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Abstract

Dance experts often view dance as a hierarchy of infor-
mation, spanning low-level (raw images, image sequences),
mid-levels (human poses and bodypart movements), and
high-level (dance genre). We propose a Hierarchical Dance
Video Recognition framework (HDVR). HDVR estimates 2D
pose sequences, tracks dancers, and then simultaneously es-
timates corresponding 3D poses and 3D-to-2D imaging pa-
rameters, without requiring ground truth for 3D poses. Un-
like most methods that work on a single person, our tracking
works on multiple dancers, under occlusions. From the es-
timated 3D pose sequence, HDVR extracts body part move-
ments, and therefrom dance genre. The resulting hierarchi-
cal dance representation is explainable to experts. To over-
come noise and interframe correspondence ambiguities, we
enforce spatial and temporal motion smoothness and pho-
tometric continuity over time. We use an LSTM network
to extract 3D movement subsequences from which we rec-
ognize dance genre. For experiments, we have identified
154 movement types, of 16 body parts, and assembled a
new University of Illinois Dance (UID) Dataset, containing
1143 video clips of 9 genres covering 30 hours, annotated
with movement and genre labels. Our experimental results
demonstrate that our algorithms outperform the state-of-
the-art 3D pose estimation methods, which also enhances
our dance recognition performance.

1. Introduction
Dance represents a special genre of human activity. Our

goal in this paper is development of algorithms to under-
stand dance videos. We combine estimation of body move-
ments with their feasibility as a part of dance. This enables
interpretation of dance videos using not only constraints
posed by the data but also those by the domain knowledge.

A variety of proposed methods have also focused on
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dance videos [1–6]. Most of these rely on kinect sensors to
obtain depth information [1, 2]. [3] classifies Indian dances
by extracting patches centered at body’s joint locations and
using an LSTM network for classification. [4] proposes to
perform Laban Movement Analysis (in terms of dance do-
main constructs of Body, Effort, Shape and Space) to then
describe human motion from a pose sequence. [5] compares
the effects of using three different representations - raw im-
ages, optical flow and multi-person pose data - on their pro-
posed dance dataset proving that visual information is not
sufficient to classify motion-heavy categories. There are
several approaches to action recognition that first estimate
poses [7–9]. [7] creates a coaching system for personalized
athletic training based on pose correctness. [8] improves
action recognition performance by improving pose estima-
tion accuracy using additional spatial and temporal con-
straints. However, [7, 8] both estimate only the 2D poses,
leading to difficulties ambiguity when the movements are
along the viewing direction . [9] estimates both 2D and 3D
Poses as well as image features to predict actions from all
three. [7–9] limit their representation for action recogni-
tion to pose sequences without including any higher level
semantics that may define action. Moreover, these meth-
ods also require pose annotations in training videos. [6]
embeds RGB and optical-flow values into a single two-in-
one stream network for more efficient dance genre classifi-
cation. In addition to the features such as pose and optical
flow used in these works, in this paper we use dance domain
representations to tune feature analysis to dance instead of
being generic.

When people dance, they follow a carefully chore-
ographed sequence of 3D movements, where each move-
ment is hierarchically composed of simpler movements,
ending in basic movements. Each basic movement is com-
posed of a sequence of poses representing a specific dance
pattern. For brevity, in what follows, we will refer to basic
movements by simply movements, We identify movements
of 16 main body parts e ∈ E illustrated in Figure 3. follow-
ing Labanotation [10], a well-known notation system used
to record and archive human motion. Then in Table 1 we
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Figure 1. Overview of the model architecture. Given a sequence of video frames {It}T−1
t=0 , the model analyzes the content in a hierarchical

manner, from the low levels (pose estimation & tracking) to the cognitive levels (movement and dance genre recognition). The input
sequence {It}T−1

t=0 forms the first (bottom) level. At the second level, our algorithm simultaneously estimates the 2D pose p̂it and 3D pose
P̂ it of each dancer i(i = 0, ..., N − 1) at each frame, as well as the camera projection parameters. Our algorithm works under occlusions,
e.g., among dancers. At the third level, each dance movement ŷet of each body part e ∈ E (defined over a sequence of frames) is recognized
and its location, given by, e.g., its starting frame t and length are estimated, based on the poses estimated for the previous frames. At the
fourth level, the dance genre ĝ is recognized based on the movements {ŷet }e∈E of all body parts.

