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Abstract

In recent years, sparse voxel-based methods have be-
come the state-of-the-arts for 3D semantic segmentation of
indoor scenes, thanks to the powerful 3D CNNs. Never-
theless, being oblivious to the underlying geometry, voxel-
based methods suffer from ambiguous features on spatially
close objects and struggle with handling complex and ir-
regular geometries due to the lack of geodesic information.
In view of this, we present Voxel-Mesh Network (VMNet),
a novel 3D deep architecture that operates on the voxel
and mesh representations leveraging both the Euclidean
and geodesic information. Intuitively, the Euclidean in-
formation extracted from voxels can offer contextual cues
representing interactions between nearby objects, while the
geodesic information extracted from meshes can help sepa-
rate objects that are spatially close but have disconnected
surfaces. To incorporate such information from the two
domains, we design an intra-domain attentive module for
effective feature aggregation and an inter-domain atten-
tive module for adaptive feature fusion. Experimental re-
sults validate the effectiveness of VMNet: specifically, on
the challenging ScanNet dataset for large-scale segmen-
tation of indoor scenes, it outperforms the state-of-the-art
SparseConvNet and MinkowskiNet (74.6% vs 72.5% and
73.6% in mloU) with a simpler network structure (17M
vs 30M and 38M parameters). Code release: https:
//github.com/hzykent/VMNet

1. Introduction

Thanks to the tremendous progress of RGB-D scanning
methods in recent years [63, 27, 10], reliable tracking and
reconstruction of 3D surfaces using hand-held, consumer-
grade devices have become possible. Using these methods,
large-scale 3D datasets with reconstructed surfaces and se-
mantic annotations are now available [8, 4]. Nevertheless,
compared to 3D surface reconstruction, 3D scene under-
standing, i.e., understanding the semantics of reconstructed
scenes, is still a relatively open research problem.
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Figure 1. Illustration of geodesic information loss caused by
voxelization. Considering the green point at the arm of a chair,
on an input 3D mesh surface (Left), its geodesic neighbors (blue)
can be easily collected, and the points of different objects are nat-
urally separated. After voxelization (Right), geodesic information
is discarded and only Euclidean neighbors (red) that are agnostic
to the underlying surface can be extracted. The scan section is
taken from the ScanNet dataset [8].

Inspired by the success of 2D CNN in image semantic
segmentation [5, 36], researchers have paid much attention
to the straightforward extension of this idea to 3D, by per-
forming volumetric convolution on regular grids [39, 66,

]. Specifically, surface reconstructions are first projected
to a discrete 3D grid representation, and then 3D convolu-
tional filters are applied to extract features by sliding kernels
over neighboring grid voxels [54, 62, 72]. Such features
can be smoothly propagated in the Euclidean domain to
accumulate strong contextual information. Unfortunately,
dense voxel-based methods require intensive computational
power and are thus limited to low-resolution cases [35]. To
process large-scale data, sparse voxel convolutions [17, 7]
have been proposed to lower the computational require-
ment by ignoring inactive voxels. Benefiting from the ef-
ficient sparse voxel convolutions, complex networks have
been built, achieving leading results on several 3D seman-
tic segmentation benchmarks [8, 4] and outperforming other
methods by large margins.

Despite the remarkable achievements, voxel-based
methods are not perfect. One of their major limitations
is the geodesic information loss caused by the voxeliza-
tion process (see Fig. 1). Recent public datasets like Scan-
Net [8] provide 3D scene reconstructions in the form of
high-quality triangular meshes, in which the surface infor-
mation is naturally encoded. On these meshes, vertices be-
longing to different objects are well separated, and geodesic
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Figure 2. Limitations of voxel-based methods. (Upper) Some points of “chairs” are mistakenly classified into nearby classes in the
Euclidean space by SparseConvNet [ 1 7] since the convolutional filters produce ambiguous features for spatially close objects. (Lower) On
areas with complex and irregular geometries (e.g., the base parts of “tables”), SparseConvNet fails to predict correct results due to the lack

of geodesic information about shape surfaces.

features can be easily aggregated through edge connectiv-
ities. However, the voxelization process omits all mesh
edges and only retains Euclidean positions of mesh ver-
tices. Consequently, convolutional filters operating on vox-
els are agnostic to the underlying surfaces and, therefore,
result in two problems. First, these filters generate similar
features for voxels that are close in the Euclidean domain,
even though these voxels may belong to different objects
and are distant in the geodesic domain. As shown in the top
example of Fig. 2, these ambiguous features produce sub-
optimal predictions for objects that are spatially close. Sec-
ond, without the geodesic information about shape surfaces,
these Euclidean convolutions may struggle with learning
specific object shapes. As shown in the lower example of
Fig. 2, this property is problematic for segmentation on ar-
eas with complex and irregular geometries.

