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Abstract

The goal of gait recognition is to learn the unique spatio-
temporal pattern about the human body shape from its tem-
poral changing characteristics. As different body parts be-
have differently during walking, it is intuitive to model the
spatio-temporal patterns of each part separately. However,
existing part-based methods equally divide the feature maps
of each frame into fixed horizontal stripes to get local parts.
It is obvious that these stripe partition-based methods can-
not accurately locate the body parts. First, different body
parts can appear at the same stripe (e.g., arms and the
torso), and one part can appear at different stripes in dif-
ferent frames (e.g., hands). Second, different body parts
possess different scales, and even the same part in different
frames can appear at different locations and scales. Third,
different parts also exhibit distinct movement patterns (e.g.,
at which frame the movement starts, the position change
frequency, how long it lasts). To overcome these issues,
we propose novel 3D local operations as a generic fam-
ily of building blocks for 3D gait recognition backbones.
The proposed 3D local operations support the extraction of
local 3D volumes of body parts in a sequence with adap-
tive spatial and temporal scales, locations and lengths. In
this way, the spatio-temporal patterns of the body parts
are well learned from the 3D local neighborhood in part-
specific scales, locations, frequencies and lengths. Experi-
ments demonstrate that our 3D local convolutional neural
networks achieve state-of-the-art performance on popular
gait datasets. Code is available at: https://github.
com/yellowtownhz/3DLocalCNN .

1. Introduction
Gait is one of the most important and effective biometric

patterns since it can be authenticated at a distance from a
∗This work was done when the author was visiting Alibaba as a re-

search intern.
†Corresponding author.
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Figure 1. Blocks in backbone CNNs. All these blocks extract
features from a local neighborhood. In C2D and C3D, the local
neighborhood is a fixed 2D patch (k×k) or 3D volume (k×k×k).
Non-local networks learn adaptive long-range dependency with all
positions (H×W ×T ). Our 3D local CNN is designed to localize
adaptive 3D volumes, instead of a fixed local neighborhood, for
multiple local paths and extract corresponding local features.

camera without subject’s cooperation. Gait recognition has
broad usage in crime prevention, forensic identification and
social security insurance [2, 14]. In real-world scenarios,
beyond the change of body shape caused by walking move-
ment, variations such as bag-carrying, coat-wearing, and
camera viewpoints switch, also lead to dramatic changes in
body appearance, resulting in significant challenges to gait
recognition.

The essential goal of gait recognition is to learn the
unique and invariant representations from the temporal
changing characteristics of human body shapes. Early
works in gait recognition focused on extracting global fea-
tures using convolutional neural networks (CNNs) [35, 20,
29, 19]. GaitNet [41, 40] proposed an auto-encoder frame-
work to extract the gait-related features from raw RGB im-
ages and then used LSTMs to model the temporal changes
of gait sequences. Thomas et al. [33] directly applied 3D-
CNNs to extract the sequential information using a model
pretrained on natural image classification tasks. However,
global features do not consider the spatial structure and lo-
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cal details of the body shape, thus are not discriminative
enough when faced with viewpoint variations. A natural
choice is to learn the detailed part-based local features com-
plementary to the global features or learn features embed-
ding for both of them.

Since human body consists of well-defined parts, i.e.,
head, arms, legs and torso, part-based models have the po-
tential to solve the variations in gait recognition. Previous
part-based models extracted part features by equally divid-
ing the feature maps into fixed horizontal stripes. In Gait-
Part [7], 2D appearance features were firstly extracted by
applying pre-defined horizontal partition to the output CNN
feature maps of each input frame. Then, the correspond-
ing features of the same stripe from all frames were ag-
gregated by temporal concatenation of local short-range 2D
part features. In GaitSet [3] and GLN [11], frame-level fea-
ture maps of the last 2D convolutions were firstly split into
uniform stripes, then max-pooling along the set dimension
was applied to them to extract set-level part features. In
MT3D [18], multiple temporal-scale 3D CNNs were used
to explore the temporal relations in sequences. Then, the
output feature maps were partitioned into multiple stripes
too. However, two issues are neglected by these partition-
based gait recognition methods. First, different parts of the
human body appear at different scales, and even the same
part can appear at different locations and scales in different
frames [3]. Second, different parts exhibit distinct move-
ment patterns, e.g., at which frame the movement starts, the
frequency of position changes, and how long it lasts. Thus,
visual appearance and temporal movement changes are mu-
tually dependent in a gait period and the characteristics of
different natural human body parts are distinct from each
other. It suggests that the gait recognition model should
support the extraction and processing of adaptive 3D local
volumes for each specific human body part.