list the basic movements ye ∈ Y e for each body part e ∈ E,
again following [10] and defined in terms of homogeneity
of motion direction, and level which are frequently used
to describe the dance in dance domain. Our dance recog-
nition model adopts this hierarchy used by dance experts,
which starts with the 3D pose sequence of the dancer, com-
bines subsequences of joint displacements into dance move-
ments, and finally infers dance genre from the sequences of
the movements of joints. To help the model segment the
pose sequence into the basic movements, we manually an-
notate the starting and ending positions of such movements
for each body part for a subset of videos in the UID dataset.
Our framework takes a raw dance video sequence {It}T−1

t=0

as input, estimates poses p̂t for each frame It, recognizes
the movement ŷet (over multiple frames) of each body part e
based on its past pose sequence, and then predicts the dance
genre ĝt from the movement sequence. Experiments show
that our hierarchical feature analysis is an effective way to
recognize dance and our method outperforms state-of-the-
art on F-score.

The main contributions of this paper are as follows:

• We propose the first dance video understanding frame-
work that analyzes the videos hierarchically - from the
bottom level of video frames, through the middle level
of human poses, to the highest level of movements and
associated dance genres.

• Our algorithm tracks and outputs 2D pose of each
dancer in each frame in the presence of occlusions

among dancers.

• We propose an unsupervised 3D pose estimation al-
gorithm that starts with the estimated 2D pose se-
quence, and simultaneously and iteratively updates 2D
poses, 3D poses and 3D-to-2D projection parameters
using a single camera without using ground-truth for
these poses or parameters. Our 3D pose network
achieves state-of-the-art performance by incorporat-
ing kinematic constraints of a 34-DOF human skeletal
model and temporal smoothness of motion.

• We have curated a large dance video data set, contain-
ing pose in ground truths for each video frame as well
as for each movement, which we will share with the
community for further exploration.

2. Computational Approach
Figure 1 describes the components of our approach to

dance video recognition and the hierarchy they form. Our
approach can be summarized in the following steps: Step 1:
For each input frame It, the model estimates the 2D pose
pit for dancer i appearing in It. The model tracks approxi-
mate locations of the dancers {i}N−1

i=0 throughout the video
via their bounding boxes {Bit}T−1

t=0 . Step 2: At each frame,
the model provides an estimate p̂it of the 2D pose pit of the
dancer associated with each tracked box Bit (Section 2.1).
Step 3: The model then estimates 3D poses P̂ it from the
estimated 2D ones p̂it, by using an unsupervised 3D pose
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Body Part Examples of Movement Label # Labels

Head Head Turning Up; Head Turning Down; Head Turning Left; Head Turning Right; Head Circling 7
Neck Neck Moving Left; Neck Moving Right; Neck Circling; Head Keeping Still; Unknown 5
Left Shoulder Left Shoulder Moving Upward; Left Shoulder Moving Downward; Left Shoulder Circling 5
Left Lower Arm Left Arm Moving Upward; Left Arm Moving Downward; Left Arm Moving Left 11
Left Upper Arm Left Arm Moving Upward; Left Arm Moving Downward; Left Arm Moving Left 11
Torso Torso Bending; Torso Unbending; Torso Turning Left; Torso Turning Right; Torso Swing; Somesault 10
Hips Hips Waving; Hips Figure 8; Hips Circling; Hip Moving Up; Hip Moving Down; Hips Keeping Still 10
Left Lower Leg Left Leg Moving Upward; Left Leg Moving Downward; Left Leg Moving Left 15
Left Upper Leg Left Leg Moving Upward; Left Leg Moving Downward; Left Leg Moving Left 15
Left Foot Left Foot Extension; Left Foot Flexion; Left Foot Relaxed; Unknown 4

