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Abstract

In unconstrained real-world surveillance scenarios, per-
son re-identification (Re-ID) models usually suffer from dif-
ferent low-level perceptual variations, e.g., cross-resolution
and insufficient lighting. Due to the limited variation range
of training data, existing models are difficult to general-
ize to scenes with unknown perceptual interference types.
To address the above problem, in this paper, we propose
two disjoint data-generation ways to complement existing
training samples to improve the robustness of Re-ID mod-
els. Firstly, considering the sparsity and imbalance of sam-
ples in the perceptual space, a dense resampling method
from the estimated perceptual distribution is performed.
Secondly, to dig more representative generated samples
for identity representation learning, we introduce a graph-
based white-box attacker to guide the data generation pro-
cess with intra-batch ranking and discriminate attention. In
addition, two synthetic-to-real feature constraints are intro-
duced into the Re-ID training to prevent the generated data
from bringing domain bias. Our method is effective, easy-
to-implement, and independent of the specific network ar-
chitecture. Applying our approach to a ResNet-50 base-
line can already achieve competitive results, surpassing
state-of-the-art methods by +1.2% at Rank-1 on the MLR-
CUHK03 dataset.

1. Introduction
Person re-identification (Re-ID) aims to identify the

sample person across non-overlapping cameras, which can
be viewed as a sub-task of image retrieval. However, due to
identity-unrelated drastic variations, learning a robust and
discriminative identity representation for real-world Re-ID
in unconstrained scenarios is challenging. In general, these
variations can be divided roughly into two categories: low-
level perceptual variations (referred to as visual degrada-
tion), such as resolution and illumination; and high-level
semantic variations, including view, pose, occlusions, etc.

*Co-first authors.
†Corresponding author.

(a) A lightweight image adjuster which can predict the resolution qual-
ity score of input images (Red Line) and adjust the image resolutions
based on given values (Green Line).

(b) Taking the overall resolution distribution of the data source as prior
knowledge, global-aware dense resolution augmentation can be performed
for each sample (Green Line). An intra-batch white-box attacker is further
introduced to provide guidance from high-level vision tasks (Red Line).

Figure 1. An overview of proposed Global-Aware and Attack-
Guided perceptual data generation (GAAG).

Compared with the former, semantic variations have been
explored sufficiently by existing Re-ID methods, e.g., pre-
defined regional partition [36, 35, 30] and human part align-
ment [18, 51]. In this work, we focus on low-level percep-
tual variations and take cross-resolution Re-ID as the main
task.

Due to the powerful representation learning capability,
deep convolutional neural networks-based Re-ID models
[26, 43, 29] can effectively deal with these variations in con-
strained scenarios. However, since real-world applications
are more diverse and unpredictable, these deep models that
rely on training data heavily are difficult to generalize to
unseen situations. Although collecting enough labeled data
is a feasible solution, it is too expensive and impractical to
build a manually labeled database covering all possible sit-
uations. Therefore, many works attempt to complement the
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training data by adjusting the original samples [25, 48] or
synthesizing new ones [47, 28, 46].

Conventional augmentations, e.g., random crop and ran-
dom horizontal flip, have been widely used for the Re-ID
task. Thus we mainly discuss data augmentation methods
based on synthetic strategies and classify them into two
types: (1) Engine-based generation. Based on 3D ren-
dering engines, controllable person generation [2, 1, 34]
with different poses, backgrounds, etc., can be realized.
Although these methods promote quantitative analysis of
how visual factors influence the Re-ID system, artificial
images are unsuitable as training data due to significant
differences in style and appearance with real-world data.
(2) GAN-based generation. Generative Adversarial Net-
works (GANs) [11] are also widely used for data genera-
tion. To our best knowledge, Zheng et al. [47] firstly in-
troduce GANs into Re-ID for unlabeled data generation.
By interpolating or swapping the disentangled intermediate
features, [28, 46] achieve sufficiently realistic image gener-
ation. However, due to the limited number of original sam-
ples that provide prior information, the synthesized images
lack sufficient diversity.