We have discussed the advantages of voxel-based meth-
ods on contextual learning and their problems on geodesic
information loss. It is appealing to design a method re-
solving the problems while retaining these advantages by
leveraging both the Euclidean and geodesic information. A
possible solution is to take voxels and the original meshes
as the sources for the Euclidean and geodesic information,
respectively. It is therefore natural to ask how these two
representations can be combined in a common architecture.

To address this question, we propose the Voxel-Mesh
network (VMNet), a novel deep hierarchical architecture for
geodesic-aware 3D semantic segmentation. Starting from a
mesh representation, to extract informative contextual fea-
tures in the Euclidean domain, we first voxelize the input
mesh and apply sparse voxel convolutions. Next, to in-
corporate the geodesic information, the extracted contex-
tual features are projected from the Euclidean domain to the
geodesic domain, specifically, from voxels to mesh vertices.
These projected features are further fused and aggregated to
combine both the Euclidean and geodesic information.

In order to build such a deep architecture that is ca-
pable of effectively learning useful features incorporating
information from the two domains, it is critical to design
proper ways to aggregate intra-domain features and to fuse
inter-domain features. In view of the great success of self-
attention operators for feature processing [59, 41, 34], we
therefore present two key components of VMNet: Intra-
domain Attentive Aggregation Module and Inter-domain
Attentive Fusion Module. The former aims to aggregate the
projected features on the original meshes to incorporate the
geodesic information and the latter focuses on the effective
fusion of features from the two domains.

We conduct extensive experiments to demonstrate the ef-
fectiveness of our method on the popular ScanNet v2 bench-
mark [8] and the recent Matterport3D benchmark [4]. VM-
Net outperforms existing sparse voxel-based methods Spar-
seConvNet [17] and MinkowskiNet [7] (74.6% vs 72.5%
and 73.6% in mloU) with a simpler network structure (17M
vs 30M and 38M parameters) on the ScanNet dataset and
sets a new state-of-the-art on the Matterport3D dataset.

To summarize, our contributions are threefold:

1. We propose a novel deep architecture, VMNet, which
operates on the voxel and mesh representations, lever-
aging both the Euclidean and geodesic information.

2. We propose an intra-domain attentive aggregation
module, which effectively refines geodesic features
through edge connectivities.

3. We propose an inter-domain attentive fusion module,
which adaptively combines Euclidean and geodesic
features.

2. Related Work

In this section, we first review relevant works on 3D se-
mantic segmentation, organized according to their inherent
convolutional categories, and then discuss the application of
attention mechanism in 3D semantic segmentation.
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Figure 3. Overview of Voxel-Mesh Network (VMNet). Taking a colored mesh as input, we first rasterize it and apply voxel-based sparse
convolutions to extract contextual information in the Euclidean domain. These features are then projected from voxels to vertices, and are
further aggregated and fused in the geodesic domain producing distinctive per-vertex features. For simplicity, skip connections between
the encoder and decoder are neglected here and only three levels of hierarchical voxel downsampling and mesh simplification are shown.
The detailed network structure can be found in Supplementary Section A.

2D-3D. A conventional way of performing 3D semantic
segmentation is to first represent 3D shapes through their
2D projections from various viewpoints, and then lever-
age existing image segmentation techniques and architec-
tures from the 2D domain [30, 29]. Instead of choosing
a global projection viewpoint, some researchers have pro-
posed to project local neighborhoods to local tangent planes
and process them with 2D convolutions [57, 68, 23]. Tak-
ing the RGB frames as additional inputs, other researchers
have proposed methods that combine 2D and 3D features
through 2D-3D projection [9, 20]. Although these methods
can easily benefit from the success of image segmentation
techniques (mainly based on 2D CNNs), they often require
a large amount of additional 2D data, involve a complex
multi-view projection process, and rely heavily on view-
point selection. Some of these methods have attempted to
utilize geodesic information implicitly through mesh tex-
tures [23] or point normal [57]. They achieve fairly decent
results but fail to fully exploit the geodesic information.