Table 1. Selected examples of movement labels of each body part. To save space, only the movements of the left body parts are shown in
the table. The movements of the right body parts are the same as the left ones. There are 16 body parts and 154 movement labels in total.

estimation method (Section 2.2). Step 4: The model uses
the LSTM network to recognize the movement {ŷet }T−1

t=0 of
each body part e ∈ E (e.g., head, torso, etc.) from the tra-
jectories {{P̂ jt }j∈Je}T−1

t=0 of all the joints j ∈ Je connected
to the body part e, where Je ⊂ E (Section 2.3). We rep-
resent any given state of a dance as a set of body part con-
figurations and the entire dance as a sequence of such sets.
Step 5: For recognition, we first concatenate the movements
{{ŷet }e∈E}}T−1

t=0 of all body parts, and input it to an LSTM
network to recognize the dance genre ĝ (Section 2.4). The
rest of this section introduces the components of this hier-
archy.

2.1. 2D Pose Estimation by Tracking

Algorithm 1: Object Tracking

Input: a sequence of video frames {It}T−1
t=0

Output: a sequence of bounding boxes
{(xit, yit, wit, lit)}T−1

t=0 of the ith dancer
Initialization: select the bounding box
(xi0, y

i
0, w

i
0, l

i
0) of N dancers to track by mouth

while new frame It available do
for ith dancer do

Obtain (xit, y
i
t, w

i
t, l

i
t) by LDES approach

if not overlap with others then
Store histogram and velocity of ith

dancer
end
if overlap happens & tracking fails then

Estimate when overlap ends
end
if overlap ends then

Relocate the bounding box
end

end
end

To estimate 2D (or 3D) pose, we estimate 2D (or 3D)

Algorithm 2: Tracking Based 2D Pose Estimation
6
Input: a sequence of video frames {It}T−1

t=0 and a
sequence of bounding boxes
{Bit}T−1

t=0 = {(xit, yit, wit, lit)}T−1
t=0 of the ith dancer

Output: a sequence of poses {p̂it}T−1
t=0 of the ith

dancer
while new frame It available do

Estimate poses // Perform OpenPose
for ith dancer do

Select pose ĉ from C poses overlapped with
the bounding box Bit based on histogram
match

end
end

coordinates of each body joint. Classical pose estimation
methods such as pictorial structures framework and de-
formable part models largely rely on hand-designed features
to determine body joint locations. Recently, deep learning-
based approaches have achieved a major breakthrough in
solving the problems in multi-person pose estimation (e.g.,
how to group keypoints for different people). They can be
divided into top-down [11, 12] and bottom-up [13–15]. The
former employ detectors to first locate person instances and
then their individual joints; the latter first estimate all joint
locations within the image and then assign the joints to the
associated person. Although these methods provide supe-
rior pose estimates, they have two major shortcomings crit-
ical to our task. Firstly, most of the pose estimation meth-
ods cannot track a dancer through the video when there are
multiple dancers present because they perform pose esti-
mation from individual images, ignoring the temporal in-
formation. Besides, the methods perform training mostly
on large datasets wherein the dance parts are very small,
with a single person, limited pose variety, and clean back-
ground. and therefore cannot guarantee accuracy on real
world dance videos. The method we propose can track se-
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lected dancers, detect estimation errors, and correct them
automatically.
Object Tracking: As explained in Algorithm 1, our track-
ing algorithm is built upon the LDES tracker [16]. Since
occlusion between dancers is a serious problem, our algo-
rithm centrally addresses it. Following are the three stages
of our algorithm: (1) Use the LDES tracker to track each ith

dancer when the dancer has no overlap with other dancers,
while maintaining a color histogram hit and a bounding box
Bit = (xit, y

