UniT: Multimodal Multitask Learning with a Unified Transformer

Ronghang Hu Amanpreet Singh
Facebook AI Research (FAIR)
{ronghanghu, asg}@fb.com

Figure 1: In this work, we propose UniT, which jointly learns multiple tasks across different domains with a Unified Transformer. Our UniT model simultaneously handles 7 tasks on 8 datasets ranging from object detection to vision-and-language reasoning and natural language understanding, while achieving strong performance on each task with a compact set of model parameters.

Abstract

We propose UniT, a Unified Transformer model to simultaneously learn the most prominent tasks across different domains, ranging from object detection to natural language understanding and multimodal reasoning. Based on the transformer encoder-decoder architecture, our UniT model encodes each input modality with an encoder and makes predictions on each task with a shared decoder over the encoded input representations, followed by task-specific output heads. The entire model is jointly trained end-to-end with losses from each task. Compared to previous efforts on multi-task learning with transformers, we share the same model parameters across all tasks instead of separately fine-tuning task-specific models and handle a much higher variety of tasks across different domains. In our experiments, we learn 7 tasks jointly over 8 datasets, achieving strong performance on each task with significantly fewer parameters. Our code is available in MMF at https://mmf.sh.

1. Introduction

First proposed in [59], transformers have shown great success in a wide range of domains including but not limited to natural language, images, video, and audio. Previous works (e.g., [14, 43, 44, 4, 65, 35, 29, 45, 49]) demonstrate that transformers trained on large corpora learn strong representations for a wide range of downstream language tasks. In the visual domain, models based on transformers have achieved promising results on image classification, object detection, and panoptic segmentation (e.g., [40, 3, 22, 21, 47, 15, 61, 5, 72, 2, 58]). Besides modeling a single modality, transformer models also exhibit strong performance in joint vision-and-language reasoning tasks such as visual question answering (e.g., [31, 38, 39, 57, 9, 30, 55, 71, 23]).

However, despite the above achievements in the application of transformers to specific domains, there has not been much prior effort to connect different tasks across domains with transformers. After witnessing the success of transformers, various questions naturally arise: could a transformer model trained for natural language inference on textual input also perform object detection on images, or could
an image classifier based on transformers also check textual entailment? Overall, is it possible to build a single model that simultaneously handles tasks in a variety of domains as a step towards general intelligence? Prior work tries to tackle some of these questions but only in limited scope:

- applied only to tasks from a single domain or specific multimodal domains; ViT [15] and DETR [5] focus on vision-only tasks, BERT [14] and its derivative works [35, 65, 29, 45] only handle language tasks, while VisualBERT, VILBERT [38, 31] and other multimodal transformers work only on specific multimodal domain of vision and language.
- involve task-specific fine-tuning for each of the tasks, not leveraging any shared parameters across the tasks, usually ending up with N times the parameters for N tasks, e.g. one has to separately fine-tune a model for each of the tasks with BERT.
- perform multi-tasking upon related or similar tasks only from a single domain, sometimes with hard-coded training strategies; for example, T5 [45] works only on tasks in the language domain, while VILBERT-MT [39] works only on related vision-and-language tasks.

In this work, we build a Unified Transformer (UniT) model that takes images and/or text as inputs and jointly train on multiple tasks ranging from visual perception and natural language understanding to joint vision-and-language reasoning. UniT consists of transformer encoders which encode each input modality as a sequence of hidden states (feature vectors), and a transformer decoder over the encoded input modalities, followed by task-specific output heads applied on the decoder hidden states to make the final predictions for each of the tasks. Compared to previous work on multi-task learning with transformers (e.g. [39]), we train UniT and achieve comparable performance to well-established prior work on a much larger variety of tasks; not only joint vision-and-language tasks such as visual question answering, but also vision-only as well as language-only tasks. We make the following contributions in this work:

- We propose UniT, a unified transformer encoder-decoder architecture that handles multiple tasks and domains in a single model with fewer parameters, and a step towards general intelligence.
- We jointly learn the most prominent tasks in the visual and textual domains and their intersections, namely object detection, visual question answering (VQA), visual entailment, and natural language understanding tasks in the GLUE benchmark [60], including QNLI [46], MNLI [62], QQP [24], and SST-2 [51]. We show that these diverse tasks can be learned simultaneously and converge properly under our training scheme.
- Through analyses across a variety of tasks, we show that multimodal tasks such as VQA and visual entailment benefit from multi-task training with uni-modal tasks.