PointConv & SparseConv. Partly due to the difficulties of
handling mesh edges in deep neural networks, most existing
3D semantic segmentation methods take raw point clouds
or transformed voxels as input [3, 30, 50, 1, 47, 43, 45].
Point-based methods apply convolutional kernels to the lo-
cal neighborhoods of points obtained using k-NN or spher-
ical search [70, 61, 60, 55, 22, 65, 21]. Numerous de-
signs of point-based convolutional kernels have been pro-
posed [31, 28, 58, 37, 69]. In the case of voxel-based meth-
ods, the raw 3D data is first transformed into a voxel repre-
sentation and then processed by standard CNNs [39, 44, 62,

, 24]. To address the cubic memory and computation con-
sumption problem of voxel-based operations, recent works
have made efforts to propose efficient sparse voxel convolu-
tions [17, 7, 56]. In both point-based and voxel-based meth-
ods, features are aggregated over the Euclidean space only.
In contrast, we additionally consider geodesic information
of the underlying object surfaces.

GraphConv. Graph convolution networks can be grouped
into spectral networks [12, 53] and local filtering net-
works [38, 2, 40]. Spectral networks work well on clean
synthetic data, but are sensitive to reconstruction noise and
are thus not applicable to 3D semantic segmentation. Lo-
cal filtering networks define handcrafted coordinate systems
and apply convolutional operations over patches. For 3D
semantic segmentation, these methods often perform over
local neighborhoods of point clouds [26, 32] and are thus
oblivious to the underlying geometry.

Our method falls into both the SparseConv and Graph-

Conv categories. It is similar in spirit to the recent work
of Schult et al. [51], which combines a Euclidean-based
and a geodesic-based graph convolutions. However, instead
of concatenating features obtained from different convolu-
tional filters as done in [51], we first accumulate strong
contextual information in the Euclidean domain and then
adaptively fuse and aggregate geometric information in the
geodesic domain, leading to a significant better segmenta-
tion performance (see Section 4.3).
Attention. For 3D semantic segmentation, most exist-
ing methods implement attention layers operating on the
local neighborhoods of point clouds for feature aggrega-
tion [15, 60] or on downsampled point sets for context aug-
mentation [67, 64]. In our work, instead of operating on
point clouds, we build attentive operators applying on tri-
angular meshes. Moreover, in contrast to previous works
that process features in a single domain, we propose both
an intra-domain module and an inter-domain module.

3. Method

In this section, we first introduce the network architec-
ture in Section 3.1. Then the voxel-based contextual fea-
ture aggregation branch is described in Section 3.2. Sec-
tions 3.3 and 3.4 depict the proposed attentive modules for
intra-domain feature aggregation and inter-domain feature
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Figure 4. 2D illustration of voxel-vertex projection. Vertices
(z1,y1) and (x2, y2) share the same set of neighboring voxels but
their projected features are different through trilinear interpolation
(bilinear interpolation for the 2D case).

fusion. Finally, we discuss two well-known mesh simplifi-
cation methods which build a mesh hierarchy for multi-level
feature learning in Section 3.5.

3.1. Network Architecture

VMNet deals with two types of 3D representations: vox-
els and meshes. As depicted in Fig. 3, the network consists
of two branches: according to their operating domains, we
denote the upper one as the Euclidean branch and the lower
one as the geodesic branch.

To accumulate contextual information in the Euclidean
domain, taking a mesh as input, the colored vertices are
first voxelized and then fed to the Euclidean branch. Build-
ing on sparse voxel-based convolutions, we construct a U-
Net [48] like encoder-decoder structure, where the encoder
is symmetric to the decoder, including skip connections be-
tween both. Multi-level sparse voxel-based feature maps
(8%, ...,8', ..., 8T) can be extracted from the decoder.