i
t, w

i
t, l

i
t) for the dancer. (2) Detect occurrence

of overlap by detecting failure of the tracker as indicated
by a significant difference between the directions of motion
before and after overlap. (3) Predict the time and the lo-
cation of the dancer when the overlap may be expected to
end, from the location and velocity observed just before the
beginning of the overlap. Since multiple dancers may be
detected in the vicinity of the predicted location in the pre-
dicted frame, select the one that provides the best histogram
match, and update hit and Bit accordingly.
Tracking Based 2D Pose Estimation: As explained in
Algorithm 2, we obtain the initial 2D poses by using the
OpenPose method [15]. After we obtain the bounding box
Bit for each dancer i at the end of the overlap, the box Bit
may overlap with multiple boxes simultaneously, indicating
multiple 2D pose estimation results. We select that pose p̂it
whose histogram is most similar to the one p̂it−1 seen in the
previous frame. (Algorithm 2).

2.2. 3D Pose Estimation

Algorithm 3: 3D Pose Initialization

Input: a sequence of 2D poses {pt}N−1
t=0 of a dancer

Output: a sequence of 3D poses {P̃t}N−1
t=0 of the

dancer
Set the temporal window size to be 2∆
Denote total number of segments as s =

⌊
N
2∆

⌋
for t = ∆ to N −∆ do

for k = 0 to K − 1 do
Try new seed for DH parameters Λk and

perspective projection parameters ωk

for i = t−∆ to t+ ∆ do
Generate 3D pose P̂ ki = G(Λk)

Estimate 2D pose p̂ki = Ψ(P̂ ki ;ωk)
Compute error eki = ||p̂ki − pi||22
Optimize Λ∗k, ω∗k

end
end

end
Select the 3D pose corresponding to seed
k∗ = argmin

k̃

∑t+∆
i=t−∆ ek̃i as the initialized pose

Algorithm 4: 3D Pose Estimation

Input: a sequence of video frames {It}T−1
t=0 , 2D

poses {pt}T−1
t=0 and initial 3D poses {P̃t}T−1

t=0 of a
dancer

Output: a sequence of estimated 3D poses {P̂t}T−1
t=0

of the dancer
while new frame It available do

Estimate 3D pose P̂t
Project to 2D pose p̂t
Compute loss L = α(||p̂t − p̂t−1||22 + β||P̂t −
P̂t−1||22) + ||p̂t − pt||22 + ||P̂t − P̃t||22

Update ω2D and ω3D

end

Towards our objective of using dance representations
close to those used by experts, we need to use 3D, instead of
2D, pose sequences. Similarly for recognition using the lan-
guage of dance experts, we need to extract descriptors of 3D
movements from the 2D pose sequences, which constitute
our method’s next stage. Computationally too, 3D poses
contain more information than 2D poses, and thus lead to
more accurate dance recognition. However, predicting 3D
poses from 2D poses is an ill-posed problem like other 2D-
to-3D problems. The state-of-the-art methods [17–19] use
a two-step pipeline for solving it: first detect 2D poses from
video frames, and then predict 3D poses by learning the
correspondences of 2D and 3D key points. [20] provides a
simple yet effective baseline proving that the 2D to 3D task
can be solved with a remarkably low error rate. [21] learns a
mapping from a distribution of 2D poses to a distribution of
3D poses using an adversarial training approach. However,
[20, 21] estimate 3D poses from 2D poses estimated from
individual 2D frames, which ignores the temporal continu-
ity information. [22, 23] use temporal correspondences of
2D keypoints to both learn the joint angles as well as pre-
dict the joint locations. They compute loss in terms of the
distance between these key points and those back-projected
using the estimated 3D pose. They enforce such geomet-
ric consistency to progressively refine the estimates of 3D
poses. However, these methods are based on the assump-
tion that the input 2D poses are accurate. [23] proposes
a 2D pose correction module which uses a temporal CNN
to refine the 2D initial inputs. However, this assumes that
ground-truth 2D poses are available to train the correction
module. These assumptions are often restrictive in practice,
and do not hold for our dance videos which are collected
from the internet. [24] relates detected 2D poses across
frames based on tracking-by-detection and then recovers
3D pose in a Bayesian framework. However, their MAP
estimation is not robust if the video is long or background
changes dramatically. [25] proposes a method to cope with
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Figure 2. Overview of Proposed 3D pose estimation method. Given a sequence of video frames {It}T−1
t=0 , the dancers are tracked by our

tracking algorithm in Algorithm 1 and each of their 2D poses {pit}N−1
i=0 are estimated by our tracking based 2D pose estimation algorithm

in Algorithm 2. Then based on the 2D poses {pit}N−1
i=0 , we initialize their 3D poses and camera perspective projection parameters, P ∗t and