To overcome the aforementioned issues in gait recogni-
tion, we propose novel 3D local operations as a generic fam-
ily of building blocks for 3D gait recognition backbones.
Our 3D local operations support the extraction of local 3D
volumes in a sequence with adaptive spatial and tempo-
ral scales, locations and lengths. In this way, the 3D lo-
cal neighborhoods of different body parts are processed in
specific part scales, locations and movement locations, fre-
quencies, lengths, as shown in Fig. 1. 2D local operation
is already proved to be valid in image recognition [10, 36],
where a differentiable 2D attention mechanism is utilized to
yield 2D image/feature patches of smoothly varying loca-
tions and scales. However, due to the different mechanism
of temporal foveation [21], it is very challenging to adapt
this idea to 3D local operations. The reason is in two-fold.
1) Spatial sampling of pixels follows the foveation of the
human eye, while temporal sampling of frames is different
in following the distribution of optical flow. 2) Spatial sam-

pling processes 2D patches, temporal sampling deals with
1D sequences, and spatio-temporal sampling processes 3D
video volumes. Therefore, a new strategy for 2D and 1D
joint sampling is required.

Our local operation consists of four modules: localiza-
tion, sampling, feature extraction, and fusion. The local-
ization module is designed to learn the adaptive spatial and
temporal scales, locations and temporal lengths of six body
parts: head, torso, left arm, right arm, left leg and right leg.
The sampling module samples local volumes of smoothly
varying locations, scales and temporal lengths. The fea-
ture extraction module consists of several convolution and
ReLU [22] layers as in general convolutional blocks. The
fusion module is formed as a concatenation layer of global
and local outputs followed by a 1 × 1 × 1 convolutional
layer. In practice, any building block of existing 3D back-
bone CNNs can be viewed as a global path, and the pro-
posed local path can be easily inserted into these blocks
without any change in the training scheme. Furthermore,
the architecture of each component in the local operation is
quite flexible for different configurations.

The main contributions of this work are summarized as
follows:

• Compared with C3D [30], P3D [24] and Non-local
networks [31], we design a new building block for
backbone 3D CNNs that incorporates part-specific se-
quential information, termed 3D local convolutional
neural networks.

• We implement a simple but effective form of 3D local
CNNs for gait recognition. This model outperforms
state-of-the-art gait recognition methods on two of the
most popular datasets, CASIA-B and OU-MVLP.

• To the best of our knowledge, we are the first to present
a framework that enables the interaction/boosting of
global and local 3D volume information in any layer
of 3D CNNs.

2. Related Works

Gait Recognition. Many studies on gait recognition
have focused on spatial feature extraction and temporal
modeling [11, 7, 3, 41, 40, 33, 34, 18, 4]. To obtain spatial
representations, most CNN-based studies have employed
regular 2D [3, 41] or 3D [33, 34, 18, 35, 20, 29, 19] convo-
lutions operations on entire feature maps along spatial di-
mensions. While it is natural to equally scan over all the
feature maps, these methods ignore the significant differ-
ences among human body parts in a gait task. GaitSet[3, 4],
GaitPart [7], GLN[11], MT3D[18] all tried to obtain part-
level spatial features by equally dividing the output feature
maps of backbone into m stripes horizontally. However, it is
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neither flexible nor fine-grained for the well-defined human
body parts.

Furthermore, to obtain spatio-temporal representations
of gait sequences, many studies directly compress the whole
sequences into one frame [16, 39], or extract frame-level
features from each silhouette independently and simply ag-
gregate frame-level features using Max Pooling along the
temporal dimensions [3, 11], which ignore the temporal cor-
relations between consecutive frames. Another method ex-
plicitly captures the temporal changes using a LSTM to ag-
gregate pose features in time series to generate the final gait
feature [41, 25, 17], retaining unnecessary sequential con-
strains for the periodic gait sequence. All these methods
extract spatial features and temporal features separately, ne-
glecting the spatio-temporal dependency of different posi-
tions of different frames, which is crucial for recognizing
the spatio-temporal movement patterns of human gait.

