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Abstract

We study self-supervised video representation learning,
which is a challenging task due to 1) lack of labels for ex-
plicit supervision; 2) unstructured and noisy visual infor-
mation. Existing methods mainly use contrastive loss with
video clips as the instances and learn visual representation
by discriminating instances from each other, but they need
a careful treatment of negative pairs by either relying on
large batch sizes, memory banks, extra modalities or cus-
tomized mining strategies, which inevitably includes noisy
data. In this paper, we observe that the consistency between
positive samples is the key to learn robust video represen-
tation. Specifically, we propose two tasks to learn appear-
ance and speed consistency, respectively. The appearance
consistency task aims to maximize the similarity between
two clips of the same video with different playback speeds.
The speed consistency task aims to maximize the similarity
between two clips with the same playback speed but dif-
ferent appearance information. We show that optimizing
the two tasks jointly consistently improves the performance
on downstream tasks, e.g., action recognition and video re-
trieval. Remarkably, for action recognition on the UCF-101
dataset, we achieve 90.8% accuracy without using any ex-
tra modalities or negative pairs for unsupervised pretrain-
ing, which outperforms the ImageNet supervised pretrained
model. Codes and models will be available.

1. Introduction

By 2022, almost 79% of the world’s mobile data traffic
will be video. With the rise of cameras on smartphones,
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Figure 1: An illustration of appearance-speed consis-
tency. Video clips (a) and (b) come from the same video,
and the appearance is consistent with different playback
speeds. On the other hand, by using the same frame inter-
val, we can sample the clip (c) from different videos but
with the same playback speed as clip (b). We train the
model to map clips to appearance and speed embedding
space while maintaining the consistency. The appearance-
based retrieval strategy reduces the conflict between these
two objectives.

recording videos has never been easier. Video analysis has
become one of the most active research topics [36, 35, 37].
However, the generation of high-quality video data requires
a massive human annotation effort (e.g., Kinetics-400 [20],
Youtube-8M [1]), which is expensive, time-consuming, and
hard to scale up. In contrast, millions of unlabeled videos
are freely available on the Internet, e.g., YouTube. Thus,
learning meaningful representations from unlabeled videos
is crucial for video analysis.

Self-supervised learning makes it possible to exploit a
variety of labels that come with the data for free. In-
stead of collecting manual labels, the proper learning ob-

8096



jectives are set to obtain supervision from the unlabeled
data themselves. These objectives, also known as pre-
text tasks, roughly fall into three categories: 1) predict-
ing specific transformations (e.g., rotation angle [19], play-
back speed [2], and order [39]) of video clips; 2) genera-
tive dense prediction, e.g., future frame prediction [13]; and
3) instance discrimination, e.g., CVRL [27] and Pace [34].
Among these methods, the playback speed prediction task
has attracted more attention because 1) we can easily train
a model with speed labels generated automatically from the
video inputs, and 2) models will focus on the moving ob-
jects to perceive the playback speed [34]. Thus, models are
encouraged to learn representative motion features.

While promising results have been achieved, exist-
ing methods suffer from two limitations. First, some
of the approaches rely on pre-computed motion informa-
tion (e.g., optical flow [15, 33]), which is computationally
heavy, particularly when the dataset is scaled up. Second,
while negative samples play important roles in instance dis-
crimination tasks, it is hard to maintain their quality and
quantity. Moreover, same-class negative samples can be
harmful [4] to the representations used in downstream tasks.

In this work, we explore the consistency between both
appearance and speed of video clips from the same and dif-
ferent instances and eliminate the need for negatives that are
detrimental in some cases. To this end, we propose two new
pretext tasks, namely, Appearance Consistency Perception
(ACP) and Speed Consistency Perception (SCP). Specif-
ically, for the ACP task, we sample two clips from the
same video with independent data augmentations and en-
courage the representations of the two clips to be close
enough in feature space. Models cannot finish this task
by learning low-level information, i.e., color and rotation.
Instead, models tend to learn appearance features such as
background scenes and the texture of objects because these
features are consistent along a video. For the SCP task,
we sample two clips from two different videos with the
same playback speed. Representations of these two clips
are pulled closer in the feature space. Since the appearance
varies from instance to instance, speed can be the crucial
clue to finish this task.

