) de-
notes the confidence of the J2D with joint j at time t.
Regularization loss Lreg . To ensure the hand model work-
ing properly, a regularization loss is added. It is imple-
mented by constraining magnitude and derivative of the
MANO input, which is responsible for generating the plau-
sible mesh and keeping the signer identity unchanged. The
regularization loss is calculated as follows,

Lreg =
∑
t

(∥θt∥22 + wβ∥βt∥22 + wδ∥βt − βt−1∥22), (8)

where wβ and wδ denote the weighting factor.

3.4. Fine-Tuning SignBERT

After pre-training SignBERT, it is relatively simple to
fine-tune it for the downstream SLR task. The hand-model-
aware decoder is replaced by the prediction head. The input
hand pose sequence is all unmasked and we use the cross-
entropy loss to supervise the output of the prediction head.

Considering only the hand pose sequence is insufficient
to convey the full meaning of sign language, it is necessary
to fuse recognition results based on hands with that of full
frame. The full frame can be represented by full RGB data
or full keypoints. In our work, we use the simple late fu-
sion strategy, which directly sums their prediction results.
Besides, the full RGB and keypoints baseline method uti-
lized for fusion are marked in each dataset for clarity. In the
following, we refer our method with only hands, fusion of
hands and full RGB data, fusion of hands and full keypoints
as Ours (H), Ours (H + R) and Ours (H + P), respectively.

4. Experiments
4.1. Datasets and Evaluation

Datasets. We evaluate our proposed method on four public
sign language datasets, including NMFs-CSL [21], SLR500
[22], MSASL [24] and WLASL [34].

NMFs-CSL is the most challenging Chinese sign lan-
guage (CSL) dataset due to a large variety of confusing
words caused by fine-grained cues. It totally contains 1,067

words with 610 confusing words and 457 normal words.
There are 25,608 and 6,402 samples for training and test-
ing, respectively. SLR500 is another CSL dataset, which
contains 500 daily words with 125,000 recording samples
performed by 50 signers. Specifically, 90,000 and 35,000
samples are utilized for training and testing, respectively.

MSASL is an American sign language dataset (ASL)
containing a vocabulary size of 1,000, with 25,513 sam-
ples in total for training, validation and testing, respectively.
Besides, the Top-100 and Top-200 most frequent words
are chosen as its two subsets, referred to as MSASL100,
MSASL200. WLASL is another ASL dataset with a vo-
cabulary of 2,000 words and 21,083 samples. Similar to
MSASL, it releases WLASL100 and WLASL300 as its sub-
sets. MSASL and WLASL are both collected from Web
videos and bring new challenges due to unconstrained real-
life recording conditions and limited samples for each word.

Meanwhile, since STB [58] and HANDS17 [57] provide
2D hand joint annotations, we utilize them to validate the
feasibility of our proposed framework.

STB is a real-world hand pose estimation datasets, which
contains 18,000 samples. Following Zimmermann et al.
[61], we split this dataset into 15,000 training and 3,000
testing samples for single-frame validation. HANDS17 is a
video-level hand pose estimation dataset, containing a total
of 292,820 frames from 99 video sequences. In this dataset,
we split the first 70% and last 30% frames in each sequence
for training and testing, respectively.
Evaluation. For the downstream isolated SLR task, we uti-
lize the accuracy metrics, i.e., the per-class (P-C) and per-
instance (P-I) metrics, which denote the average accuracy
over each class and each instance, respectively. We report
the Top-1 and Top-5 accuracy under both per-instance and
per-class for MSASL and WLASL. Since NMFs-CSL and
SLR500 contain the same number of samples for each class,
we only report per-instance accuracy following [21, 22].

For STB and HANDS17, we report the Percentage of
Correct Keypoints (PCK) score and the area under the curve
(AUC) on the PCK ranging from 20 to 40 pixels, which are
widely-used criteria to evaluate pose estimation accuracy.
Specifically, PCK defines a candidate keypoint to be correct
if it falls within a circle (2D) of a given radius around the
ground truth, where the distances are expressed in pixels.

4.2. Implementation Details

In our experiment, all the models are implemented by
PyTorch [39] and trained on NVIDIA RTX 3090. Since
no pose annotation is available in sign language datasets,
we use MMPose [11] for its efficiency to extract the 133
full 2D keypoints, i.e., the 23 body joints, 68 face and 42
hand joints. The extracted hand and shoulder joints are fur-
ther utilized to crop the left and right hand pose and rescale
them to 256 × 256. Both hands are fed into the framework.
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M
Input Output

P@20 AUC P@20 AUC
3 88.81 91.02 99.90 99.54
5 82.26 85.65 99.89 99.53
7 76.19 80.91 99.85 99.53
9 70.85 76.63 99.81 99.50

11 66.29 72.85 99.79 99.44

Table 1. Frame-level framework feasibility on the STB dataset.
‘P@20’ denotes the PCK metrics with the error threshold set as 20
pixel. We only utilize the masked joint modeling, and M denotes
the number of masked joints ranges from 1 to M .