Local-based model. The local-based model has been
exploited in many visual tasks. In fine-grained image clas-
sification, many works [37, 26, 5, 42, 8, 32] have automati-
cally located informative regions to capture subtle discrim-
inative details that make the subordinate classes different
from each other. Sun et al. [26] leveraged multiple channel
attentions to learn several relevant regions. Wang et al. [32]
used a bank of convolutional filters to capture discrimina-
tive regions in the feature maps. Zheng et al. [42] proposed
trilinear attention sampling network to learn features from
different details.

In person ReID, Li et al. [15] equally divided the out-
put feature maps of the first convolution layer into m lo-
cal regions horizontally and learned local/global separately.
Cheng et al. [6] divided the low-level feature map into
four equal parts horizontally and concatenated them with a
global stream before the last full connection layer. Yang et
al. [36] proposed a set of operations to locate key positions
of human body in a static image. All these previous local-
based models are designed to extract patterns of a spatial
local region in a static image. For gait recognition, it is nat-
ural to extend this insight to the spacetime dimensions of
gait sequences, and extract the spatio-temporal movement
pattern of a specific human body part within a specific time
interval.

Backbone CNNs. Generally used backbone CNNs
[13, 30, 24, 31] show that extracting local features from a
local neighborhood is helpful to improve vision models. As
shown in Fig. 1, C2D [13] and C3D [30] capture short-rage
dependencies within the local neighborhood. Their local
neighborhoods are a fixed 2D patch (k × k) or 3D volume
(k × k × k). P3D [24] splits 3 × 3 × 3 convolutions into
1×3×3 convolutional filters on spatial domain and 3×1×1
convolutions on temporal domain. In Non-local neural net-
works [31], the non-local operation is designed to capture
long-range dependencies between all possible positions in
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Figure 2. The building block of 3D local CNNs. There are four
components: localization module, sampling module, feature ex-
traction module and fusion module. The localization module is
designed to locate the positions of each body parts. The sampling
module is formulated as specific filters (Gaussian or Trilinear or
Mixture) applied to the input. The feature extraction module con-
sists of several convolution and ReLU [22] layers. The fusion
module is formed as a concatenation layer of global and local out-
puts followed by a 1 × 1 × 1 convolutional layer. For simplicity,
here we only illustrate three local paths (the head, left-hand and
right-leg).

the input feature maps, where the entire input can be re-
garded as a fixed global neighborhood. Our 3D local CNN
is proposed to localize an adaptive 3D local volume, instead
of a fixed local neighborhood, for different local paths.

3. Method
In this section, we firstly define a general formulation of

3D local convolution (Sec. 3.1). Then we present an in-
stantiation of 3D convolutional local block (Sec. 3.2), fol-
lowed by the detailed definitions of corresponding compo-
nents (Sec. 3.2.1, 3.2.2 and 3.2.3). Finally, the specific 3D
Local CNN model for gait recognition is presented (Sec.
3.3).

3.1. Formulation

3D local convolution can be viewed as a special form
of the generic convolutional operations in neural networks.
Considering a convolutional block with 3D input x ∈
RH×W×T and the corresponding output y, the 3D local
convolution is defined as:

yi =
1

C(x)

∑
j∈Ω(xi)

f(xi, xj)g(xj). (1)

Here i is the index of an output position (in RH×W×T )
whose response is to be computed and j is the index of
one possible positions in the neighborhood of x, Ω(x). f
computes the correlation coefficient between xi and xj . g
computes a representation of the input signal at the position
j. The response is normalized by a factor C.

Different forms of convolutional operations in neural
networks lie in the definition of the neighborhood Ω(x). As
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shown in Fig. 1, 2D convolution and 3D convolution ag-
gregate features from a fixed local neighborhood patch or
volume. In the non-local neural networks [31], the neigh-
borhood is defined as all the feature maps. Different from
these operations, 3D local convolution define the neighbor-
hood as a 3D local volume with adaptive spatial and tempo-
ral scales, locations and temporal lengths:

Ω(x) = {(p, q, r)|∀(p, q, r) ∈ V,V ⊂ x}, (2)

where V is the adaptive 3D local volume for a specific lo-
cal part. The essential goal of our 3D local convolutional
operation is to sample adaptive 3D volumes V from a given
input x and extract corresponding local features from these
volumes.