2. Related work

Transformers on language, vision, and multimodal tasks. Transformers were first applied to the language domain for sequence-to-sequence modeling [59]. BERT [14], GPT [43, 44, 4], XLNet [65], RoBERTa [35], ALBERT [29], T5 [45], T-NLG [49] and other recent works show that transformers pretrained on large corpora learn language representations that can be transferred to a number of downstream tasks through fine-tuning.

In the visual domain, Image Transformer [40], Image GPT [8], DETR [5], ViT [15] and other recent works apply transformer models for several vision tasks. In addition, the multi-head self-attention mechanism from transformers also benefits a wide range of vision applications (e.g. [61, 47, 11, 69, 70]). For joint vision-and-language reasoning tasks such as visual question answering, transformer models have been extended to take both the image and the text modalities as inputs (e.g. VisualBERT [31], VILBERT [38, 39], LXMERT [57], and UNITER [9]).

Most of these previous applications and extensions of transformers train (or fine-tune) a specific model for each of the tasks of interest. In BERT [14], a pretrained transformer model is fine-tuned separately on multiple downstream language tasks. In T5 [45], a text-to-text transformer is jointly pretrained on different language tasks. However, despite learning generic representations through multi-task pretraining, T5 still fine-tunes a different set of parameters for each downstream task. On the contrary, we simultaneously learn multiple tasks within a single transformer.

Multi-task learning with transformers. There has been a long history of work on multi-task learning [6, 12] in vision (e.g. [18, 68, 54, 53, 67]), language (e.g. [52, 17, 33, 50, 10]), or multimodal areas (e.g. [25, 26, 42, 7, 39]). Most previous efforts on multi-task learning focus on specific domains or modalities, often with model architectures tailored to the domain. However, there are also notable prior works on multi-task learning across domains with a single generic model. In [25], it is shown that an encoder-decoder architecture based on transformer's multi-head attention mechanism can be applied to different input and output domains such as image classification, machine translation, and image captioning. The decoders in [25] are specifically designed for each output task, while our model involves fewer task-specific details as we apply the same decoder architecture on all tasks. In MT-DNN [34], a multi-task language understanding model is built by sharing lower layers in a transformer while making the top layer task-specific. In VILBERT-MT [39], 12 vision-and-language tasks were jointly learned with a multi-task transformer model based on VILBERT [38]. Compared to [34] and [39], we expand beyond fixed input modalities and jointly handle different single-modal (vision-only and language-only) and multi-
Figure 2: An overview of our UniT model, which jointly handles a wide range of tasks in different domains with a unified transformer encoder-decoder architecture. Our model uses an image encoder to encode the visual inputs (Sec. 3.1), a text encoder to encode the language inputs (Sec. 3.2), and a joint decoder with per-task query embedding (Sec. 3.3) followed by task-specific heads (Sec. 3.4) to make the final outputs for each task.

Contrast to multimodal pretraining. Prior works such as VirTex [13], Voken [56] and VisualBERT [31] show that pretraining on multimodal data such as image captions helps downstream vision, language, or multimodal tasks, which is often accomplished by building specialized models through fine-tuning on each downstream task. Unlike these approaches, we handle all tasks in a shared model, where the general knowledge across domains is not lost due to fine-tuning on specific downstream tasks. We believe the ability to jointly solve different tasks across domains is a critical step towards general intelligence.

3. UniT: Unified Transformer across domains

In this work, we jointly learn multiple tasks across different modalities with a unified single model. Our model, UniT, is built upon the transformer encoder-decoder architecture [59, 5], consisting of separate encoders for each input modality type followed by a decoder (per-task or shared) with simple task-specific heads. Figure 2 shows an overview of UniT.