ω∗2D , as shown in Fig. 2 (top) and Algorithm 3. Finally, a neural network is trained to estimate the 3D poses {P̂t}T−1
t=0 , which incorporates

kinematic constraints and spatiotemporal smoothness of motion, as described in Algorithm 4.

occlusion. They first infer 3D locations of the visible body
joints and then reconstruct the occluded joint locations us-
ing learned pose priors and a kinematic skeletal model. [26]
fit a parametric human model (SMPL) to observed image
key points and segments along with some additional con-
straints. However, [25, 26] require 3D pose labels and/or
shape to supervise the training, which are not available for
our “in the wild” video dataset. [27, 28] estimate 3D pose
from in-the-wild images without 3D pose annotations, but
they require either additional 2D pose datasets or a multi-
view setting. To avoid these requirements and the need
for groudtruth 2D pose, and to improve computational ro-
bustness, we propose an algorithm that integrates 3D pose
estimation with 2D pose correction, which can be trained to
converge on both estimates simultaneously while also esti-
mating the camera projection parameters consistently.

We use the Denavit-Hartenberg (DH) parameters Λk =
{Θk,dk,ak,αk} to represent the 3D pose. A 3D pose P̃t
is generated by passing Λk to the 34-DOF kinematic model
G as follows:

P̂ ki = (J0, J1, ..., J24) (1)

Jj = G(Θ, d, a, α) = TΘTdTaTαJj−1 (2)

where

TΘTdTaTα =

[
cos Θ − sin Θ cosα sin Θ sinα r cos Θ
sin Θ cos Θ cosα − cos Θ sinα r sin Θ

0 sinα cosα d
0 0 0 1

]
Figure 3. Our 34-DOF digital dancer model. The values of the DH
parameters Λ = {Θ,d,a,α} of this model are listed in Table 7
in Appendix. The bounds of the joint rotation offset angles θ and
bone length b are defined in Table 8 in Appendix.
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where TΘ, Td, Ta and TαJj−1 are transition matrices, and
Jj is the 3D location of the joint j.

We initialize the desired estimates of 3D pose P̃t and
the 3D-to-2D projection parameter ω2D

t with multiple ran-
domly selected seed pairs {Λ∗k, ωk} (to sample the search
space), as explained in Figure 2 (top) and Algorithm 3.
ωk = {fk, ck} are the perspective projection parameters.
At frame t, we sample K seeds of the DH parameters to
generate 3D poses {P̂ ki }

t+∆
i=t−∆ in a sliding window of size

2∆ centered at t and 3D-to-2D projection parameter ω2D.
By comparing the reconstructed 2D pose p̂ = Ψ(P̂t;ω

2D)
projected from the generated 3D pose P̂t with the input 2D
pose pi estimated in 2.1, we optimize the DH parameters Λk

generating the 3D pose P̂ ki while enforcing: (a) constraints
that govern the joint rotation offset angles θk, (b) consis-
tency with the known bone lengths bk and (c) temporal
smoothness of both the 2D and 3D poses. This is achieved
by training with a loss function consisting of two parts: (1)
temporal smoothness of both the 2D pose and 3D pose:
α(||p̂t− p̂t−1||22 +β||P̂t− P̂t−1||22). (2) preservation of 3D-
to-2D projection (imaging) property: ||Ψ(P̂t;ω

2D)− pt||22.
The coefficients α and β are chosen to be inversely propor-
tional to the error: the larger the error, smaller the weight
of the window. We also enforce constancy of the 3D to 2D
projection parameters by smoothing it over a time window.
At each time step t, we update the 3D pose P̂t and the pro-
jection parameter ω3D. From among the solutions obtained
using the different seeds, the pair {P̂ ∗t ;ω∗2D} correspond-
ing to the seed offering the least error is selected.