3.2. Instantiation

An instantiation of the building block in our 3D Local
CNNs is shown in Fig. 2. This block consists of a global
path, as in other 3D backbone building blocks, and several
local paths. There are four components in our local oper-
ations: localization module (L), sampling module (S), fea-
ture extraction module (FE) and fusion module (FS). The
localization module generates the position/scale of the local
volume for the corresponding local part based on the global
features. Then, the sampling module samples specific lo-
cal 3D volumes with the given position/scale. The feature
extraction module is designed to extract the features from
the sampled local volume. The feature fusion module is de-
signed to synthesize the generated global and local features.

3.2.1 Localization

Inspired by the differentiable attention mechanisms used in
[36, 10, 9], we specify our localization module by seven
independent parameters: (∆x,∆y,∆t, δx, δy, δt, σ

2, γ).
They are dynamically determined for each frame. (∆x,∆y)
are the real-valued height and width offsets of the sampling
grid center to the predefined center of the corresponding
part in each frame, while ∆t is the frame offset of the whole
sequence. (δx, δy) are the real-valued spatial stride of the
sampling grid, while δt is the temporal stride. σ2 is the
isotropic variance of Gaussian filters. The combination of
δ and σ2 controls the “zoom” of the local part. γ acts as a
confidence score that multiplies the filter response. Ideally,
γ indicates the presence of the focused part, i.e., it should
be close to 0 when faced with occlusions.

GivenH×W×T output feature maps of the global path,
we utilize a convolutional block with convolution, ReLU,
batch normalization, max pooling and fully connected lay-
ers to infer the following parameters:

(tanh−1(∆x), tanh−1(∆y), tanh−1(∆t),

log δx, log δy, log δt, log σ2, σ−1(γ)) =L(G(I)),
(3)

where G is the global module, I is the input, L is the local-
ization module, and σ(γ) = 1

1+exp(−γ) . (∆x,∆y,∆t) are
normalized and scaled to (−1, 1) to ensure the grid center
is within the sampling input. The variance and stride are
emitted in the log scale to ensure positivity. The confidence
score γ is scaled to (0, 1).

The architecture of our localization module is detailed
in the Table 1 in the supplementary details. Batch Normal-
ization and ReLU non-linearity are adopted after input and
each convolutional layer. Notably, to ensure that the global
path focuses on representation only, gradients of this mod-
ule are not propagated to the global path.

3.2.2 Sampling

To sample local 3D volumes from a given input, we con-
sider an explicitly three-dimensional form of attention. An
array of 3D filters is applied to the input sequence, yielding
a sequence of local patches with smoothly varying location
and zoom. Given the expected local output sizeM×N×L,
the M ×N ×L grid of sampling filters is applied to the in-
put based on the coordinates of the grid center and the stride
distance between adjacent filters. The larger the stride is,
the larger the area of the input that will be visible in the
attention volume, but the lower the effective resolution of
the volume will be. The larger the isotropic variance is,
the smoother the output volume is, but the less clear of the
details of local volume will be. Based on the normalized
prior volume center location (cx, cy, ct), the volume center
offset (∆x,∆y,∆t) and stride (δx, δy, δt) provided by the
localization module (all of them are real-valued), the grid
location (µX , µY , µT ) at row i, column j and frame k in
the volume is:

µiX = cxW +
∆x

2
W + (i−M/2− 0.5)δx, (4)

µjY = cyH +
∆y

2
H + (j −N/2− 0.5)δy, (5)

µkT = ctT +
∆t

2
T + (k − L/2− 0.5)δt, (6)

where H ×W × T is the size of block input I.
Spatial filtering. Inspired by the techniques for differ-

entiable attention in [36, 10, 9] that mimics the foveation
of the human eye [10], we adopt Gaussian filters for spatial
filtering. For Gaussian filters, the coordinate of the sam-
pling grid is also the mean location of the filter. Given the
isotropic variance σ2 output by the localization module, the
horizontal and vertical filterbank weight matrices GX and
GY (dimensions M ×W and N ×H respectively) are de-
fined as follows:

GX [i, p] =
1

ZX
exp(− (µiX − p)2

2σ2
), (7)
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Figure 3. The framework of 3D local CNN for gait recognition (better viewed in color). The backbone path in each of the three blocks is
the same as GaitPart. The six colorful paths in each block correspond to the head, left-arm, right-arm, torso, left-leg and right-leg paths.