Moreover, to enrich the positive samples and integrate
the ACP and SCP tasks, we propose an appearance-based
video retrieval strategy, which is based on the observation
that appearance features in the ACP task achieve a decent
accuracy (45% top-1) in the video retrieval task. Thus, we
collect the video with the same speed and similar appear-
ance for the SCP task and make it more compatible with the
ACP task. This strategy further improves the performance
of downstream tasks with negligible computational cost.

To summarize, our contributions are as follows:

• We propose the ACP and SCP tasks for unsupervised
video representation learning. In this sense, negative

samples no longer affect the quality of learned repre-
sentations, making the training more robust.

• We propose the appearance-based feature retrieval
strategy to select the more effective positive sample
for speed consistency perception. In this way, we can
bridge the gap between two pretext tasks.

• We verify the effectiveness of our method for learn-
ing meaningful video representations on two down-
stream tasks, namely, action recognition and retrieval,
on the UCF-101 [28] and HMDB51 [22] datasets. In
all cases, we demonstrate state-of-the-art performance
over other self-supervised methods, while our method
is easier to apply in practice because we do not have to
maintain the collection of negative samples.

2. Related Work
Self-supervised image representation learning. Self-

supervised visual representation has recently witnessed
tremendous progress on images. A common workflow is
to train an encoder on one or multiple pretext tasks with un-
labeled images and then use one intermediate feature layer
of this model to feed a linear classifier on image classifica-
tion. The final classification accuracy qualifies how good
the learned representation is. The pretext tasks include im-
age rotations [11], jigsaw puzzle [26] and colorization [41].
Recent progress of self-supervised learning is mainly based
on instance discrimination, which maintains relative con-
sistency between the representations of the anchor image
and its augmented view. The performance of contrastive
learning relies on a rich set of negative samples [6, 8, 17].
SimCLR [6] uses a large batch size and picks negatives in
a minibatch. MoCo [17] maintains a large dictionary that
covers negative features as a memory bank. Nevertheless,
same-class negatives are inevitable and harmful to the per-
formance of contrastive learning [4]. Recently, beyond con-
trastive learning, BYOL [12] and SimSiam [7] learn mean-
ingful representation by only maximizing the similarity be-
tween two augmented positive samples without collapsing.

Self-supervised video representation learning. In re-
cent years, video analysis has become a popular topic. Un-
like static images, videos offer additional opportunities for
learning meaningful representation by exploiting spatiotem-
poral information. Existing methods learn representation
through various carefully designed pretext tasks. Some pre-
text tasks are extended from image-based representation
learning, e.g., rotation prediction [19], jigsaw [21]. Other
approaches pay more attention to temporal information, in-
cluding sorting video frames or clips [23]. BE [32] erases
the influence of video background by mixing a static frame
with the whole clip and removing it. More recently, sev-
eral attempts have been made through playback speed pre-
diction. SpeedNet [2] predicts whether the video clip is
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Figure 2: Illustration of the proposed framework. Given a set of video clips with different playback speed (i.e., 1× and 2×),
we use a video encoder f(·; θ) to map the clips into appearance and speed embedding space. For the ACP task, we pull the
appearance features from the same video closer. For the SCP task, we first retrieve the same speed video with similar contents
and then pull the speed features closer. All of the video encoders share the parameters.

sped up or not, while Pace [34] predicts the exact speed
of the video clip. Instead of predicting the absolute play-
back speed, RSPNet [5] predicts the relative speed to avoid
the dependence on imprecise speed labels. However, some
movements are too small to make a difference even under
different playback speeds. Instead, we only focus on the
speed similarity.

3. Approach

Problem definition. We let V = {vi}Ni=1 be a set of
training videos, and we sample a clip ci from vi with play-
back speed si. Self-supervised video representation learn-
ing aims to learn an encoder f(·; θ) to map the clip ci to
consistent feature xi under different video augmentations.

This task is extremely difficult because of insufficient
labels and complex spatiotemporal information. First, it
is difficult to construct proper supervision from unlabeled
videos for models to learn both appearance and motion in-
formation. Second, it is inefficient to capture motion in-
formation from video, e.g., by computing optical flow in a
sequence of frames. Consequently, the learned representa-
tion may not fulfill the requirements of downstream tasks,
such as action recognition and video retrieval.