Although these contextual features offer valuable seman-
tic cues for scene understanding, their unawareness of the
underlying geometric surfaces will lead to sub-optimal re-
sults. Therefore, to incorporate geodesic information, the
accumulated contextual features are projected from the Eu-
clidean domain to the geodesic domain for further process-
ing (Section 3.2). In the geodesic branch, we prepare a
hierarchy of simplified meshes (M°, ..., M!, ..., ML), in
which each level of simplified mesh M! corresponds to a
downsampling level of sparse voxels S!. Trace maps of
the mesh simplification processes are saved for unpooling
operations between mesh levels. At the first level of the
decoding process (level L), the features are projected from
voxels S* to mesh vertices M’ and then refined through
intra-domain attentive aggregation (Section 3.3). The re-
sulting geodesic features of M% are unpooled to the next
level ME—1, At each following level [, the Euclidean fea-
tures projected from S! and the unpooled geodesic features
of M! are first adaptively combined through inter-domain
attentive fusion (Section 3.4) and then the fused features
are further refined through intra-domain attentive aggrega-
tion before being unpooled to the next level. Please find the
detailed network structure in Supplementary Section A.
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Figure 5. Illustration of intra-domain attentive aggregation
module. (Left) Intra-domain attention layer operates on mesh
vertices aggregating geodesic information through edge connec-
tivities. (Right) The aggregation module consists of two attention
layers with skip connections.

3.2. Voxel-based Contextual Feature Aggregation

Voxelization. At mesh level M, with all edge connec-
tivities omitted, the input features (colors) of mesh vertices
{(V4, fi)} are transformed into the voxel cells {V,, , .} by
averaging all features f; whose corresponding coordinate
Vi : (i, yi, 2;) falls into the voxel cell (u, v, w):

n

1

fu vw —
Y Nu,v,w

Blfloor(zi ) = u,
2 [floor(x; - T) =u "

floor(y; - r) = v, floor(z; - r) = w] - fi,

where 7 denotes the voxel resolution, B[] is the binary
indicator of whether vertex V; belongs to the voxel cell
(u,v,w), and N, ,, is the number of vertices falling into
that cell [35].

Contextual Feature Aggregation. To accumulate contex-
tual information, we construct a simple U-Net [48] structure
based on voxel convolutions. We adopt the sparse imple-
mentation provided by [56].

Voxel-vertex Projection. With the contextual features ag-
gregated in the Euclidean domain, at each level [, we trans-
form the features of voxels S’ back to vertices M! for fur-
ther processing in the geodesic domain. Inspired by previ-
ous works [35, 56], we compute each vertex’s feature utiliz-
ing trilinear interpolation over its neighboring eight voxels.
Through this means, the projected features are distinct even
for the vertices sharing the same set of neighboring voxels.
A 2D illustration of the projection is shown in Fig. 4.

3.3. Intra-domain Attentive Aggregation Module

After contextual feature aggregation and voxel-vertex
projection, to effectively refine the projected features, we
design an intra-domain attentive aggregation module oper-
ating on the geodesic domain. As shown in Fig. 5 (Left), at
each mesh level, we perform attentive aggregation on the
graph G = (V, F) induced by the underlying mesh M.
Note that we neglect the level superscript [ to ease read-
ability. Our intra-domain attention layer is based on the
standard scalar attention [59], which is often used for point
clouds in 3D semantic segmentation, but not for triangular
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meshes. Specifically, at layer k, the output feature f,7°° of
vertex V; with an input feature f7°° is computed as:

f 960 — zntra fgeo

Z wijo zntra fgeo)

JEN;
SOintra (fiqeo)Twlintra (f]!_]eo)
Vd

2)

)7

wi; = softmax(

where NN, is the one-ring neighborhood of vertex V;. The
functions pintre, qintra, pintra and intre are vertex-wise
feature transformations implemented by MLP, w;; is the at-
tention coefficient, and d is the size of output feature chan-
nels. Since the positional information is naturally embed-
ded in the voxel-based contextual feature aggregation step,
we do not implement a position encoding function explic-
itly. Our attention layer is inspired by the implementation in
[52], which operates on abstract graphs for semi-supervised
node classification, while our method operates on 3D mesh
graphs for geodesic feature aggregation.

Building on the intra-domain attention layer, we de-
sign an aggregation module performing two steps of atten-
tive feature aggregation on each simplified mesh level (see
Fig. 5 (Right)).