We consider two input modalities: images and text. For our transformer-based encoder on image inputs, inspired by [5], we first apply a convolutional neural network backbone to extract a visual feature map, which is further encoded by a transformer encoder into a list of hidden states to incorporate global contextual information. For language inputs, we use BERT [14], specifically the 12-layer uncased version, to encode the input words (e.g., questions) into a sequence of hidden states from BERT’s last layer. After encoding input modalities into hidden state sequences, we apply the transformer decoder on either a single encoded modality or the concatenated sequence of both encoded modalities, depending on whether the task is uni-modal (i.e., vision-only or language-only) or multimodal. We explore either having separate (i.e., task-specific) or shared decoders among all tasks. Finally, the representation from the transformer decoder is passed to a task-specific head such as a simple two-layer classifier, which outputs the final predictions. Given the simplicity of UniT, it can be extended easily to more modalities and inputs.

We empirically show that our model can jointly learn 7 different tasks on 8 datasets. The following sections further describe the details of each component in UniT.

3.1. Image encoder

The vision-only tasks (such as object detection) and vision-and-language tasks (such as visual question answering and visual entailment) require perceiving and understanding an image \(I \) as input. In our model, we encode the input image \(I \) with a convolutional neural network followed by a transformer encoder, into a list of encoded visual hidden states \(h^v = \{ h^v_1, h^v_2, \ldots, h^v_{L} \} \).

Our image encoding process is inspired by DETR [5]. First, a convolutional neural network backbone \(B \) is applied
on the input image to extract a visual feature map x^v of size $H_v \times W_v \times d_v^o$ as

$$x^v = B(I). \quad (1)$$

In our implementation, the backbone network B follows the structure of ResNet-50 [19] with dilation [66] applied to its last C5 block, and is pretrained on object detection in [5].

We apply a visual transformer encoder E_v with N_v layers and hidden size d_v^e on top of the feature map x^v to further encode it to visual hidden states h^v of size $L \times d_v^e$ (where $L = H_v \times W_v$ is the length of the encoded visual hidden states). In addition, given that different tasks (such as object detection and VQA) might require extracting different types of information, we also add a task embedding vector w_t^{task} into the transformer encoder to allow it to extract task-specific information in its output as follows.

$$h^v = \{h^v_1, h^v_2, \cdots, h^v_L\} = E_v(P_{b \rightarrow e}(x^v), w_t^{task}) \quad (2)$$

$P_{b \rightarrow e}$ is a linear projection from visual feature dimension d_v^o to encoder hidden size d_v^e. The structure of the visual transformer encoder E_v follows DETR [5], where positional encoding is added to the feature map. The task token w_t^{task} is a learned parameter of dimension d_v^e, which is concatenated to the beginning of the flattened visual feature list $P_{b \rightarrow e}(x^v)$ and stripped from the output hidden states h^v.

3.2. Text encoder

GLUE benchmark [60] tasks such as QNLI [46], MNLI [62], QQP [24], and SST-2 [51] as well as the joint vision-and-language reasoning tasks such as VQA and visual entailment provide a textual input. We encode the textual input using BERT [14] – a transformer encoder model pretrained on large corpora with masked language modeling and next sentence prediction tasks.

Given the input text (e.g. a sentence or a pair of sentences), we tokenize it in the same way as in BERT into a sequence of S tokens $\{w_1, \cdots, w_S\}$, with $w_1 = [CLS]$ (the special pooling token in BERT for classification). The token sequence is then used as input to a pretrained BERT model to extract a sequence of textual hidden states h^t of size $S \times d_t^e$, where d_t^e is the BERT hidden size. Similar to the image encoder, in the text encoder, we also add a learned task embedding embedding vector w_t^{task} as part of the BERT input by prefixing it at the beginning of the embedded token sequence, and later stripping it from the output text hidden states as follows.

$$h^t = \{h^t_1, h^t_2, \cdots, h^t_S\} = \text{BERT}(\{w_1, \cdots, w_S\}, w_t^{task}) \quad (3)$$

However, we find that it works nearly equally well in practice to keep only the hidden vector corresponding to CLS in h^t as input to the decoder (which saves computation).