Mask Input Output
Joint Frame P@20 AUC P@20 AUC
✓ 86.38 89.02 95.13 95.49

✓ 80.85 80.85 95.33 95.57
✓ ✓ 81.43 82.32 95.14 95.48

Table 2. Video-level framework feasibility on HANDS17. ‘P@20’
denotes the PCK metrics with the error threshold set as 20 pixel.
‘Joint’ and ‘Frame’ denote the masked joint modeling and masked
frame modeling, respectively.

The framework is trained with the Adam optimizer. The
weight decay and momentum are set to 0.0001 and 0.9, re-
spectively. We start at the initial learning rate of 0.001 and
reduce it by a factor of 0.1 every 20 epochs. In all experi-
ments, the hyper parameters ϵ, λ, wβ and wδ are set as 0.5,
0.01, 10.0 and 100.0, respectively. During the pre-training
stage, we include the training data from all four aforemen-
tioned sign language datasets. For the downstream task, we
temporally extract 32 frames using random and center sam-
pling during training and testing, respectively.

4.3. Ablation Study

In this section, we first validate the feasibility of our
framework. Then we perform ablation studies to demon-
strate the effectiveness of the main components in our
framework.
Framework feasibility. We validate the feasibility of our
framework on the datasets with hand pose annotation avail-
able. As shown in Table 1, we first validate reconstruction
ability under the single-frame setting on the STB dataset.
Specifically, a single frame is fed into the framework. We
only perform the masked joint modeling, where M indi-
cates the number of masked joints ranges from 1 to M , re-
sulting the average number as M/2. With the gradual in-
crease of M , the PCK and AUC metrics of reconstructed
joints are consistently higher than those of the input. It
demonstrates that our framework is able to hallucinate the
whole hand pose by observing partial joints.

From Table 2, the framework feasibility under the video-
level setting is tested on the HANDS17 dataset. We uti-
lize all masking strategies on the original pose sequence to
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Figure 3. Visualization of the framework feasibility on HANDS17.
We choose 6 continuous frames from one video. The four rows
denote the ground truth (GT) pose sequence, input sequence after
performing masking on GT, the reconstructed sequence and mid-
dle results of the mesh sequence, respectively. Notably, two blanks
in the second row represent these poses are all masked.

formulate the input. It can be also observed that the PCK
and AUC performance of the output sequence are higher
than those of input, which verifies the framework capability
of reconstructing from inaccurate hand joint sequence. Be-
sides, we visualize the hand pose reconstruction in Figure 3.

Since we focus on the performance of the downstream
recognition task, we perform extensive experiments on
MSASL and its subsets to demonstrate the effectiveness of
the masking strategies, model-aware decoder, Transformer
layers N and pre-training data scale. We report per-instance
and per-class Top-1 accuracy as the performance indicator.
Effectiveness of the masking strategy. As illustrated in
Table 4, the first row denotes the baseline method, i.e., our
framework is directly trained under the video label supervi-
sion without pre-training. It is worth mentioning that com-
pared with this baseline, our designed pre-training brings
notable performance gain, with 13.08%, 12.95% and 7.69%
Top-1 per-instance accuracy improvement. Both joint-level
and frame-level masking strategies are beneficial for the
framework capturing different levels of context, thus bring-
ing performance improvement. When two masking strate-
gies are both utilized, it reaches the best performance.
Effectiveness of the model-aware decoder. As shown
in Table 5, we compare the effect of different pose de-
coders on SLR. The first two rows denote utilizing the fully-
connected layers to regress the hand pose. Our decoder
work in a model-aware method to import hand prior during
pre-training, which eases optimization and brings perfor-
mance improvement for downstream isolated SLR. Besides,
the model-aware decoder has additional benefits, which in-
flates the 2D hand pose sequence to the 3D plane.
Effectiveness of Transformer layers N . From Table 6,
the accuracy increases, when the number of Transformer
layers increases. It reaches the peak when N = 3. The
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Method
Total Confusing Normal

Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5
Pose-based
ST-GCN [55] 59.9 74.7 86.8 42.2 62.3 79.4 83.4 91.3 96.7
Ours (H) 67.0 86.8 95.3 46.4 78.2 92.1 94.5 98.1 99.6
Ours (H + P) 74.9 93.2 98.2 58.6 88.6 96.9 96.7 99.3 99.9
RGB-based
3D-R50 [42] 62.1 73.2 82.9 43.1 57.9 72.4 87.4 93.4 97.0
DNF [12] 55.8 69.5 82.4 33.1 51.9 71.4 86.3 93.1 97.0
I3D [8] 64.4 77.9 88.0 47.3 65.7 81.8 87.1 94.3 97.3
TSM [36] 64.5 79.5 88.7 42.9 66.0 81.0 93.3 97.5 99.0
Slowfast [17] 66.3 77.8 86.6 47.0 63.7 77.4 92.0 96.7 98.9
GLE-Net [21] 69.0 79.9 88.1 50.6 66.7 79.6 93.6 97.6 99.3
Ours (H + R) 78.4 92.0 97.3 64.3 86.5 95.4 97.4 99.3 99.9

Table 3. Accuracy comparison on NMFs-CSL dataset. [55] and [42] denote the pose and RGB baseline, respectively.

Mask 100 200 1000
Joint Frame P-I P-C P-I P-C P-I P-C

63.01 62.72 57.69 57.56 41.85 38.30
✓ 72.66 72.75 68.51 69.72 48.87 45.39

✓ 74.77 75.48 68.65 69.20 49.02 46.02
✓ ✓ 76.09 76.65 70.64 70.92 49.54 46.39

Table 4. Effectiveness of the masking strategy on MSASL dataset.
The first row denotes the baseline, i.e., our framework is trained
without pre-training. ‘Joint’ and ‘Frame’ denote the masked joint
modeling and masked frame modeling, respectively.

Decoder
100 200 1000

P-I P-C P-I P-C P-I P-C
1-layer fc 73.05 72.62 67.55 68.21 47.94 45.07
2-layer fc 74.24 74.21 68.29 69.12 48.03 45.25

Ours 76.09 76.65 70.64 70.92 49.54 46.39

Table 5. Effectiveness of the model-aware decoder on MSASL
dataset. We compare ours with different pose decoders.

N
100 200 1000

P-I P-C P-I P-C P-I P-C
2 74.11 74.61 67.70 67.92 48.23 45.17
3 76.09 76.65 70.64 70.92 49.54 46.39
4 75.69 75.51 70.20 70.66 47.36 44.04
5 74.90 75.68 68.14 68.40 47.29 44.42

Table 6. Effectiveness of the Transformer layers N on MSASL
dataset. N denotes the number of the layers in the Transformer
encoder.

difference of the best layers in BERT and our model may be
due to different characteristics between sign pose and NLP
domain, and the overfitting issue. Unless stated, we utilize
N = 3 in all our experiments.
Effectiveness of the pre-training data scale. As shown in
Table 7, as the ratio of pre-training data volume increases,
the performance on the downstream SLR task gradually in-
creases on the accuracy metrics. It indicated that SignBERT
may benefit from larger pre-training datasets.

Ratio
100 200 1000

P-I P-C P-I P-C P-I P-C
0% 63.01 62.72 57.69 57.56 41.85 38.30

25% 73.18 72.83 67.91 69.30 46.18 43.97
50% 73.18 73.42 67.18 67.71 46.57 43.79
75% 74.50 74.36 68.72 68.97 47.21 43.67
100% 76.09 76.65 70.64 70.92 49.54 46.39

Table 7. Effectiveness of the ratio of pre-training data scale on the
MSASL dataset.

4.4. Comparison with State-of-the-art Methods

We compare our method with previous state-of-the-art
methods on four benchmark datasets. For clarity, previ-
ous methods are grouped by their input modality, i.e., pose-
based and RGB-based methods.
Evaluation on NMFs-CSL. As illustrated in Table 3, we
compare with methods [55, 42, 12, 8, 36, 17, 21] utiliz-
ing the pose and RGB sequence as input. GLE-Net [21]
is the most challenging method, which enhances discrimi-
native cues from global and local views. It is worth noting
that our method with purely using hand pose achieves com-
parable performance with a majority of them. Ours (H + R)
outperforms all previous methods with a notable margin.
Evaluation on SLR500. As shown in Table 10, STIP [30]
and GMM-HMM [49] are traditional methods based on
hand-crafted features. GLE-Net [21] still achieves the best
performance. Notably, our method achieves the best perfor-
mance, reaching 97.6% top-1 accuracy.
Evaluation on MSASL. MSASL brings new challenges
due to unconstrained recording settings. As shown in Ta-
ble 8, compared with the RGB baseline [24], ST-GCN [55]
shows inferior performance. It may be caused by the fail-
ure of pose detection on sign videos, which contains the
partially occluded upper body, motion blur and noisy back-
grounds. Albanie et al. [1] and Li et al. [33] both use
more external RGB sign data to boost the performance on
MSASL or its subsets. It is worth noting that our method
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Method
MSASL100 MSASL200 MSASL1000

Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Pose-based
ST-GCN [55] 59.84 82.03 60.79 82.96 52.91 76.67 54.20 77.62 36.03 59.92 32.32 57.15
Ours (H) 76.09 92.87 76.65 93.06 70.64 89.55 70.92 90.00 49.54 74.11 46.39 72.65
Ours (H + P) 81.37 93.66 82.31 93.76 77.34 91.10 78.02 91.48 59.80 81.86 57.06 80.94
RGB-based
I3D [24] - - 81.76 95.16 - - 81.97 93.79 - - 57.69 81.05
TCK [33] 83.04 93.46 83.91 93.52 80.31 91.82 81.14 92.24 - - - -
BSL [1] - - - - - - - - 64.71 85.59 61.55 84.43
Ours (H + R) 89.56 97.36 89.96 97.51 86.98 96.39 87.62 96.43 71.24 89.12 67.96 88.40

Table 8. Accuracy comparison on MSASL dataset. [55] and [24] denote the pose and RGB baseline, respectively.

Method
WLASL100 WLASL300 WLASL2000

Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Pose-based
ST-GCN [55] 50.78 79.07 51.62 79.47 44.46 73.05 45.29 73.16 34.40 66.57 32.53 65.45
Pose-TGCN [34] 55.43 78.68 - - 38.32 67.51 - - 23.65 51.75 - -
PSLR [51] 60.15 83.98 - - 42.18 71.71 - - - - - -
Ours (H) 76.36 91.09 77.68 91.67 62.72 85.18 63.43 85.71 39.40 73.35 36.74 72.38
Ours (H + P) 79.07 93.80 80.05 94.17 70.36 88.92 71.17 89.36 47.46 83.32 45.17 82.32
RGB-based
I3D [34] 65.89 84.11 67.01 84.58 56.14 79.94 56.24 78.38 32.48 57.31 - -
TCK [33] 77.52 91.08 77.55 91.42 68.56 89.52 68.75 89.41 - - - -
BSL [1] - - - - - - - - 46.82 79.36 44.72 78.47
Ours (H + R) 82.56 94.96 83.30 95.00 74.40 91.32 75.27 91.72 54.69 87.49 52.08 86.93

Table 9. Accuracy comparison on WLASL dataset. ST-GCN [55] and I3D [34] denote the pose and RGB baseline, respectively.

Method Accuracy
Pose-based
ST-GCN [55] 90.0
Ours (H) 94.5
Ours (H + P) 96.6
RGB-based
STIP [30] 61.8
GMM-HMM [49] 56.3
3D-R50 [42] 95.1
GLE-Net [21] 96.8
Ours (H + R) 97.6

Table 10. Accuracy comparison on SLR500 dataset. [55] and [42]
denote the pose and RGB baseline, respectively.

achieves noticeable performance improvement when com-
pared with both pose-based and RGB-based methods.
Evaluation on WLASL. Compared with MSASL, WLASL
contains fewer samples and double vocabulary size. It can
be observed that Ours (H + P), which only utilizes pose as
the input modality, even outperforms the most challenging
RGB-based method [1]. Besides, Ours (H + R) further out-
performs the best competitor by 7.87% per-instance top-1
accuracy improvement on WLASL2000. With incorporated
hand prior and self-supervised pre-training, our method is
more effective under the benchmark with limited samples.

5. Conclusion
In this paper, we introduce the first self-supervised pre-

trainable SLR framework with model-aware hand prior in-
corporated, namely SignBERT. We involve both hands and
view hand pose as a visual token. The visual token is em-
bedded with gesture state, temporal and hand chirality in-
formation before feeding into the framework. We first per-
form self-supervised pre-training on a large volume of hand
poses by masking and reconstructing the hand tokens. Dur-
ing pre-training, our framework consists of the Transformer
encoder and hand-model-aware decoder. Jointly with incor-
porated hand prior by the decoder, we elaborately design
several masking strategies for better capturing hierarchical
contextual information. Then our pre-trained framework is
fine-tuned to perform recognition. We perform extensive
experiments on four popular benchmark datasets. Experi-
ment results demonstrate the effectiveness of our method,
achieving new state-of-the-art performance on all bench-
marks with a notable margin.
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