3.4. Inter-domain Attentive Fusion Module

Operating on both the voxel and mesh representations
poses a demand for Euclidean and geodesic feature fusion.
To adaptively combine features from the two domains, we
propose an inter-domain attentive fusion module. As de-
picted in Fig. 6 (Left), between each pair of sparse voxel
level S and mesh level M (except for level L), we per-
form attentive fusion on the same graph G = (V, E) as the
one used for intra-domain aggregation (level superscript [ is
neglected). However, unlike intra-domain attention, which
processes features in the same domain, inter-domain atten-
tion takes as input both the geodesic features f9¢° and the
Euclidean features f°“¢ projected from voxels. At layer k,

fuse

the fused feature f; of vertex V; is computed as:

Z wij znter fgeo)
JEN;

sp}inter (fieuc)Tw’ignter (f]{]eo)
Vd

where NV, is the same one-ring neighborhood of vertex V; as
the one used for intra-domain aggregation. Unlike the one
in intra-domain attention, the inter-domain attention coeffi-
cient w;; is conditioned on both the Euclidean and geodesic
features enabling the network to adaptively fuse features
from the two domains.

As shown in Fig. 6 (Right), the proposed inter-domain at-
tentive fusion module takes both the Euclidean features and
the geodesic features as inputs. These features are fed to
one inter-domain attention layer followed by layer normal-
ization and ReLU activation. Before being passed on for
further processing, the fused feature map is concatenated
with the projected Euclidean feature map and the original
geodesic feature map.

inter feuc

fifuse = pi

3)

),

wi; = softmax(

3.5. Mesh Simplification

To construct a deep architecture for multi-level fea-
ture learning, we generate a hierarchy of mesh levels
(MO .., M ..., ME) of increasing simplicity, interlinked
by pooling trace maps. Each level of simplified mesh corre-
sponds to a level of downsampled 3D sparse voxels. For
mesh simplification, there are two well-known methods
from the geometry processing domain: Vertex Clustering
(VO) [49] and Quadric Error Metrics (QEM) [16]. During
the vertex clustering process, a 3D uniform grid with cu-
bical cells of a fixed side length is placed over the input
graph and all vertices falling into the same cell are grouped.
This generates uniform-sampled simplified meshes, possi-
bly with topology changes and non-manifold faces. On the
contrary, the QEM method incrementally collapses mesh
edges according to an approximate error of the geomet-
ric distortion introduced by this collapse, and thus has ex-
plicit control over mesh topology. Since our goal is to ex-
tract meaningful geodesic information, we prefer the QEM
method for its better topology-preserving property. How-
ever, directly applying the QEM method on the original
meshes results in high-frequency signals in noisy areas [51].
Therefore, we apply the VC method on the original mesh for
the first two mesh levels and then apply the QEM method
for the remaining mesh levels. We present an ablation study
on mesh simplification methods in Section 4.4. Image illus-
trations can be found in Supplementary Section B.

4. Experiments

To demonstrate the effectiveness of our proposed
method, we now present various experiments conducted on
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two large-scale 3D scene segmentation datasets, which con-
tain meshed point clouds of various indoor scenes. We first
introduce the datasets and evaluation metrics that we used
in Section 4.1, and then present the implementation details
for reproduction in Section 4.2. We report the results on the
ScanNet and Matterport3D datasets in Section 4.3, and the
ablation studies in Section 4.4.

4.1. Datasets and Metrics

ScanNet v2 [8]. ScanNet dataset contains 3D meshed point
clouds of a wide variety of indoor scenes. Each scene is
provided with semantic annotations and reconstructed sur-
faces represented by a textured mesh. The dataset contains
20 valid semantic classes. We perform all our experiments
using the public training, validation, and test split of 1201,
312, and 100 scans, respectively.

Matterport3D [4]. Matterport3D is a large RGB-D dataset
of 90 building-scale scenes. Similar to ScanNet, the full 3D
mesh reconstruction of each building and semantic annota-
tions are provided. The dataset contains 21 valid semantic
classes. Following previous works [51, 45, 55, 57, 9, 23],
we split the whole dataset into training, validation, and test
sets of size 61, 11, and 18, respectively.

Metrics. For evaluation, we use the same protocol as intro-
duced in previous works [51, 45, 7, 17]. We report mean
class intersection over union (mloU) results for ScanNet
and mean class accuracy for Matterport3D. During testing,
we project the semantic labels to the vertices of the original
meshes and test directly on meshes.

4.2. Implementation Details

In this section, we discuss the implementation details for
our experiments. VMNet is coded in Python and PyTorch
(Geometric) [ 14, 42]. All the experiments are conducted on
one NVIDIA Tesla V100 GPU.