In our implementation, we use a pretrained BERT-base uncased model from the Huggingface’s Transformers library [63], which has $d_t^e = 768$ and $N_t = 12$ layers.

3.3. Domain-agnostic UniT decoder

After encoding the input modalities, we apply on them a transformer decoder D with hidden size d_d^l and number of layers N_d to output a sequence of decoded hidden states $h^{dec,l}$ for predictions on each task. Unlike the image and text encoders with specific architectural designs for each modality, our decoder is built upon the same domain-agnostic transformer decoder architecture [59] across all tasks.

For vision-only tasks, we apply the decoder on the encoded image $h^{enc} = h^v$ described in Sec. 3.1, for language-only tasks, we apply the decoder on the encoded text $h^{enc} = h^t$ in Sec. 3.2, and finally for joint vision-and-language tasks, we concatenate the encoded inputs from both modalities into a single sequence $h^{enc} = \text{concat}(h^v, h^t)$ as the input to the decoder.

The transformer decoder D takes the encoded input sequence h^{enc} and a task-specific query embedding sequence q_t^{task} of length q. It outputs a sequence of decoded hidden states $h^{dec,l}$ for each of the l-th transformer decoder layer, which has the same length q as the query embedding q_t^{task}

$$\{h_{dec,l}\} = D(h^{enc}, q_t^{task}) \quad (4)$$

Our decoder architecture mostly follows the transformer decoder implementation in DETR [5]. In the l-th decoder layer, self-attention is applied among the decoder hidden states $h^{dec,l}$ at different positions and cross-attention is applied to the encoded input modalities h^{enc}.

In our experiments, we use either (i) a single shared decoder D_{shared} for all tasks or (ii) a separate decoder D_{l}^{sep} for each specific task l.

3.4. Task-specific output heads

A task-specific prediction head is applied over the decoder hidden states $\{h_{dec,l}\}$ for each task l. For object detection, we use a class head to produce a classification output (including “background”) and a box head to produce a bounding box output for each of the positions in $\{1, \ldots, q\}$ in the decoder hidden states. The class head and the box head follow the implementation in DETR [5]. For datasets with attribute labels on each box (the Visual Genome dataset [28] in our experiments), we also add an attribute classification head following the implementation of BUTD [1]. Each position in the decoder hidden states either produces an object class or background.

The outputs from the class and box heads are post-processed into object bounding boxes. Similar to [5], we apply these heads to all layers l in the decoder hidden states $h_{dec,l}$ during training as

$$c^l = \text{class_head}(h_{dec,l}) \quad (5)$$

$$b^l = \text{box_head}(h_{dec,l}) \quad (6)$$

$$a^l = \text{attr_head}(h_{dec,l}, c^l) \quad (7)$$
where c^t, b^t, and a^t are class, box and attribute output sequences, all having the same length q as the query embedding q^task for detection.

At test time, we only take the prediction from the top decoder layer, h_{dec, N_d}^t. Since different detection datasets often have different numbers of classes, when training on multiple detection datasets, each dataset is given its own class, box, and attribute heads. We apply the same detection losses on the outputs c^t and b^t as in DETR [5], and the same attribute losses on a^t as in BUTD [1].

All other tasks that we address in this work, including visual question answering, visual entailment, and natural language understanding (QNLI, QQP, MNLI, and SST-2) can be cast as a classification task among c^t classes for task t. We apply a task-specific classifier on the first output position hidden state h_{dec, N_d}^t from the top decoder layer to output a classification prediction p of size c^t for the task t.