GY [j, q] =
1

ZY
exp(−

(µjY − q)2

2σ2
), (8)

where (i, j) is the spatial index of a point in the attention
3D volume and (p, q) is the spatial index of a point in the
input. ZX and ZY are the normalization constants that en-
sure

∑
p GX [i, p] = 1 and

∑
k GY [j, k] = 1.

Temporal filtering. Inspired by techniques for differen-
tiable motion layers in CNNs [12] and video interpolation
[21], a natural choice for the temporal sampling of a vol-
ume is trilinear interpolation. Similar to Gaussian filters,
here we formulate temporal trilinear interpolation functions
as weight matrices TT (dimensionsL×T ). The interpolated
value at the target location is computed as a linear combi-
nation of values at the ceil and floor integer locations:

TT [k, r] =


dµkT e − µkT , if r = bµkT c
µkT − bµkT c, if r = dµkT e
0, else

(9)

where b·c is the floor function and d·e is the ceil function.
k is the frame index in the attention 3D volume and r is the
frame index in the input.

Finally, the overall mixture sampling operation is formu-
lated as three one-dimensional sampling, which combines
spatial Gaussian filters that mimics the foveation of the hu-
man eye [10] and temporal linear filters assuming that opti-
cal flow between consecutive frames is locally linear. Based
on (GX ,GY , TT ) and the confidence score γ privided by the
localization module, the output 3D local volume V from in-
put I is sampled as:

V = γGXGY TTI. (10)
Interestingly, we will show by experiments (Table 4) that

our 3D local models are not sensitive to the choice of sam-
pling filters. Only using Gaussian filters or linear filters
shows comparable performance with the aforementioned
combined filters. This results indicates that the generic local
behavior is the main reason for the observed improvements.

3.2.3 Feature Extraction

As illustrated in Fig. 2, the feature extraction module is
used to extract the features of the local path. All types

of convolutional blocks, such as C3D[30], P3D[24] and
MT3D[18], are candidates. The current incarnation of the
feature extraction module in this paper is restricted to one
convolutional layer of filter size 3×3×3 followed by ReLU,
and this design is made based more on convenience rather
than necessity. More sophisticated architecture in feature
extraction module may bring in larger performance gains,
but that is not the priority of this paper. The number of
output feature maps of this module is set to be half of that
in the global path. The output and the input of the feature
extraction module have the same height, width and length.

3.2.4 Feature Fusion

The feature fusion module is designed to produce more ro-
bust and discriminative representations by synthesizing on
given global and local outputs. In this paper, feature fusion
module is formed as a concatenation layer of global and
local outputs along the channel dimension, followed by a
1 × 1 × 1 convolutional layer with ReLU, which refines
representations based on the synthesis of both local and
global information and ensure that the cardinality remains
unchanged. More sophisticated mechanism like attention
may bring in more performance gains, but it is not the pri-
ority of this paper. The number of output feature maps of
this module is set to be the same as the global path.

3.3. 3D Local CNN for Gait Recognition

To insert our 3D local CNN block into backbone CNNs,
we need to define the following settings based on prior
knowledge: 1) the number of local paths, 2) the prior po-
sition of the center of the sampling grid (cx, cy, ct) of each
path, and 3) the expected dimension of the local sampling
output (M,N,L) for each path.

For feature learning of gait recognition, it is quite natural
to define six local paths corresponding to the head, left-arm,
right-arm, torso, left-leg and right-leg. (as shown in Fig.
3). Following [1] and common sense knowledge, the gen-
eral (height, width, length) proportions (pH , pW , pL) of the
head, left-arm, right-arm, torso, left-leg right-leg of the hu-
man body are summarized in Table 3 in the supplementary
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Table 1. Averaged rank-1 accuracy on CASIA-B, identical views cases excluded, of GaitSet [3], GaitPart [7], GLN [11] and MT3D [18].
The probe sequences are divided into three subsets (NM, BG and CL) according to the walking conditions. 64× 44 and 128× 88 denote
the input size of each silhouette. Our 3D local CNN shows a significant improvement, especially in the most challenging CL scenario
where the temporal changing characteristics dominate the recognition, revealing the superiority of our adaptive local volume sampling and
processing mechanism.