Data Preparation. We perform training and inference on
full meshes without cropping. For the Euclidean branch of
VMNet, input meshes are voxelized at a resolution of 2 cm.
To compute the hierarchical mesh levels accordingly for the
geodesic branch, we first apply the VC method on the in-
put mesh with the respective cubical cell lengths of 2 cm
and 4 cm for the first two mesh levels. For each remaining
level, the QEM method is applied to simplify the mesh until
the vertex number is reduced to 30% of its preceding mesh
level. For better generalization ability, edges of all mesh
levels are randomly sampled during training. We use the
vertex colors as the only input features and apply data aug-
mentation, including random scaling, rotation around the
gravity axis, spatial translation, and chromatic jitter.

Training Details. We train the network end-to-end by min-
imizing the cross entropy loss using Momentum SGD with
the Poly scheduler decaying from learning rate le-1.

thtp://kaldir.vc.in.tum.de/scannetibenchmark/

Method \ mloU(%) \ Conv Category

TangentConv [57] 43.8
SurfaceConvPF [68] 44.2
3DMV [9] 48.3
TextureNet [23] 56.6
JPBNet [6] 63.4 2b-3D
MVPNet [25] 64.1
V-MVFusion [29] 74.6
BPNet* [20] 74.9
PointNet++ [45] 339
FCPN [46] 447
PointCNN [33] 45.8
DPC [13] 59.2 .
MCCN [19] 633 PointConv
PointConv [65] 66.6
KPConv [58] 68.4
JSENet [21] 69.9
SparseConvNet [17] 72.5
Ii\/[inkowskiNet 71| 736 | SparseConv
SPH3D-GCN [32] 61.0
HPEIN [26] 61.8 GraphConv
DCM-Net [51] 65.8
VMNet (Ours) \ 74.6 \ Sparse+Graph Conv

Table 1. Mean intersection over union scores on ScanNet
Test [8]. Detailed results can be found on the ScanNet bench-
marking website’. * indicates a concurrent work.

4.3. Results and Analysis

Quantitative Results. We present the performance of our
approach compared to recent competing approaches on the
ScanNet benchmark [8] in Table 1. All the methods are
grouped by the approaches’ inherent convolutional cate-
gories as discussed in Section 2. As shown in Table 1, our
method leads to a 74.6% mloU score, achieving a signifi-
cant performance gain of 8.8 % mloU comparing to the ex-
isting best-performing graph convolutional approach, i.e.,
DCM-Net [51], and 1.0 % mloU comparing to the lead-
ing sparse convolutional approach, i.e., MinkowskiNet [7].
Our method achieves results comparable to the SOTA 2D-
3D method BPNet [20], which is a concurrent work on
CVPR2021 utilizing both 2D and 3D data while VMNet
takes as input only the 3D data. For a fair comparison, the
result of OccuSeg [ 18] is not listed in this table, since it uti-
lizes extra instance labels for training. We also evaluate our
algorithm on the novel Matterport3D dataset [4] and report
the results in Table 2. VMNet achieves overall state-of-the-
art results outperforming the previous best method by 1% in
terms of mean class accuracy. Since some methods only re-
port results in one of these two datasets, the listed methods
in Tables | and 2 are different.

Qualitative Comparison. Fig. 7 shows our qualitative re-
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Method | mAcc(%) | Cat | wall floor cab bed chair sofa table door wind shf pic cntr desk curt ceil fridg show toil sink bath other
TangentConv [57] 46.8 1 56.0 87.7 415 73.6 607 693 38.1 550 307 339 50.6 385 197 480 451 226 359 507 493 564 16.6
3DMV [9] 56.1 I |796 955 597 823 705 733 485 643 557 83 554 348 24 801 948 47 540 711 475 767 199
TextureNet [23] 63.0 1 63.6 913 476 824 665 645 455 694 609 305 77.0 423 443 752 923 491 660 80.1 60.6 864 27.5
SplatNet [55] 26.7 Ir|9.8 957 303 199 776 369 198 336 158 157 00 00 00 123 757 00 00 106 41 203 17
PointNet++ [45] 43.8 Im | 80.1 813 341 718 597 635 581 496 287 1.1 343 1001 00 688 793 0.0 290 704 294 62.1 8.5
ScanComplete [11] 44.9 | 790 959 319 704 687 414 351 320 375 175 270 372 11.8 504 976 0.1 157 749 444 535 218
DCM-Net [51] 66.2 IV | 784 936 645 895 700 853 46.1 813 634 437 732 399 479 603 893 658 437 860 49.6 875 311
VMNet (Ours) 67.2 V | 8.9 944 562 895 837 700 540 767 632 446 721 291 384 797 945 47.6 801 850 492 88.0 29.0