To predict the output classes, we use a two-layer MLP classifier with GeLU activation [20] (followed by dropout) and hidden dimension equal to decoder hidden size. We apply the cross-entropy classification loss on the predictions p with ground-truth targets t to train the model as follows.

\[
p = W_1 \cdot \text{GeLU}(W_2 \cdot h_{\text{dec}, N_d}^t + b_2) + b_1 \quad (8)
\]

\[
\text{loss} = \text{CrossEntropyLoss}(p, t) \quad (9)
\]

3.5. Training

We jointly train UniT on multiple tasks. At each iteration during training, we randomly select a task and a dataset to fill a batch of samples. We manually specify a sampling probability for each task based on the dataset size and empirical evidence. In our implementation, we train with a batch size of 64 on 64 Nvidia Volta V100-SXM2-32GB GPUs (batch size 1 per GPU) in a distributed fashion, using PyTorch [41].

We use the weighted Adam optimizer [27, 37] with a learning rate of 5e-5 and the warm-up cosine learning rate schedule [36] (using 2000 warm-up iterations). The optimizer updates the model parameters based on gradients from the task losses.

We apply the scale and crop augmentation following DETR [5] on image inputs during training for object detection. In a detection training batch, an input image is randomly resized such that its shortest side is between 480 and 800 pixels, and then a crop with random width and height between 384 and 600 pixels is taken from the resized image. However, we do not apply scale and crop augmentation on vision-and-language tasks such as VQA, as these tasks often require the entire image for global reasoning (e.g., answering “how many people are there in the image” requires counting every person in the entire image). At test time for object detection and at both training and test time for vision-and-language tasks, an input image is resized to have a deterministic shortest side of 800 pixels.

4. Experiments

To provide a thorough analysis of UniT and also provide a comparison with well-established prior work, we experiment with jointly learning prominent tasks from different domains, including object detection as a vision-only task, language understanding tasks from GLUE benchmark as language-only tasks, and also joint vision-and-language reasoning tasks. For object detection, we use the COCO dataset [32] as a benchmark and also experiment with the Visual Genome (VG) dataset [28], which contains object classes as well as their attributes. For language understanding, we experiment with four tasks from the GLUE benchmark [60]: QNLI [46], QQP [24], MNLI-mismatched [62], and SST-2 [51]. For joint vision-and-language reasoning, we use the VQAv2 dataset [16] (with questions from Visual Genome [28] as additional training data) and also experiment with the SNLI-VE dataset [64], which requires classifying an image and sentence pair into whether the sentence entails, contradicts or is neutral with respect to the image. These datasets are used for pure research purposes only.

We experiment with two settings. First, we jointly train our model on object detection and VQA tasks in Sec. 4.1. Then, we further include language understanding tasks and SNLI-VE as an additional joint vision-and-language reasoning task in Sec. 4.2.

4.1. Multitask learning on detection and VQA

We first experiment with training on object detection as a vision-only task and VQA as a multimodal task that requires jointly modeling the image and the text modalities.

Removing overlap. For object detection, we use the COCO detection dataset (COCO det.) [32] and the object annotations in the Visual Genome dataset (VG det.) [28]. For the VQA task, we use the VQAv2 dataset [16]. We split these datasets according to COCO train2017 and val2017 splits: for COCO detection, we use its train2017 split for training and val2017 split for evaluation; for other datasets (Visual Genome detection and VQA), we train on those images not overlapping with COCO val2017 and evaluate on those images in COCO val2017. We also use those questions from the Visual Genome VQA dataset (on images not overlapping with COCO val2017) as additional training data, added to the training split of VQAv2.

Training. We train and evaluate our model under different combinations of tasks and datasets: COCO detection and VQAv2, Visual Genome (VG) detection and VQAv2, and all three datasets together. We also train it on a single dataset as a comparison.

We experiment with two settings in our transformer decoder: 1) separate decoders on different tasks (without sharing decoder parameters) and 2) a single shared decoder for all tasks. Following previous work in these two domains, we evaluate the detection performance with mean average
gradients leads to unstable momentum. The latter often causes divergence, possibly because accumulating zero weights in a detection iteration) works better than updating all parameters.

cumulation) on unused parameters with zero gradients (empirically find that skipping optimizer updates (including momentum accumulation) on unused parameters with zero gradients (e.g. VQA classifier weights in a detection iteration) works better than updating all parameters. The latter often causes divergence, possibly because accumulating zero gradients leads to unstable momentum.