In this paper, to alleviate the interference of low-level
perceptual variations in real-world surveillance scenarios,
we propose a new Global-Aware and Attack-Guided per-
ceptual data generation approach (GAAG) by combining
disentangled image generation and adversarial attack.

Specifically, we design a lightweight disentangled gen-
erative model (denoted as Adjuster in Figure 1) with two
functions to predict the perceptual quality score of an input
image and adjust the input image based on a given score.
The first function aims to estimate the overall distribution
of perceptual variations in the data source, while the second
one takes the estimated distribution as prior knowledge to
perform global-aware dense augmentation on each training
instance. In this way, the perceptual diversity of training
data can be enriched without changing identity semantics.
However, it is not optimal to directly use this augmenta-
tion for Re-ID because the task-related knowledge has not
been introduced. Inspired by the research on vulnerabilities
of deep neural networks [3, 31], we argue that white box
attacks can serve as a bridge between our adjuster and the
Re-ID backbone. Therefore, we further utilize it to provide
task-related guidance for our data generation.

In addition, we observe that although most augmented
samples have natural appearances, many of them inevitably
contain artifacts and noise. These subtle flaws bring am-
biguity to identity representation learning and cannot be
removed by popular domain adaptation methods [1, 44].
To handle this problem, we further introduce synthetic-to-
real feature constraints for simultaneously narrowing do-
main gap and improving the robustness of identity features.
Experiments on several cross-resolution re-id benchmarks

confirm the effectiveness of our approach.
To summarize, our main contributions are as follows:

• We propose a novel global-aware and attack-guided
perceptual data generation framework to complement
existing training data for Re-ID against the low-level
perceptual variations.

• We design a lightweight disentangled generative
model which can estimate and manipulate the resolu-
tion component of images. It can be easily applied to
other perceptual types with few modifications.

• To alleviate the domain bias caused by synthetic sam-
ples, we introduce synthetic-to-real feature constraints
for narrowing domain gap and regularizing identity
feature manifolds.

• The proposed method can be easily integrated into
existing deep models without bringing any inference
cost. Only in combination with the classic ResNet-
50, it can already achieve competitive performance
against the state-of-the-art methods on challenging
cross-resolution Re-ID benchmarks.

2. Related Work
Conventional person Re-ID. There are various influen-

tial visual factors in real-world scenarios, including seman-
tic variations (e.g., view, pose, occlusion) and perceptual
variations (e.g., resolution, illumination), which make per-
son Re-ID a challenging task. Early works exploit local
features to alleviate the issues of viewpoints, pose changes
and occlusions. These methods adopt attention mechanisms
[23, 6, 4], pre-defined regional partition [36, 35, 30] and se-
mantic parts parsing [18, 51] to achieve this goal. However,
local features are often unable to deal with low-level per-
ceptual variations that have approximate global uniformity.
As a result, Jiao et al. [17] firstly combine image super-
resolution and Re-ID to solve the resolution mismatch prob-
lem. In order to alleviate the difficulty of gradients back-
propagation in such a scheme, Cheng et al. [9] propose a
training regularization strategy, called INTACT, to maxi-
mize the compatibility of SR with Re-ID matching. In addi-
tion to combining with auxiliary image restoration methods,
a series of GAN-based Re-ID methods [7, 24, 16] are pro-
posed to improve identity representation learning. Chen et
al. [7] attempt to extract resolution-invariant features with
adversarial learning. Huang et al. [16] propose a degrada-
tion invariance learning framework to disentangle the iden-
tity contents and low-level visual degradation.