3.1. General Scheme of ASCNet

In this paper, we observe that video playback speed
not only is a good source of temporal data augmentation
that does not change the spatial appearance but also pro-
vides effective supervision for video representation learn-
ing. Thus, we propose Appearance Consistency Perception
(ACP) task for learning appearance features, i.e., predict
consistent appearance features under different spatiotem-
poral augmentations of the same video, and the Speed

Consistency Perception (SCP) task for learning speed fea-
tures, i.e., predict consistent speed features for different
videos with the same playback speed.

Formally, for the ACP task, different from training the
model to predict whether or not two clips ci and cj are
sampled from the same video, we propose to minimize the
distance between the representations of clips ci and cj in
the embedding space. Our intuition is that the clips sam-
pled from the same video naturally share similar appear-
ance contents. We also randomize the playback speed so
that si can be equal or not to sj . In this way, models are
encouraged to learn appearance consistency. For the SCP
task, we enforce the models to encode the playback speed
information and shorten the distance between the represen-
tations of clips ci and ck, which are sampled from different
videos with si = sk. In this manner, models are encouraged
to learn the information that they have in common, namely,
the playback speed.

We use two individual projection heads ga and gm to
map the representation from f to task corresponding fea-
tures ai,aj ,mi,mk, where ai,aj are the features for the
ACP task and mi,mk are the features for the SCP task.
The overall objective function of our Appearance-Speed
Consistency Network (ASCNet) is formulated as follows:

L(V) = γLm(V) + (1− γ)La(V), (1)

where La and Lm denote the loss function of the ACP and
SCP tasks, respectively. γ is a hyperparameter that controls
the importance of each task. The pretrained encoder f(·; θ)
and its output feature x will be used in downstream tasks.

3.2. Appearance Consistency Perception

This task aims to minimize the representation distance
between two augmented clips from the same video. Given
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a video, we sample two clips ci, cj with different playback
speeds si, sj , respectively. We feed the clips into the video
encoder f followed by a projection head ga to obtain the
corresponding features ai,aj . Following common prac-
tice [12, 7], we pass ai to an additional predictor ha to ob-
tain the prediction a′i. We also employ a momentum target
encoder, whose parameters ξ is an exponential moving av-
erage (EMA) of the corresponding parameters θ. We mini-
mize the feature distance by using l2 loss as follows:

a′i = ha(ga(f(ci; θ); θa); θ
′
a)

aj = ga(f(cj ; ξ); ξa)

La = ∥a′i − aj∥
2

2 .

(2)

Since different data augmentations and playback speeds
do not change the content of the clip, we expect the appear-
ance features a′i and aj to be always similar.

3.3. Speed Consistency Perception

Temporal information is crucial for the downstream
tasks, e.g., action recognition. Recently, video playback
speed prediction has been used as a successful pretext task
for perceiving temporal information [2, 34]. However, di-
rect prediction of speed may be suboptimal for learning ef-
fective representation because the changes of some motion
may be not obvious under different playback speeds. Thus,
we propose the consistent speed perception task. This task
aims to minimize the distance between two clips with the
same playback speed while the appearance can be different.
Specifically, we sample two clips ci, ck from two videos
vi, vk in the video set V with si = sk. Then, these two
clips are processed similarly to the ACP task, except that
we use projection head gm and predictor hm independent
from those in the ACP task. Finally, we define the follow-
ing l2 loss between the prediction and its target feature:

m′
i = hm(gm(f(ci; θ); θm); θ′m)

mk = gm(f(ck; ξ); ξm)

Lm = ∥m′
i −mk∥

2
2 .

(3)

However, for two dissimilar videos, the optimization of θ
can be difficult, and it takes more time for the model to con-
verge. Thus, we propose an appearance-based feature re-
trieval framework to collect similar videos in feature space.

3.3.1 Appearance-based Feature Retrieval

The instance sampling strategy affects the performance of
both the SCP and ACP tasks. The clips used in the SCP
task can be sampled from the same instance or differ-
ent instances. However, when using the former, the SCP
task may fall back into the ACP task. Since some move-
ments have their corresponding speed, i.e., running and jog-
ging, the latter may lead to conflict between the ACP and

SCP tasks. Thus, to reduce the conflict, we propose an
appearance-based feature retrieval strategy as follows.