Table 1: Performance of UniT on multi-task training over object detection and VQA. Our final model with a single shared decoder outperforms the separately trained single-task models on all the three datasets (line 4 vs line 1). On the COCO detection and VQAv2 datasets, we also evaluate on the test-dev splits for our final model.

<table>
<thead>
<tr>
<th># training data</th>
<th>COCO det. mAP</th>
<th>VG det. mAP</th>
<th>VQA2 accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 single-task training</td>
<td>40.6 / –</td>
<td>3.87</td>
<td>66.38 / –</td>
</tr>
<tr>
<td>2 separate</td>
<td>40.8 / –</td>
<td>3.91</td>
<td>68.84 / –</td>
</tr>
<tr>
<td>3 shared</td>
<td>37.2 / –</td>
<td>4.05</td>
<td>68.79 / –</td>
</tr>
<tr>
<td>4 shared (COCO init.)</td>
<td>40.8 / 41.1</td>
<td>4.53</td>
<td>67.30 / 67.47</td>
</tr>
</tbody>
</table>

Table 2: Object detection and VQA with shared decoders (COCO init.) on different dataset combinations. The two detection datasets benefit each other through joint training (line 4 vs line 2 or 3). Also, compared to COCO detection, VG detection has a larger benefit to VQA (line 3 vs 2).

all three datasets. Also, comparing with line 3, it can be seen that the detection performance is notably better.

We further evaluate with training on one dataset from each task (using either COCO or Visual Genome as the detection dataset). The results are shown in Table 2, where i) joint training on two detection datasets usually benefits both datasets (line 4 vs line 2 or 3) and ii) training on VG detection & VQA gives better VQA accuracy than training on COCO detection & VQA (line 3 vs 2), which is likely due to the fact that the Visual Genome dataset contains a more diverse set of object annotations (attributes) and better coverage of visual concepts for visual question answering.

4.2. A Unified Transformer for multiple domains

To further test the capabilities of UniT, we extend the training to 8 datasets, adding 4 language-only tasks from the GLUE benchmark (QNLI, QQP, MNLI, and SST-2) and a new vision-and-language dataset SNLI-VE for visual entailment. We show that UniT can jointly perform on all 7 datasets across 8 datasets competitively using 8× fewer parameters than task-specific fine-tuned similar models. Our final UniT model in Table 3 line 5 has 201M parameters.

<table>
<thead>
<tr>
<th># decoder setup</th>
<th>COCO det. mAP</th>
<th>VG det. mAP</th>
<th>VQA2 accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 single-task training</td>
<td>40.6</td>
<td>3.87</td>
<td>66.38</td>
</tr>
<tr>
<td>2 separate</td>
<td>40.8</td>
<td>3.91</td>
<td>68.84</td>
</tr>
<tr>
<td>3 shared</td>
<td>37.2</td>
<td>4.05</td>
<td>68.79</td>
</tr>
<tr>
<td>4 shared (COCO init.)</td>
<td>40.8 / 41.1</td>
<td>4.53</td>
<td>67.30 / 67.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># training data</th>
<th>COCO det. mAP</th>
<th>VG det. mAP</th>
<th>VQA2 accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 single-task training</td>
<td>40.6</td>
<td>3.87</td>
<td>66.38</td>
</tr>
<tr>
<td>2 COCO + VQA2</td>
<td>40.2</td>
<td>–</td>
<td>66.88</td>
</tr>
<tr>
<td>3 VG + VQA2</td>
<td>–</td>
<td>3.83</td>
<td>68.49</td>
</tr>
<tr>
<td>4 COCO + VG + VQA2</td>
<td>40.8</td>
<td>4.53</td>
<td>67.30</td>
</tr>
</tbody>
</table>

Results. Table 1 shows the performance of our model jointly trained on the three datasets with separate (line 2) or shared decoders (line 3), and also the single-task performance of our model trained separately on each dataset (line 1). With separate decoders, our model trained jointly on the three datasets outperforms its counterparts with single-task training on all three datasets. However, comparing line 3 with 1, we observe that while the joint model trained with shared decoders achieves better performance on VQA and VG detection, it underperforms the single-task models on COCO detection by a noticeable margin.