Table 2. Mean class accuracy scores on the Matterport3D Test [4]. The same network definition as for the ScanNet benchmark is used.
Conv Category: (I) 2D-3D, (II) PointConv, (IIT) VoxelConv, (IV) GraphConv, (V) Sparse+Graph Conv.

Method | Params (M) Iéﬁency ,(FHSIS) mloU(%)
SparseConvNet [17] 30.1 712 102 72.5
MinkowskiNet [7] 37.8 629 105 73.6
VMNet (Ours) 17.5 - 107 74.6

Table 3. Comparison of run-time complexity against SOTA
sparse voxel-based methods. For a fair comparison, we report the
latencies of both their original versions (Ori) and our implementa-
tions using the same type of sparse convolution (TS) as VMNet.

Information | mloU(%) Baseline Intra Inter | mloU(%)
Geo Only 58.1 v 70.2
Euc Only 71.0 v v 72.1
VMNet(Geo+Euc) 73.3 v v v 73.3

Table 4. Ablation study: (Left) Euclidean and geodesic informa-
tion; (Right) Network components.

sults on the ScanNet validation set. Compared to the SOTA
sparse voxel-based method SparseConvNet, which operates
in the Euclidean domain solely, VMNet generates more dis-
tinctive features for close-located objects and better handles
complex geometries thanks to the combined Euclidean and
geodesic information. More qualitative results can be found
in Supplementary Section C.

Complexity. We compare our method with two SOTA
sparse voxel-based methods, i.e., SparseConvNet [17] and
MinkowskiNet [7], for their run-time complexity. We ran-
domly select a scene from the ScanNet validation set and
compute the latency results by averaging the inference time
of 100 forward passes. Although the accuracies of sparse
voxel-based methods are not dependent on the implementa-
tion of sparse convolution, the latencies of these methods
are highly dependent on the implementation. Therefore,
we re-implement SparseConvNet and MinkowskiNet using
the same version of sparse convolution (torchsparse [56]) as
VMNet for a fair comparison. As shown in Table 3, VM-
Net achieves the highest mIoU score with the least number
of parameters. It implies that, compared to extracting fea-
tures in the Euclidean domain alone, combining Euclidean
and geodesic information leads to more effective aggrega-
tion of features, even with a simpler network structure. The
latency of VMNet is slightly higher than our new imple-
mentations of the other two methods. This is caused by the
unoptimized projection operations, which are left for future
improvement. More complexity comparisons can be found
in Supplementary Section D.

Operator | mloU(%) Method | mloU(%)
Vector Attention 72.3 VC only 72.3
EdgeConv 72.6 QEM only 729
Scalar Attention 73.3 VC + QEM 73.3

Table 5. Ablation study: (Left) Attentive operators; (Right) Mesh
simplification.

4.4. Ablation Study

In this section, we conduct a number of controlled exper-
iments that demonstrate the effectiveness of building mod-
ules in VMNet, and also examine some specific decisions
in VMNet design. Since the test set of ScanNet is not avail-
able for multiple tests, all experiments are conducted on the
validation set, keeping all hyper-parameters the same.
Euclidean and Geodesic Information. In Section 3, we
advocate the combination of Euclidean and geodesic infor-
mation. To investigate their impacts, we compare VMNet
to two baseline networks: “Euc only” is a U-Net structure
based on sparse convolutions operating on voxels and “Geo
only” has the same structure but is based on the proposed
intra-domain attention layers operating on meshes. For a
fair comparison, we keep the layer numbers of these base-
lines the same as the Euclidean branch of VMNet but in-
crease their channel numbers to make sure all the compared
methods have similar parameter sizes. As shown in Table 4
(Left), VMNet outperforms the two baselines showcasing
the benefit of combining information from the two domains.
Network Components. In Table 4 (Right), we evaluate
the effectiveness of each component of our method. “Base-
line” represents the Euclidean branch of VMNet, which is
a U-Net network built on voxel convolutions. “Intra” refers
to the intra-domain attentive aggregation module and “In-
ter” refers to the inter-domain attentive fusion module. As
shown in the table, by combining the intra-domain atten-
tive aggregation module with the baseline, we can improve
the performance by 1.9%. This improvement is brought by
the introduction of geodesic information through feature re-
finement on meshes. From the inter-domain attentive fusion
module, we further gain about 1.2% improvement in perfor-
mance by adaptive fusion of features from the two domains.
Attentive Operators. In Sections 3.3 and 3.4, we adopt the
standard scalar attention [59] to build the intra-domain at-
tentive aggregation module and the inter-domain attentive
fusion module. In Table 5 (Left), we evaluate the influ-