As shown in Figure 2 (bottom), after obtaining the ini-
tial 3D pose P ∗t and the 3D-to-2D projection parameters
ω∗2Dt from the 3D Pose Initialization block, we train tem-
poral convolutional networks to learn the mapping from the
input 2D poses {p̂t} to the 3D ones {P̂t}. We use [17] as
our baseline networks. During the training, in addition to
the consistency between 2D and 3D poses at all times, we
again enforce temporal smoothness of motion with the loss
function defined as follows:

L = ||p̂t−pt||22+||p̂t−pt−1||22+||P̂t−P ∗t ||22+||P̂t−P̂t−1||22)
(3)

where p̂t = Ψ(P̂t;ω
∗2D).See details in Algorithm 4.

To further improve the accuracy when limited labeled 3D
ground-truth pose data are available, we introduce a semi-
supervised training version of the proposed pose estimation
method. A supervised loss is trained by using the available
labeled ground truth 3D poses Pt as target, and the loss in
Equation (3) is implemented using the remaining unlabeled
data. Here, the predicted 3D poses P̂t are projected back to
2D joint coordinates for consistency with the 2D input pt.
Similar to the training strategy in [17], we jointly optimize
the supervised component with our unsupervised compo-
nent during training, with the labeled data occupying the
first half of a batch, and the unlabeled data occupying the

second half.

2.3. Body Part Movement Recognition

For each body part e, we train an LSTM-based model to
recognize its (basic) movement. During training, the input
is a sequence of 3D poses {{p̂jt}j∈Je}T−1

t=0 of all the joints
j ∈ Je connected to the body part e and the output is a se-
quence of predicted movement labels {ŷet }T−1

t=0 connected to
e. Since this is a multi-label classification problem, which
means the poses {p̂jt}j∈Je connected to the body part emay
map to multiple movement labels ŷet of e at the same time,
we use the Binary Cross Entropy (BCE) loss between pre-
dicted movements {ŷet }T−1

t=0 and the target movement labels
{yet }T−1

t=0 . This loss is minimized during the training to ob-
tain the optimal model. During testing, the trained model of
each e ∈ E takes a sequence of 3D poses {{p̂jt}j∈Je}T−1

t=0

of all the joints connected to e as input, and predicts the
movement {ŷet }T−1

t=0 of e.

2.4. Dance Genre Recognition

Analogous to the approach in Section 2.3, we train
an LSTM model to take a sequence of movement labels
{{ŷet }e∈E}T−1

t=0 of all the body parts e ∈ E as input. We
use the output of the last time step from the last layer as the
prediction of the dance genre ĝ. For loss function, we use
cross entropy between the predicted dance genre ĝ and the
target dance genre g. We describe the movement and dance
genre recognition in detail in Algorithm 5 and Algorithm 6
in the supplementary document.

3. Experiments
3.1. Data and Experiment Setting

University of Illinois Dance (UID) Dataset. One major
challenge for dance recognition lies in the lack of training
data. We have curated UID video dataset containing 9 types
of dances (Ballet, Belly dance, Flamenco, Hip Hop, Rumba,
Swing dance, Tango, Tap dance and Waltz) with details
listed in Table 2. Figure 4 and 5 show sample frames and
information about in our dataset for each dance genre. The
videos contain situations of varying difficulty, from simple
ones such as tutorial videos with clean background, to hard
videos, having interacting dancers, noisy background and
varying lights.

Dance Genres 9 Total Duration 108,089s
Total # of Clips 1143 Total # of Frames 2,788,157
Min clip length 4s Min # of clips / class 30
Max clip length 824s Max # of clips / class 304

Table 2. Summary of the characteristics of the UID dataset.