Data generation for Re-ID. In order to alleviate the data
shortage issue of the Re-ID task, some works attempt to use
generative methods to supplement the training data. Us-
ing powerful 3D engines [34], controllable person genera-
tion with different poses, backgrounds or illuminations can
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be realized, which promotes quantitative analysis of how
visual factors influence the Re-ID system. Bak et al. [1]
employ a game engine to simulate the appearance of hun-
dreds of subjects under different realistic illumination con-
ditions, collecting a new synthetic Re-ID dataset, i.e., SyRI.
Since GANs has made remarkable progress in face gener-
ation [20], a few works [47, 28, 46] attempt to use GANs
to augment training data for Re-ID. Zheng et al. [47] are
the first to introduce GANs into Re-ID for unlabeled sample
generation, and a label smoothing regularization is also pro-
posed to leverage unsupervised data. Ma et al. [28] propose
to generate natural person images by disentangling the input
into weakly correlated factors. On the other hand, through
intermediate feature interpolation, augmented samples with
different poses and backgrounds can also be obtained. For
instance, Zheng et al. [46] unify generative learning and dis-
criminative learning into a framework. With dynamic soft
labeling assignment, the synthesized samples can be used
for training in spite of inter-class variations.

3. Methodology
Our approach aims to supplement the training data by

adjusting the perceptual degradation of samples, so as to
improve the robustness of the Re-ID model against real-
world visual degradations. The proposed data augmenta-
tion is data-dependent and task-driven, unlike conventional
methods [48].

We use two complementary ways to generate auxil-
iary data, i.e., global-aware augmentation for densely re-
sampling perceptual variations to deal with possible scenar-
ios that are not covered by the training data, ReID-driven
attack for using task-related knowledge to guide the gen-
eration of perceptual adversarial samples which simulate
the interference of visual degradation on Re-ID. In order
to improve the identity feature learning more effectively,
these auxiliary data are generated online in each iteration
and leveraged by specific constraints that designed for alle-
viating the sample bias between synthetic domain and real-
world domain.

3.1. Network Architecture

As shown in Figure 2, the proposed approach consists
of multiple sub-modules, the detailed network structures of
which are given in the supplement.

Identity Encoder Eid is a ResNet-50 [14] backbone
with BNNeck [27] head for identity feature extraction. Only
this module takes part in the final inference stage.

Content Encoder Ec is a lightweight convolutional
neural network (CNN) with ASPP [5] for extracting
content-related image features.

Degradation Encoder Ed is a multi-layer CNN with a
normalized linear layer for extracting degradation features
and estimating perceptual quality scores of input images.

Degradation Attacker Ad is a stacked graph convolu-
tional network (GCN) [21] with short connections. Taking
the degradation features and batch-wise affinity matrix as
inputs, the attacker is expected to predict the most intrusive
perceptual quality scores.

Generator G is a CNN with adaptive instance normal-
ization (AdaIN) [15] layers which can fuse content and
degradation features to form an image.

Discriminator D employs the structure of multi-scale
Patch-GAN [50] which is used to distinguish the generated
image and encourage the synthetic distribution to be close
to the real distribution.

3.2. Global-Aware Perceptual Augmentation

In order to achieve a global-aware data augmentation
that obeys to the realistic perceptual distribution of the data
source, we attempt to measure the degree of image degrada-
tion and estimate the overall distribution. For this purpose,
we first need to disentangled the degradation components
from images.

Formulation. Given an input image I , corresponding
disentangled features fc and fd can be obtained by the con-
tent encoder and the degradation encoder:

fc = Ec(I), fd = Ed(I), (1)

while the reconstructed image Irec can be produced by the
generator:

Irec = G(fc, fd). (2)

Constraints. As illustrated in Figure 3, to learn such a
disentangled generative model, we adopt an image triplet
(Ihr, I lr, Ide) as input, where Ihr denotes high-resolution
(HR) image, I lr denotes low-resolution (LR) image, while
Ide is the degraded version of Ihr produced by a non-
differentiable degraded function, e.g., down-sampling for
the cross-resolution setting.

By swapping the content features of inputs Ihr and Ide,
the re-generated images can be used to provide disentangled
constraints, i.e., pixel-wise swap-reconstruction loss:

Lswap
rec = ∥G(fhr

c , fde
d )− Ide∥2

+ ∥G(fde
c , fhr

d )− Ihr∥2.
(3)

To ensure that the disentangled model is able to recon-
struct input images, we use a pixel-wise self-reconstruction
loss:

Lself
rec = ∥G(fhr

c , fhr
d )− Ihr∥2

+ ∥G(f lr
c , f lr

d )− I lr∥2
+ ∥G(fde

c , fde
d )− Ide∥2.