Given an anchor video vi, we collect a candidate set of
videos (gallery) C = {v1, v2, ..., vt}Tt=1 from V \ vi. We
sample a clip from each video to obtain the anchor feature
ai and candidate features {a1,a2, ...,at}Tt=1 by using the
same process as the ACP task. A simple dot product func-
tion d(·, ·) is used to measure the similarity between the
anchor and candidates. Then, we sort the videos by their
similarity score and select vk from the most similar candi-
dates. In practice, we use the memory bank [17] to reduce
the computation cost. The video pair vi, vk can be used in
the SCP task with the benefit of strong spatial augmentation
while not breaking the appearance consistency.

Algorithm 1 Training method of ASCNet.

Require: Video set V = {vi}Ni=1, the encoder f with para-
maters θ or ξ, the projection heads ga and gm with pa-
rameters θa, ξa, θm and ξm, the predictors ha and hm

with parameters θ′a and θ′m, the hyperparameter γ.
1: Randomly initialize parameters θ, θa, θm, θ′a, θ

′
m.

2: Initialize parameters ξ ← θ, ξa ← θa, ξm ← θm.
3: while not convergent do
4: Randomly sample a video v from V .
5: Sample two clips ci, cj from v.
6: Extract features xi=f(ci, θ), xj=f(cj , ξ).
7: // Learn appearance features with ACP task
8: Obtain ai=ga(xi, θa), aj=ga(xj , ξa).
9: Obtain a′i = ha(ai, θ

′
a).

10: Compute La = ∥a′i − aj∥22 in Eqn. (2).
11: // Conduct appearance-based feature retrieval
12: Construct C={at}N−1

t=1 using ga(·, θa) from V \ v.
// Obtain C efficiently from memory bank

13: Select the video v̂ corresponding to features a ∈ A
with the highest dot product similarity with aj .

14: Sample one clip ck from v̂.
15: Extract features xk=f(ck, ξ).
16: // Learn speed features with SCP task
17: Obtain mi=gm(xi, θm), mk=gm(xk, ξm).
18: Obtain m′

i=hm(xi, θ
′
m).

19: Compute Lm= ∥m′
i −mk∥22 in Eqn. (3).

20: Compute L = γLm + (1− γ)La in Eqn (1).
21: Update parameters θ, θa, θm, θ′a, θ

′
m via SGD.

22: Compute exponential moving average ξ, ξa, ξm.
23: end while

4. Experiments
4.1. Datasets

We consider four video datasets, including Mini-
Kinetics-200 [38], Kinetics-400 [20], UCF-101 [28], and
HMDB-51 [22]. For the self-supervised pretraining, we use
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the training split of the Kinetics-400 dataset by discarding
all of the labels. The Kinetics-400 dataset contains 400
human action categories and provides 240k training video
clips and 20k validation video clips. The Mini-Kinetics-200
dataset consists of 200 categories with the most training ex-
amples and is a subset of the Kinetics-400 dataset. Since
the full Kinetics-400 is quite large, we use Mini-Kinetics-
200 to reduce training costs in ablation experiments.

The learned network backbones are evaluated via two
downstream tasks: action recognition and nearest neigh-
bor retrieval. For the downstream tasks, UCF-101 [28] and
HMDB-51 [22] are used to demonstrate the effectiveness
of our method. UCF-101 [28] contains 13k videos span-
ning over 101 human actions. HMDB-51 [22] contains ap-
proximately 7k videos belonging to 51 action classes cat-
egories. Both UCF-101 [28] and HMDB-51 [22] come
with three predefined training and testing splits. Follow-
ing prior work [39, 2, 34], we use a training/testing split
of 1 for downstream task evaluation. Both datasets exhibit
challenges including intraclass variance of actions, cluttered
backgrounds, and complex camera motions. Performing
action recognition and retrieval on these datasets requires
learning rich spatiotemporal representation.

4.2. Implementation Details

Backbone networks. To study the effectiveness
and generalization ability of our method in detail, we
choose three different backbone networks as the video
encoder, which have been widely used in recent video
self-supervised learning methods, i.e., 3D ResNet [16],
R(2+1)D [31], and S3D-G [38]. 3D ResNet [16] is a nat-
ural extension of the ResNet architecture [18] for directly
tackling 3D volumetric video data by extending 2D convo-
lutional kernels to the 3D counterparts. R(2+1)D [31] is
proposed to decompose the full 3D convolution into the 2D
spatial convolution followed by the 1D temporal convolu-
tion. Moreover, following previous work [2, 34], we use
the state-of-the-art backbone S3D-G [38] to further exploit
the potential of the proposed approach.