Gallery NM #1-4 0◦ – 180◦ MeanProbe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

GaitSet 64× 44 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart 64× 44 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

NM MT3D 64× 44 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
#5-6 3DLocal 64× 44 96.0 99.0 99.5 98.9 97.1 94.2 96.3 99.0 98.8 98.5 95.2 97.5

GaitSet 128× 88 91.4 98.5 98.8 97.2 94.8 92.9 95.4 97.9 98.8 96.5 89.1 95.6
GLN 128× 88 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9

3DLocal 128× 88 97.8 99.4 99.7 99.3 97.5 96.0 98.3 99.1 99.9 99.2 94.6 98.3
GaitSet 64× 44 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 64× 44 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

BG MT3D 64× 44 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
#1-2 3DLocal 64× 44 92.9 95.9 97.8 96.2 93.0 87.8 92.7 96.3 97.9 98.0 88.5 94.3

GaitSet 128× 88 89.0 95.3 95.6 94.0 89.7 86.7 89.7 94.3 95.4 92.7 84.4 91.5
GLN 128× 88 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96.0 97.5 95.0 88.1 94.0

3DLocal 128× 88 94.7 98.7 98.8 97.5 93.3 91.7 92.8 96.5 98.1 97.3 90.7 95.5
GaitSet 64× 44 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 64× 44 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

CL MT3D 64× 44 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
#1-2 3DLocal 64× 44 78.2 90.2 92.0 87.1 83.0 76.8 83.1 86.6 86.8 84.1 70.9 83.7

GaitSet 128× 88 66.3 79.4 84.5 80.7 74.6 73.2 74.1 80.3 79.7 72.3 62.9 75.3
GLN 128× 88 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5

3DLocal 128× 88 78.5 88.9 91.0 89.2 83.7 80.5 83.2 84.3 87.9 87.1 74.7 84.5

details. To validate the effectiveness of 3D local CNNs, we
insert the proposed local operations after every two layers
of the backbone networks. As in [7, 3, 11], the backbone
network consists of three building blocks. Each block is
composed of two convolutional layers, followed by ReLU
layers. We adopt the spatial pooling and temporal pooling
from GaitPart [7], the compact block and the linear modules
from GLN [11].

4. Experiments
4.1. Datasets and Evaluation Protocols

CASIA-B [38] is the most popular gait datasets for eval-
uation and contains 124 subjects. There are three walking
conditions: normal walking (NM, 6 variants per subject),
walking with bags (BG, 2 variants per subject), and walk-
ing in different clothes (CL, 2 variants per subject). In each
condition, the subjects are sampled in 11 view angles (0◦-
180◦ with interval 18◦). To evaluate the performance, we
use the same protocol as [3, 7]. We take 74 subjects for
training and the rest 50 subjects for test. During the test, the
first 4 sequences of NM condition (NM #1-4) are regarded
as gallery, and the remaining 6 sequences (NM #5-6, BG
#1-2 and CL #1-2) are regarded as probe.

Table 2. Averaged rank-1 accuracy on OU-MVLP, identical
views cases excluded of GaitSet [3], GaitPart [7] and GLN [11].
For evaluation, the first variant of normal walking (NM) for each
subject is taken as the gallery with the rest as the probe.