(4)

Further, we can estimate the perceptual quality score s
with the normalized linear layer in degradation encoder:

s = Lnorm(fd) = fd · wT , (5)
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Figure 2. The proposed Global-Aware and Attack-Guided perceptual data generation with synthetic-to-real feature constraints. By adjusting
the degradation features of input image I with Eq.(8), global-aware augmentation and ReID-driven attack can be performed to generate I ′

and I ′′, respectively. These auxiliary data contribute to identity representation learning and improve the robustness of Re-ID model against
low-level perceptual variations.

where w is the linear weights constrained by a score regres-
sion loss:

Lreg = ∥shr − 1∥2 + ∥slr + 1∥2. (6)

The total objective for the image disentangled generator
is formulated as:

LGen
total = λrec(L

swap
rec + Lself

rec ) + λregLreg, (7)

where λrec and λreg are balancing weights of losses.
Degradation manipulation. Inspired by the work [32]

which found that the latent features of GANs become dis-
entangled and controllable after linear transformations, we
use a similar operation to controllably adjust the degrada-
tion components of images by:

f ′
d = fd + (s′ − fd · wT ) · w, (8)

Figure 3. The training process of the proposed lightweight disen-
tangled generative model.

where f ′
d is the adjusted degradation feature, s′ is the per-

ceptual quality score sampled from the real-world degrada-
tion distribution Dd.

Finally, an augmented image I ′ of the input image I can
be produced by:

I ′ = G(Ec(I), f
′
d). (9)

Discussion. Similar to DI-REID [16], our method re-
lies on content-degradation disentanglement. However,
DI-REID aims to learn degradation-invariant identity fea-
tures explicitly, while our method utilizes global-aware and
attack-guided data generation to complement training data,
which is more flexible and lightweight.

3.3. ReID-driven Perceptual Attack

Although diverse samples can be obtained by global-
aware perceptual augmentation, such a process is indepen-
dent of high-level tasks and is very inefficient in improving
Re-ID performance. We expect that the task-related infor-
mation can be used as prior knowledge to guide the adjust-
ment of degradation components, so as to simulate the in-
terference of real-world perceptual variations on the Re-ID
task. This enlightens us to introduce the white-box attack
mechanism with a batch-wise degradation attacker to pre-
dict the optimal adjustment values.

Formulation. Specifically, we extract identity feature
embeddings e by a well-trained teacher model with the
same structure as Eid, then an intra-batch affinity matrix
A can be calculated by the normalized euclidean distance
metric function:

Aij = 1− 0.5 ·
∥∥∥ ei
∥ei∥

− ej
∥ej∥

∥∥∥, (10)

where ei and ej denotes identity embeddings of the i-th and
j-th samples in a mini-batch.
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Using A as the graph adjacency matrix, we then input the
degradation features of a mini-batch into the attacker Ad to
obtain the ideal perceptual quality score for attacking:

s′′ = Ad(fd,A), (11)

which is used to adjust degradation features and generate
adversarial samples I ′′ similar to Eq.(8) and Eq.(9). Note
that s′′ is scaled by the upper and lower bounds of percep-
tual score set of the training data, avoiding unreasonable
numerical range.

Constraints. In order to simulate the misalignment of
identity features and the interference of discrimination cues
caused by perceptual variations, we introduce two percep-
tual attack constraints to optimize the attacker.

To misalign the identity features, a mis-ranking loss
function is adopted to minimize the distance of the mis-
matched pair and maximize the distance of the matched
pair:

Ltri
adv =

N∑
i=1

[max
yk ̸=yi

∥Eid(I
′′
i )− Eid(Ik)∥

− min
yj=yi

∥Eid(I
′′
i )− Eid(Ij)∥+∆]+,

(12)

where N is the number of samples in a mini-batch, yi is the
identity label of the i-th sample, ∆ is the ranking margin. In
order to improve the training stability, we calculate the dis-
tances between adversarial samples and original samples,
instead of the distances within adversarial samples in [38].