Self-supervised pretraining stage. Following prior
work [34, 2, 5], we sample 16 consecutive frames with 112
×112 spatial size for each clip unless specified otherwise.
Video clips are augmented using random cropping with re-
sizing, random color jittering, random Gaussian blurring,
and random grayscale and solarization. We utilize LARS
as the optimizer with a momentum of 0.9 and weight decay
of 1e-6 for training without dropout operation. We set the
base learning rate to 0.3, scaled linearly with the batch size
b; i.e., the learning rate is set to 0.3×b/128. The pretraining
process is carried out for 200 epochs by default. The possi-
ble playback speed s for the clips in this paper is set to {1×,
2×, 4×, 8×}, i.e., , sampling frames consecutively or set-
ting the sampling interval to {2,4,8} frames. We use only

the raw unfiltered RGB video frames as the input and do
not make use of optical flow or other auxiliary signals dur-
ing training. Moreover, we instantiate all projection heads
as a fully connected layer with 256 output dimensions. We
apply L2 normalization for all features. After pretraining,
we drop the projection heads and use the features for down-
stream tasks. When jointly optimizing La and Lm, we em-
pirically set the parameters γ as 0.5 for loss balance.

Supervised fine-tuning stage. Regarding the action
recognition task, during the fine-tuning stage, the learning
rate was decayed by a factor of 0.01 over the course of train-
ing using cosine annealing. The weights of convolutional
layers are retained from the learned representation model,
while the weights of the newly appended fully connected
layers are randomly initialized. The whole network is then
trained with cross-entropy loss.

Evaluation. During inference, following the common
evaluation protocol, we sample 10 clips uniformly from
each video in the test sets of UCF-101 and HMDB-51. For
each clip, we only simply apply the center-crop instead of
the ten-crop. Finally, we average the softmax probabilities
of all clips as the final prediction.

4.3. Ablation Studies

As shown in Table 1, we provide ablation studies on
the effectiveness of the different aspects of our method by
self-supervised learning on Mini-Kinetics-200. The repre-
sentations are evaluated on UCF-101 with end-to-end fine-
tuning. The analysis was carried out as follows.

Effectiveness of ASC. In this paper, we propose two
tasks to learn effective video representation, namely, Ap-
pearance Consistency Perception (ACP) and Speed Con-
sistency Perception (SCP). To verify the effectiveness of
our method, we pretrain these models with 3D ResNet-
18. As shown in Table 1a, compared with training from
scratch, pretraining with only the ACP task can significantly
improve the action recognition performance (64.76% vs.
42.40%) on the UCF-101 dataset, while consistent speed
perception further improves the performance from 64.76%
to 70.71%, indicating the effectiveness of cooperative work
of these two tasks. In the following ablation experiments,
unless stated otherwise, we apply 3D ResNet-18 (3D R18)
as the backbone.

Ablation on SCP tasks. Here, we instantiate some
variants of our method by using different speed perception
tasks [2]. SP denotes speed prediction for each individ-
ual clip. Table 1b shows that the speed consistency per-
ception task improves the performance compared with di-
rectly predicting the playback speed of each clip (70.71%
vs. 68.93%). Then, we investigate the instance sampling
strategy for the SCP task. The video clips used in the SCP
task can be sampled from the same instance or different
instances. Similar instances denotes using the appearance-
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Pretraining Settings Accuracy
w/o pretraining 42.40%

ACP Only 64.76%
SCP Only 43.40%
ASCNet 70.71%

(a) Study on the effectiveness of ASCNet. w/o
pretraining denotes training from scratch (ran-
dom initialization) variants. Backbone: 3D R18.

Method Configuration Accuracy
ACP + SP - 68.93%

ACP + SCP Same instance 69.20%
ACP + SCP Different instances 69.55%
ACP + SCP Similar instances 70.71%

(b) Comparison with different configurations of the
SCP task. SP denotes the speed prediction task [2] for
each video clip. Backbone: 3D R18.