The object detection task requires structural outputs (bounding boxes with class labels, as opposed to a classification output in VQA), and the decoder needs to properly model the relations between different objects (such as their overlap to learn non-maximum suppression). Hence, object detection may require a longer training schedule, especially in the case of a single shared decoder, where the decoder needs to learn the complex behavior that models both the object relation in detection and the multimodal fusion and reasoning in VQA. To provide more training iterations on the detection task in the shared decoder setting, we experiment with initializing from a model trained on COCO detection alone (COCO init.) to continue training on the joint tasks. In this case, the image encoder (including the convolutional network backbone and the transformer encoder in it) and the detection heads are initialized from the single-task COCO detection model in Table 1 line 1.

This variant of the joint model (in Table 1 line 4) with shared decoders outperforms single-task models (line 1) on
for 500k iterations and keep the rest of the hyper-parameters the same as in previous experiments in Sec. 4.1.

Results. Table 3 shows the performance of UniT under different variants. Here, the UniT models trained on each task separately (line 1) outperform all other variants (line 2 to 4) on all tasks except multimodal tasks VQA v2 and SNLI-VE. This is unsurprising as (i) the unimodal tasks have low cross-modality overlap, (ii) in joint training, each task is trained only for a proportion of the total training iterations, and (iii) the shared decoder (line 3 and 5) has \(8 \times \) fewer parameters compared to the models in line 1. On the other hand, we see that vision-and-language tasks, namely VQA v2 and SNLI-VE, consistently benefit from multi-task training together with vision-only and language-only tasks across different settings, suggesting that learning better unimodal representations also benefits multimodal reasoning.

In addition, we further explore fine-tuning our shared model (line 5) on each task and find that while per-task fine-tuning brings a notable boost to object detection, it only has a moderate impact and sometimes even a small drop on other tasks as shown in line 6. Note that despite better mAP on detection, per-task fine-tuning leads to \(8 \times \) more parameters, longer training, and loss of generality, which we would like to avoid since our goal is to build a general model.

Comparison to previous work. We compare UniT to well-established domain-specific methods based on transformers on each task. For object detection, we compare to DETR [5] (line 7), a recent transformer-based detector from which our image encoder is inspired. For joint vision-and-language reasoning (visual question answering and visual entailment), we compare to VisualBERT [31] (line 8), which extends BERT [14] to also take detected objects as inputs.\(^6\) On natural language understanding tasks from the GLUE benchmark, we compare to BERT [14] (line 9).

From Table 4, it can be seen that our model achieves strong performance on each task with a single generic model. Although there is still a gap when comparing line 5 to line 7, 8, and 9, our model shows promising results approaching these domain-specific transformer-based models – especially considering that these previous approaches have hyperparameters tailored to each domain, while our model adopts the same hyperparameters across all 8 datasets. It also simplifies the training process as our whole model is trained end-to-end in one step for all tasks, while BERT and VisualBERT need to be separately trained on each task and VisualBERT also requires first training an external Faster R-CNN object detector [48]. Figure 3 shows the predictions of our model (in Table 3 line 5) on each dataset.

Ablations. To better understand the effect of each hyperparameter on multi-modal multi-task training with UniT, we conduct a range of ablations shown in Table 4. We choose one dataset from each domain: COCO for vision-only, SNLI-VE for vision-and-language, and MNLI for language-only. MNLI-mismatched and SNLI-VE are related tasks involving natural language inference at the core. Please see supplemental for more ablation analyses.