15494



Input Mesh

SparseConvNet

Il Unclassified Wall Floor [l Cabinet Bed
[ Toilet WM Sink Bathtub [l Other Furniture

Chair [l Sofa Table [l Door

Window [l Bookshelf

Ground Truth

I T

Picture [l Counter Desk Curtain Refrigerator Shower Curtain

Figure 7. Qualitative results on ScanNet Val [8]. The key parts for comparison are highlighted by dotted red boxes.

ence of different forms of attentive operators in our archi-
tecture. “Scalar Attention” refers to the operators used in
VMNet as presented in Equations 2 and 3. ‘“Vector At-
tention” represents a variant of Scalar Attention, in which
attention weights are not scalars but vectors, which can
modulate individual feature channels. It is widely adopted
in previous attention-based methods operating on 3D point
clouds [60, 71]. Moreover, we implement a non-attention
baseline building on the popular EdgeConv [61], which is
originally proposed to operate on kNN graphs of 3D point
clouds. As shown in the table, the scalar attention used
in VMNet achieves the best result outperforming the non-
attention baseline “EdgeConv” by 0.7% and the attentive
variant “Vector Attention” by 1.0%. Interestingly, the non-
attention baseline “EdgeConv” performs slightly better than
the attention-based baseline “Vector Attention”. A possible
reason is that “Vector Attention” adaptively modulates each
individual feature channel and this property appears to be
overfitting in our case.

Mesh Simplification. In Section 3.5, we discuss two mesh
simplification methods Vertex Clustering (VC) and Quadric
Error Metrics (QEM) for multi-level feature learning. We
apply the VC method on the first two mesh levels to re-
move high-frequency signals in noisy areas, and then apply
the QEM method on the remaining mesh levels for its bet-
ter topology-preserving property. To justify our choice, we
train three models with the same network definition but per-
forming on different mesh hierarchies, and compare their
performances in Table 5 (Right). “VC+QEM?” refers to the
mesh hierarchy simplified by the combination of the VC and
QEM methods as described in Section 4.2. For “VC only”,
at each mesh level M!, we set the cubical cell lengths of
the VC method to the same size as the lengths of voxels
in the corresponding voxel level S!. For “QEM only”, at

each mesh level M!, the QEM method simplifies the mesh
until the vertex number is reduced to 30% of its preced-
ing mesh level M!=1 As shown in the table, we witness
a significant performance gap of 1.0% between the results
of “VC+QEM” and “VC only”. We assume that the more
faithful geodesic information provided by meshes simpli-
fied through the QEM method leads to the performance
gain. We also notice that the performance of “QEM only” is
slightly lower than the one of “VC+QEM?”. It may be caused
by the resulting high-frequency noises of directly applying
the QEM method on the original meshes.

5. Conclusion

In this paper, we have presented a novel 3D deep archi-
tecture for semantic segmentation of indoor scenes, named
Voxel-Mesh Network (VMNet). Aiming at addressing the
problem of lacking consideration for the geodesic informa-
tion in voxel-based methods, VMNet takes advantages of
both the semantic contextual information available in voxels
and the geometric surface information available in meshes
to perform geodesic-aware 3D semantic segmentation. Ex-
tensive experiments show that VMNet achieves state-of-
the-art results on the challenging ScanNet and Matter-
port3D datasets, significantly improving over strong base-
lines. We hope that our work will inspire further investi-
gation of the idea of combining Euclidean and geodesic in-
formation, the development of new intra-domain and inter-
domain modules, and the application of geodesic-aware net-
works to other tasks, such as 3D instance segmentation.
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