{S1, S2} Accuracy
{×1, ×2} 70.71%
{×1, ×1} 64.52%
{×1, ×4} 70.50%
{×4, ×8} 72.16%

(c) Study on different play-
back speeds set. Backbone:
3D R18.

Batch size Accuracy
1024 72.20%
512 72.16%
256 72.13%

(d) Study on different batch
sizes used in pretraining (200
epochs). Backbone: 3D R18.

Augmentation Accuracy
Color jittering 62.43%
+ Gaussian blurring 64.55%
+ Random grayscale 67.22%
+ Solarization 72.16%

(e) Ablation on data transformations for
pretraining. Backbone: 3D R18.

Backbone Params Random Ours
3D ResNet-18 33.6M 42.40% 72.16%
R(2+1)D 14.4M 56.00% 75.95%
S3D-G 9.6M 45.31% 75.04%

(f) Evaluation of ASC on UCF-101 using different
video encoders. We sample 16 frames with 112×112
spatial size for pretraining and fine-tuning.

Table 1: Ablation studies. All models are pretrained with 200 epochs on the Mini-Kinetics-200, except for w/o pretraining
setting and evaluation on UCF-101 action recognition by fine-tuning the entire network. Top-1 accuracy is reported.

based feature retrieval strategy. These results demonstrate
that the appearance-based feature retrieval strategy can ben-
efit the speed consistency perception task while not break-
ing the appearance consistency.

Different playback speed. We denote the si, sj in Al-
gorithm 1 as {S1, S2}. As shown in Table 1c, we compare
the performance of different playback speed sets {S1, S2}
for our method. In particular, when the speed set is {×1,
×1}, our ASC loses the speed perception and degenerates
to pay more attention to learning appearance information.
As expected, the performance decreases from 70.71% of
{×1, ×2} to 64.52%, which is similar to the 64.76% of
ACP Only in Table 1a. Then, when the playback speed S1

is set to×1, we observe that the changes in S2 =×2,×4 ap-
pear to have little impact on performance. Interestingly, for
{×4, ×8}, larger sampling intervals encourage the model
to explore longer motion information, boosting the learned
representation (70.71% vs. 72.16%). Thus, we adopt it in
the following experiments.

Impact of batch size. The ablation study of different
batch sizes is shown in Table 1d. When the batch size
changes, we use the same linear scaling rule for all batch
sizes studied. Our method works reasonably well over the
wide range of batch sizes without using negative pairs. Our
experimental results show that a batch size of 256 already
achieves high performance. The performance remains sta-
ble over a range of batch sizes from 256 to 1024, and the
differences are at the level of random variations.

Augmentation. The accuracies for applying the follow-
ing data augmentations during pretraining one-by-one are
shown in Table 1e. With only color jittering, our ASC yields
62.43% accuracy. Then, we randomly blur the frames us-

ing a Gaussian distribution, boosting the accuracy by 2.1%.
Random grayscale is the augmentation approach that con-
verts the frames to grayscale with probability p (default 0.2
in this paper). Equipped with random grayscale, the accu-
racy of ASC is improved from 64.55% to 67.22%. Finally,
we solarize RGB/grayscale video frames by inverting all of
the pixel values above a threshold, further improving the
performance of our ASC to 72.16%. Overall, by stacking
these augmentations, we have steadily improved the learned
representation model from 62.42% to 72.16%. Thus, all
these data transformations are used in our experiments.

Different backbone. Since it is a general framework,
ASC can be widely applied to existing video backbones
with consistent gains in performance. In Table 1f, we com-
pare various instantiations of our framework and show that
our method is simple yet effective. We observe a consis-
tent improvement of between 20% and 30% on UCF-101
with our ASCNet on three video decoders, i.e., 3D ResNet-
18 [16], R(2+1)D [31], and S3D-G [38].