Probe Gallery all 14 views
GaitSet GaitPart GLN 3DLocal

0◦ 79.5 82.6 83.8 86.1
15◦ 87.9 88.9 90.0 91.2
30◦ 89.9 90.8 91.0 92.6
45◦ 90.2 91.0 91.2 92.9
60◦ 88.1 89.7 90.3 92.2
75◦ 88.7 89.9 90.0 91.3
90◦ 87.8 89.5 89.4 91.1
180◦ 81.7 85.2 85.3 86.9
195◦ 86.7 88.1 89.1 90.8
210◦ 89.0 90.0 90.5 92.2
225◦ 89.3 90.1 90.6 92.3
240◦ 87.2 89.0 89.6 91.3
255◦ 87.8 89.1 89.3 91.1
270◦ 86.2 88.2 88.5 90.2
Mean 87.1 88.7 89.2 90.9

OU-MVLP [28] is the largest public gait dataset. It is
composed of 10307 subjects (5153 subjects for training,
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5154 subjects for testing). However, only the sequences
of normal walking (NM, 2 variants per subject) are avail-
able for each subject. Each subject has 14 views, and the
14 views are uniformly distributed between [0◦, 90◦] and
[180◦, 270◦] at an interval of 15◦. At the test phase, the se-
quences with index #01 are grouped into the galleries while
the sequences with index #02 are grouped into the probes.

4.2. Implementation Details

All models are implemented in PyTorch [23] and are ran-
domly initialized. The sampling module adopts Mixture
mechanism. To make sure the spatial centers of adjacent
frames are consistent, the prior spatial ceter location pa-
rameters (cx, cy) of each part are smoothed using the cen-
ter offset (∆x,∆y) of the corresponding part of previous
two frames, i.e., ĉtx = ctx + (∆xt−1 + ∆xt−2)/2, ĉty =
cty+(∆yt−1+∆yt−2)/2. The silhouettes are pre-processed
using methods proposed in [27]. In a mini-batch, the num-
ber of subjects and the number of sequences for each subject
are set to (8, 16) for CASIA-B and (32, 16) for OU-MVLP.
At the training phase, the sequences are sampled according
to [7], with random horizontal flipping. Adam optimizer is
used with a learning rate of 1e-4. In CASIA-B, the model
is trained for 120k iterations. In OU-MVLP, the iterations
is set to 250k, and the learning rate is reduced to 1e-5 at
150k iteration. For evaluation, all silhouettes of a gait se-
quences are taken to obtain the final representation. Since
OU-MVLP has 20 times more sequences than CASIA-B,
we double the number of channels in the convolutional lay-
ers (C1=C2=64, C3=C4=128, C5=C6=256). To make a
fair comparison with GLN [11], we adopt the same compact
block and the cross-entropy loss. The details can be found
in [11]. And the experiments on CASIA-B are conducted
on two input sizes respectively (64× 44 and 128× 88).

4.3. Comparison with State-of-the-Art Methods

CASIA-B. Table 1 demonstrates the superiority of 3D
local CNN over all state-of-the-art models. Compared with
GaitSet [3] and GLN [11], 3D local CNN clearly presents
better performance with both two input sizes. Under the
most challenging condition of walking in different clothes
(CL), 3D local CNN exceeds GaitSet by 13.0% and GLN
by 6.8%. Both GaitSet and GLN consider silhouettes as a
set, instead of a sequence. This result reveals the superiority
of processing local movement patterns in a sequence rather
than in a set without order information.

Compared with GaitPart [7], our method also outper-
forms it with a great margin. This result shows that our
3D local volume operations with adaptive spatio-temporal
locations, scales and lengths capture more effective local
part information than horizontally splitting feature maps
into stripes as parts.

More importantly, we find that our method surpasses

Table 3. Performance on CASIA-B with 3D local CNN inserted
into different blocks of the backbone model.

Setting Block1 Block2 Block3 NM BG CL

a 94.3 90.4 76.7
b X 95.0 91.9 77.7
c X 95.7 92.6 79.5
d X 96.4 93.1 81.6
e X X 97.1 93.8 82.7
f X X X 97.5 94.3 83.7

Table 4. Performance on CASIA-B with different sample mecha-
nisms in 3D local blocks.

Type NM BG CL

Gaussian 97.4 94.0 83.2
Trilinear 96.2 93.7 82.9
Mixture 97.5 94.3 83.7

other methods with a great performance margin in CL sce-
nario. In CL scenario, large appearance changes makes
temporal changing characteristics (the core concept of gait)
dominate the recognition compared with visual appear-
ances. Therefore, our 3D local CNN is much better in learn-
ing the core gait representations than SOTA methods.