Evaluation Protocols. we use the widely used mean per-
joint position error (MPJPE) in millimeters to calculate the
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Figure 4. Sample frames for 9 types of dances in the University of
Illinois Dance (UID) Dataset.

Figure 5. Distribution of the numbers and durations of clips for
each genre in the UID Dataset.

Method Supervision Extra
Data

MPJPE
(mm)(↓)

Martinez [20] ICCV’17 Supervised - 110.0
Wandt [21] CVPR’19 Supervised - 323.7
Pavllo [17] CVPR’19 Supervised - 77.6

Pavllo [17] CVPR’19(?) Semi-Sup. No 446.1
Ours Semi-Sup. No 73.7

Zhou [27] ICCV’17 Weakly-Sup. Yes 93.1
Kocabas [28] CVPR’19 Self-Sup. Multiview 87.4
Ours Unsupervised No 246.4

Table 3. Comparison of 3D pose estimation results using Protocol
1: Mean Per-Joint Position Error (MPJPE) on AIST Dance Video
Dataset [29]. (?) uses ground truth 2D poses. Methods using
different supervision level are divided by horiontal line. Our pro-
posed method (semi-supervised) achieves the lowest error against
the fully supervised methods. Moreover, our unsupervised pose
estimation method can achieve the same level of performance as
the state-of-the-art supervised/semi-supervised methods.

mean Euclidean distance between the predicted 3D poses
{P̂t}T−1

t=0 and the target 3D poses {Pt}T−1
t=0 . We use F-score

to measure the accuracy of our movement and dance recog-
nition approaches on our UID dataset.
Experiment Setting. We evaluate our unsupervised 3D
pose estimation approach on both the UID video dataset and
AIST++ dance dataset [29]. The AIST++ Dataset contains
1,408 multi-view dance sequences from 10 dance genres
with hundreds of choreographies, provides 3D human key-

Method Supervision Extra
Data

MPJPE
(mm)(↓)

Martinez [20] ICCV’17 Supervised - 87.3
Zanfir [26] CVPR’18 Supervised - 69.0
Wandt [21] CVPR’19 Supervised - 89.9
Pavllo [17] CVPR’19 Supervised - 46.8
Mehta [25] SIGGRAPH’20 Supervised - 63.6

Pavllo [17] CVPR’19(?) Semi-Sup. No 51.6
Ours Semi-Sup. No 47.3

Zhou [27] ICCV’17 Weakly-Sup. Yes 64.9
Rhodin [30] ECCV’18 Unsupervised Multiview 98.2
Kocabas [28] CVPR’19 Self-Sup. Multiview 60.6
Chen [31] CVPR’19 Unsupervised Yes 68.0
Kundu [32] ECCV’20 Unsupervised Yes 67.9
Ours Unsupervised No 82.1

Table 4. Comparison of 3D pose estimation results using Proto-
col 1: Mean Per-Joint Position Error (MPJPE) on Human3.6M
Dataset [33] evaluated on S9 and S11. (?) uses ground truth 2D
poses. Based on the method’s supervision level, five labelled sub-
jects (S1, S5, S6, S7, S8) are used to train the supervised methods,
four labelled subjects (S5, S6, S7, S8) and one unlabelled subject
(S1) are used to train the semi-supervised methods, and five unla-
belled subjects (S1, S5, S6, S7, S8) for the rest methods (e.g., un-
supervised). Our proposed method (semi-supervised) achieves the
second lowest error against the fully supervised methods. Without
the need of additional 2D/3D data, our unsupervised pose esti-
mation method can achieve the same level of performance as the
state-of-the-art methods.

point annotations and camera parameters for 10.1M images,
and covers 30 different subjects in 9 views. We did our ex-
periments with a subset of AIST++, containing 200 videos
( 0.4M frames). 30% of the videos with ground-truth 3D
poses are used as labeled data to train the supervised meth-
ods [17, 20, 21] and semi-supervised methods ([17] and our
method). 10% of the videos are used for testing. The re-
maining video samples are used as unlabeled data for train-
ing the semi-supervised methods.