<table>
<thead>
<tr>
<th>#</th>
<th>Model configuration</th>
<th>COCO det. mAP</th>
<th>SNLI-VE accuracy</th>
<th>MNLI-mm accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UniT (default, (d_1^d = 768, N_d = 6))</td>
<td>38.79</td>
<td>69.27</td>
<td>81.41</td>
</tr>
<tr>
<td>2</td>
<td>decoder layer number, (N_d = 8)</td>
<td>40.13</td>
<td>68.17</td>
<td>80.58</td>
</tr>
<tr>
<td>3</td>
<td>decoder layer number, (N_d = 12)</td>
<td>39.02</td>
<td>68.82</td>
<td>81.15</td>
</tr>
<tr>
<td>4</td>
<td>decoder hidden size, (d_2^d = 256)</td>
<td>36.32</td>
<td>69.68</td>
<td>81.09</td>
</tr>
<tr>
<td>5</td>
<td>using all hidden states from BERT instead of just [CLS]</td>
<td>38.24</td>
<td>69.76</td>
<td>81.31</td>
</tr>
<tr>
<td>6</td>
<td>losses on all decoder layers for SNLI-VE and MNLI-mm</td>
<td>39.46</td>
<td>69.06</td>
<td>81.67</td>
</tr>
<tr>
<td>7</td>
<td>no task embedding tokens</td>
<td>38.61</td>
<td>70.22</td>
<td>81.45</td>
</tr>
<tr>
<td>8</td>
<td>batch size = 32</td>
<td>35.03</td>
<td>68.57</td>
<td>79.62</td>
</tr>
</tbody>
</table>

Table 4: Ablation analyses of our UniT model with different configurations on COCO detection, SNLI-VE, and MNLI.

\(^6\)We compare to the variant of VisualBERT without masked language modeling pretraining on vision-and-language datasets for fair comparison.
• **Decoder layers and hidden size:** There is a drop in detection mAP with a smaller decoder hidden size (line 4), while it does not hurt SNLI-VE or MNLI-mm. This is likely because COCO is a larger dataset with 1.5 million object instances and benefits from larger models. The analyses on decoder layer number N_d (line 2 and 3) confirms this intuition as $N_d = 8$ gives better detection mAP. Meanwhile, doubling the decoder layers to $N_d = 12$ does not help detection as much, likely due to overfitting with very large models. In addition, we find that too large decoder hidden size ($d_t = 1536$) could lead to divergence in detection training.

• **All hidden states in language encoder:** Using all BERT outputs as inputs to the decoder (instead of just the [CLS] token as in Sec. 3.2) has a relatively minor (and mixed) impact on the performance while increasing computation cost (line 5), suggesting that the pooled vector from BERT should be sufficient for most downstream tasks.

• **Losses on all decoder layers:** While losses on intermediate layer outputs benefit object detection (as shown in [5]), it does not benefit SNLI-VE or MNLI (line 6), likely because these tasks only require outputting a single label, unlike dense detection outputs.

• **No task embedding tokens:** We find that removing the task embedding from the encoders (line 7) does not hurt the performance. We suspect it is because the image encoder can extract generic (instead of task-specific) visual representations applicable to both COCO and SNLI-VE, and likewise for the language encoder.

• **Batch size and learning rate:** We find that a smaller batch size (line 8) leads to lower performance. In addition, we also find that a larger learning rate (1e-4 as in DETR [5] and MLM in BERT [14]) often causes divergence in joint training, while our smaller 5e-5 learning rate provides stable training.

5. Conclusion

In this work, we show that the transformer framework can be applied over a variety of domains to jointly handle multiple tasks within a single unified encoder-decoder model. Our UniT model simultaneously addresses 7 tasks across 8 datasets, learning them in a single training step and achieving strong performance on each task with a compact set of shared parameters. Through a domain-agnostic transformer architecture, our model makes a step towards building general-purpose intelligence agents capable of handling a wide range of applications in different domains, including visual perception, natural language understanding, and reasoning over multiple modalities.

Acknowledgments. We are grateful to Devi Parikh, Douwe Kiela, Marcus Rohrbach, Vedanuj Goswami, and other colleagues at FAIR for fruitful discussions and feedback.
References