4.4. Evaluation on the Action Recognition Task

Different evaluation protocols. We survey existing
self-supervised video representation learning methods and
make the following observations about the evaluation proto-
cols: (1) Different works may use different cropping strate-
gies for evaluation, such as center-crop [2, 34, 5], three-
crop [27], and ten-crop [13, 14, 15]. (2) Even with the
same backbone, many methods may use different resolu-
tions (i.e., 1122, 1282, 2242, 2562) or numbers of frames
(i.e., 16, 32, 64) during evaluation. For readers’ reference,
in Table 3, we present the results of our method with differ-
ent evaluation protocols used in prior works.
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Method Date Dataset (duration) Backbone Frames Res. Single-Mod UCF HMDB
Shuffle&Learn [25] 2016 UCF (1d) CaffeNet - 224 ✓ 50.2 18.1
OPN [23] 2017 UCF (1d) CaffeNet - 224 ✓ 56.3 22.1
CMC [30] 2019 UCF (1d) CaffeNet - 224 ✓ 59.1 26.7
MAS [33] 2019 UCF (1d) C3D 16 112 ✗ 58.8 32.6
VCP [24] 2020 UCF (1d) C3D 16 112 ✓ 68.5 32.5
ClipOrder [39] 2019 UCF (1d) R(2+1)D 16 112 ✓ 72.4 30.9
PRP [40] 2020 UCF (1d) R(2+1)D 16 112 ✓ 72.1 35.0
PSP [9] 2020 UCF (1d) R(2+1)D 16 112 ✓ 74.8 36.8
MAS [33] 2019 K400 (28d) C3D 16 112 ✗ 61.2 33.4
3D-RotNet [19] 2018 K400 (28d) 3D R18 16 112 ✓ 62.9 33.7
ST-Puzzle [21] 2019 K400 (28d) 3D R18 48 224 ✓ 65.8 33.7
DPC [13] 2019 K400 (28d) 3D R18 64 128 ✓ 68.2 34.5
CBT [29] 2019 K600+ (273d) S3D-G - 112 ✓ 79.5 44.6
SpeedNet [2] 2020 K400 (28d) S3D-G 64 224 ✓ 81.1 48.8
Pace [34] 2020 K400 (28d) S3D-G 64 224 ✓ 87.1 52.6
CoCLR-RGB [15] 2020 K400 (28d) S3D-G 32 128 ✗ 87.9 54.6
RSPNet [5] 2021 K400 (28d) S3D-G 64 224 ✓ 89.9 59.6
Ours K400 (28d) 3D R18 16 112 ✓ 80.5 52.3
Ours K400 (28d) S3D-G 64 224 ✓ 90.8 60.5
Fully Supervised [16] K400 (28d) 3D R18 16 112 ✓ 84.4 56.4
Fully Supervised [38] ImageNet S3D-G 64 224 ✓ 86.6 57.7
Fully Supervised [38] K400 (28d) S3D-G 64 224 ✓ 96.8 75.9

Table 2: Comparison with state-of-the-art self-supervised learning methods on the UCF-101 and HMDB-51 datasets. The
dataset parentheses show the total video duration (d for day, y for year). Single-Mod denotes the Single RGB Modality.
K400 represents Kinetics-400.

Arch. Res. #Frames Crop Type Top-1

S3D-G

224 64 Center-crop 90.77%
224 64 Three-crop 90.88%
128 32 Ten-crop 87.31%

3D R18
112 16 Center-crop 80.52%
112 16 Three-crop 80.73%
128 16 Three-crop 80.99%

Table 3: Performance of different evaluation protocols. The
models are pretrained with 200 epochs on Kinetics-400.

Epochs 100 200 300 400
Top-1 (%) 76.34 80.52 81.31 81.50

Table 4: Performance of different pretraining epochs. A 3D
ResNet-18 backbone with ASC pretraining is used.

Impact of the pretraining epochs. We experiment with
pretraining epochs varying from 100 to 400 and report the
top-1 accuracy on UCF-101. Table 4 shows the impact of
the number of training epochs on performance. While ASC
benefits from longer training, it already achieves strong per-
formance after 200 epochs, i.e., 80.52%. We also notice that
performance starts to saturate after 300 epochs.

Comparison with the state of the art. In Table 2,
we perform a thorough comparison with the state-of-the-
art self-supervised learning methods and report the top-1
accuracy on UCF-101 [28] and HMDB-51 [22]. We show
the pretraining settings for all approaches, e.g., , pretraining
dataset, backbone, number of input frames, resolution, and
whether or not only the RGB modality is used. Here, we
mainly list the models using RGB as inputs for fair compar-
isons. Since prior works use different backbones for exper-
iments, we provide results of our ASCNet trained with two
common architecture, i.e., 3D ResNet-18 [16], S3D-G [38].