OU-MVLP. As shown in Table 2, 3D local CNN
achieves the best performance under all cross-view condi-
tions. For some probe sequences, there are no correspond-
ing sequences in the gallery. If the subjects without corre-
sponding samples in probe are discarded, the average rank-
1 accuracy of all probe views are 96.5%, while GaitSet is
93.3%, GaitPart is 95.1% and GLN is 95.6%.

4.4. Ablation Experiments

Architecture. We first investigate the performance when
the proposed local operations are inserted into different
blocks of the backbone model. The results are summarised
in Table 3. Inserting our 3D local block into any block
of the backbone model can bring significant performance
gain. This validates our design of synthesizing global and
3D local information in building blocks is rational. Insert-
ing 3D local blocks into higher layers tends to perform bet-
ter than inserting them into lower layers. This is because
in higher layers the expressive power of learned representa-
tions are strong enough to convey the semantic concepts of
well-defined human body parts.

Sampling. In Sec. 3.2.2, we describe three variants of
the sampling module: Gaussian, Trilinear and Mixture. Ta-
ble 4 shows the results of applying these three sampling
mechanisms respectively. We can see that these three set-
tings have comparative performance, indicating that our 3D
local operation is general and our model is not sensitive to
specific implementations of the sampling module.

Local Path and Feature Extraction. To validate the
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Table 5. Performance on CASIA-B with different settings of local operations. “Head”, “LArm”, “RArm”, “Torso”, “LLeg” and “RLeg”
denote six different local paths. “FE” denotes the feature extraction module for all local paths. Size: 64× 44.

Setting Global Head LArm RArm Torso LLeg RLeg FE NM BG CL

a X 94.3 90.4 76.7
b X X 94.7 91.0 77.9
c X X X X 95.5 91.7 79.8
d X X X X X 96.5 92.6 81.2
e X X X X X X X 96.9 93.2 81.9
f X X X X X X X X 97.5 94.3 83.7
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(a) Sampled part sequences (b) Extracted features
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Figure 4. Visualizations of different local paths. (a): The sampled sequences of the right-arm,left-leg and right-leg paths in 3D local CNN
block. Different local parts have different spatial positions, scales and temporal lengths. (b): Global and local feature maps with the max
coefficients, and the output feature map. Different branches are complementary to each other since they focus on different regions. The
averaged fusion weights w are attached above each feature map. Every path contributes to the output (all coefficients are non-zeros).

effectiveness of our local operations, we present the perfor-
mance of models with and without local paths or feature
extraction module on CASIA-B. In Table 5, (a) means there
are no local operations. From (b) to (e), local paths are grad-
ually added. (f) denotes using feature extraction module.
We can see that models with local operations consistently
outperform models without local operations,indicating that
our design of local operations is reasonable. The model
with FE achieves better performance than that without FE.
Currently, our implementation of FE module is very simple.
We believe that more sophisticated architecture of FE will
bring in more performance gain.

Sampled Sequences. Except the prior positions of part
volume centers, our localization module is learned in a to-
tally unsupervised manner. Fig. 4 (a) shows the results of
sampling module of different local paths. Due to the lim-
ited space, we choose three most discriminative branches,
right-arm, left-leg and right-leg. The left-leg path is able to
track the movement of the left leg for a raw gait period. The
sampled sequences of left and right legs are from different
temporal segments. These show that even with little super-
vision, 3D local CNN succeeds in learning adaptive spatial
positions, scales and temporal lengths for different parts.

Fusion of Global and Local Paths. To inspect how this
module synthesizes global and local features, we visualize
the input feature maps, output feature maps and the weights
of the convolutional layer in the feature fusion module. Fig.
4 (b) shows the output feature maps and the input feature

maps, indicating that different branches are complementary
to each other since they focus on different regions. Synthe-
sizing features of different branches makes the output fea-
tures more informative and discriminative. The averaged
fusion weights are attached above each corresponding fea-
ture map, showing that every path contributes to the output
(all coefficients are non-zeros).

5. Conclusion
We present a new building block for 3D CNNs with lo-

cal information incorporated, termed as 3D local convolu-
tional neural networks. Our local operations can be com-
bined with any existing architectures. We demonstrate the
superiority of local operations on the task of gait recognition
where 3D local CNN consistently outperforms state-of-the-
art models. We hope this work will shed light on more re-
search on introducing simple but effective local operations
as submodules of existing convolutional building blocks.
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