For consistency with other work [17, 20, 21], we train
and evaluate on 3D poses in camera space. In the 3D
Pose Initialization component, we use Adam [35] optimizer
to optimize the estimated 3D poses in Algorithm 3 for 50
epochs. The temporal window size ∆ = 3 and the number
of seeds K = 2. After obtaining the best initial 3D poses
and camera projection parameters (focal lengths and princi-
pal points), we use [17] as the baseline to train the 3D pose
estimation network for 200 epochs.

3.2. 3D Poses

Figure 6 shows qualitative results of our 3D pose method
on both the UID dataset and the AIST++ dataset [29]. The
2D poses (top row) reconstructed from the estimated 3D
poses align well with the dancer’s movement. The es-
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Figure 6. Visualization results on sample videos from the AIST++ dataset [34] and our proposed University of Illinois Dance (UID) dataset.
The top row shows the reconstructed 2D poses from the estimated 3D poses and the bottom row shows the estimated 3D poses.

Input to the
Movement Recog.

F-score
Averaged Head lshoulder rshoulder larm rarm Hips Torso lleg rleg lfoot rfoot

2D Pose 0.93 0.95 0.96 0.96 0.89 0.91 0.81 0.96 0.94 0.85 1.00 1.00
3D Pose 0.97 0.93 0.96 0.96 0.94 0.93 1.00 0.98 0.95 0.98 0.99 1.00

Table 5. F-scores for body part movements recognition from estimated 2D poses (Sec 2.1) and estimated 3D poses (Sec 2.2) as inputs.
Recognition improves as a result of using our estimated 3D poses. Note that the performances for several parts are comparable with
existing results. This is because the dancers are at a large distance, diminishing the extra power offered by the 3D information. This
situation changes in Table 6.

Input to Dance Genre Recognition F-score

2D Pose 0.44
3D Pose 0.47
Movements (2D Pose as input) 0.50
Movements (3D Pose as input) 0.55
2D Pose + Movements (2D Pose as input) 0.73
3D Pose + Movements (3D Pose as input) 0.86

Table 6. Ablation study using different components as inputs. The
3D pose, in general, provides higher accuracy for genre recog-
nition than 2D pose. Combination of the two, 2D and 3D level
estimates, achieves better performance than either alone.

timated 3D poses well match the known human skeletal
structure and are smooth between frames. To quantitatively
evaluate our method, we train our model and three state-
of-the-art methods [17, 20, 21] on the AIST++ dataset and
calculate the mean per-joint position errors (MPJPE). We
also evaluated our model on the Human 3.6M dataset [33].
Table 3 and Table 4 shows that our unsupervised pose es-
timation method is comparable with the supervised meth-
ods. Moreover, our semi-supervised version achieves the
best and second best performance on the AIST++ dataset
[29] and 3.6M dataset [33], respectively.

3.3. Movement and Dance Genre Recognition

Recognition results for body part movements and dance
genre recognition on the UID dataset are given in Tables
5 and 6. We use the 3D poses estimated using our un-

supervised method as the input for recognition since our
UID collects videos in the wild and hence does not pro-
vide ground-truth 3D annotations for training the proposed
semi-supervised version. The movements of different body
parts can help with dance understanding from the viewpoint
of dance experts.

4. Conclusions and Future Work
In conclusion,we have presented an approach to dance

videos understanding that follows a hierarchical representa-
tion used by experts to describe dances. We have presented
an approach to extract the primitives occurring at each level
of the representation, from raw videos, to 3D pose, to move-
ments, to dance genre. We have presented the challenges
we have encountered and how we have addressed them us-
ing new constraints and algorithms. Note that the train-
ing in our current dance video recognition framework is not
fully unsupervised. We plan to develop a fully unsupervised
pipeline that could be jointly trained for pose estimation
and genre recognition. In addition, we plan to synthesize
dances using the representations we have extracted. We also
plan to use the judgments of expert viewers on the quality
of the synthesized dance videos as qualitative metrics of the
representations extracted by our algorithms.
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