Our ASCNet achieves state-of-the-art results on both the
UCF-101 and HMDB-51 datasets. Specifically, when pre-
trained with the 3D ResNet-18 backbone, our method out-
performs 3D-RotNet [19], ST-Puzzle [21], and DPC [13] by
a large margin (80.5% vs. 62.9%, 65.8%, and 68.2%, re-
spectively, on UCF-101 and 52.3% vs. 33.7%, 33.7%, and
34.5%). When utilizing S3D-G as the backbone, our ASC-
Net achieves better accuracy than SpeedNet [2], Pace [34],
and RSPNet [5] (90.8% vs. 81.1%, 87.1%, and 89.9%, re-
spectively, on UCF-101 and 60.5% vs. 48.8%, 52.6%, and
59.9%) under the same settings. Remarkably, without the
need of any annotation for pretraining, our ASCNet outper-
forms the ImageNet [10] supervised pretrained model over

8102



Method Architecture Top-k
k = 1 k = 5 k = 10 k = 20 k = 50

OPN [23] CaffeNet 19.9 28.7 34.0 40.6 51.6
Buchler et al. [3] CaffeNet 25.7 36.2 42.2 49.2 59.5

ClipOrder [39] 3D R18 14.1 30.3 40.0 51.1 66.5
SpeedNet [2] S3D-G 13.0 28.1 37.5 49.5 65.0

VCP [24] 3D R18 18.6 33.6 42.5 53.5 68.1
R(2+1)D 19.9 33.7 42.0 50.5 64.4

Pace [34] 3D R18 23.8 38.1 46.4 56.6 69.8
C3D 31.9 49.7 59.2 68.9 80.2

RSPNet [5] C3D 36.0 56.7 66.5 76.3 87.7
3D R18 41.1 59.4 68.4 77.8 88.7

Ours 3D R18 58.9 76.3 82.2 87.5 93.4

Table 5: Comparison with state-of-the art methods for nearest neighbor retrieval task on the UCF-101 dataset as measured
by the top-k retrieval accuracy (%).

Query

Retrieval 
Results

Figure 3: Qualitative examples of the video retrieval task.

two datasets (90.8% vs. 86.6%, 60.5% vs. 57.7%).

4.5. Evaluation on the Video Retrieval Task

Comparison with the state of the art. To further ver-
ify the effectiveness of ASCNet, we evaluate our represen-
tation with nearest neighbor video retrieval. Specifically,
following prior works [34, 2], we uniformly sample 10
clips for each video. For all clips, features are extracted
from the video encoder, which is only pretrained with self-
supervised learning, and no further fine-tuning is allowed.
Then, we perform average-pooling over 10 clips to obtain
a video-level feature vector. We use each clip in the test
set to query the k nearest clips in the training set. Experi-
ments are conducted on the UCF-101 dataset and we eval-
uate our method on the split 1 of UCF-101 dataset and ap-
ply the top-k accuracies (k = 1, 5, 10, 20, 50) as the eval-
uation metrics. As shown in Table 5, with the same 3D
ResNet-18 backbone, our ASCNet outperforms the state-of-
the-art method equivalent on all of the metrics by substantial
margins (10.7% - 45.9% for top-1 accuracy on UCF-101).

These results indicate that the proposed pretext tasks help
us to learn more discriminative features.

Qualitative results for video retrieval. We further pro-
vide some retrieval results as a qualitative study. In Fig-
ure 3, the top is the query video from the UCF-101 testing
set, and the bottom shows the top-3 nearest neighbors from
the UCF-101 training set. We successfully retrieve highly
relevant videos with similar appearance and motion. This
result implies that our method is able to learn both mean-
ingful appearance and motion features for videos.

5. Conclusion

This work presents an unsupervised video representation
learning framework named ASCNet, which leverages the
appearance consistency throughout the frames of the same
video and speed consistency between videos with the same
fps. We train the model to map these clips to appearance
and speed embedding space while maintaining consistency.
We also propose an appearance-based retrieval strategy to
reduce the conflict between the appearance and speed con-
sistency perception tasks. Extensive experiments show that
the features learned by ASCNet perform better on action
recognition and video retrieval tasks. In the future, we plan
to incorporate additional modalities into our framework.
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