As a fine-grained retrieval task, identity recognition in
Re-ID relies on local attention, which inspires us to use an
attention attack loss:

Latt
adv =

N∑
i=1

∑
l

∥∥∥ al(I
′′
i )

∥al(I ′′i )∥
− al(Ii)

∥al(Ii)∥

∥∥∥−1

, (13)

where al denotes the attention map of the l-th layer. Fol-
lowing [19], the attention map of layer l is fomulated as:

al(I) =
∑
c

|fl,c(I)|2, (14)

where fl,c denotes the c-th channel of the feature maps w.r.t.
layer l, and the operations in Eq.(14) are all element-wise.
This constraint is expected to misalign attention maps of the
adversarial sample and its corresponding original sample.

Besides, a discriminator is adopted to force generated
images to be similar to real images:

Lgan = E[log(D(I)) + log(1−D(I ′′))]. (15)

In summary, the total objective for perceptual attack is:

LAttack
total = λtri

advL
tri
adv + λatt

advL
att
adv + λganLgan. (16)

3.4. Robust Representation Learning

After acquiring generated samples, we can leverage them
to train the Re-ID model together with original samples.
However, the domain bias inevitably exists between gen-
erated samples and real samples, which makes the learned
identity representations deviate from the ideal distribution.
To alleviate this issue, we consider the more reasonable
synthetic-to-real feature constraints.

Assuming that Ns generated samples {I∗1 , I∗2 , ..., I∗ns
}

based on the input I have been produced, they can also
be encoded into identity embedding {e∗1, e∗2, ..., e∗Ns

}. Note
that the identity labels of generated samples are the same
as that of the input. Let I be an anchor and all I∗ as pos-
itives, we attempt to keep the anchor fixed and encourage
positives to be closer to the anchor. This strategy utilize
generated samples to regularize the feature manifold while
minimizing their impact on the original identity feature dis-
tribution.

Specifically, we introduce two loss functions, i.e., self-
center loss and Wasserstein loss, which force the model
to narrow the distances between generated samples and the
original sample at the sample level and the instance level,
respectively. The self-center loss explicitly encourages the
model to push generated samples closer to the original sam-
ple in the identity embedding space:

Lsc =
1

N

N∑
i=1

max
j=1,2,...,Ns

||e(i)− e∗j (i)||22, (17)

where N is the batch size, e(i) is the identity embedding of
the i-th sample. The max operation is used as hard sam-
ple mining to speed up the training process. Note that the
gradient backpropagation of self-center loss to the original
embedding e should be detached to alleviate the deviation
caused by generated samples.

Despite the simplicity, the self-center loss only focuses
on the single-sample case and does not consider the intra-
class variations at the instance level. In addition, the calcu-
lation cost for self-center loss will increase linearly as Ns

becomes larger. To handle these issues, we further intro-
duce a Wasserstein loss to make the distributions of gener-
ated samples and original samples as similar as possible for
each identity.

Assuming that identity features obey a normal distribu-
tion, we are able to perform online estimations [39] to get
means and covariance matrices of identity features:

ẽ ∼ N (µ,Σ),

ẽ∗ ∼ N (µ∗,Σ∗).
(18)

The 2-Wasserstein distance is used to measure the similar-
ity of these two Gaussian distributions, which leads to the
Wasserstein loss:

Lw ≜ W2(ẽ,ẽ
∗)2 = ||µ− µ∗||22 + ||Σ 1

2 − Σ∗ 1
2 ||2F . (19)
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The corresponding mathematical derivation of Lw is given
in the supplement. Note that the loss Lw measures the dis-
tance between feature distributions of generated samples
and original samples, so it can approximate the ideal sit-
uation where Ns → +∞.

As a result, the total objective for identity representation
learning is formulated as:

LId
total = λclsLcls + λscLsc + λwLw, (20)

where Lcls is a standard cross-entropy loss, λcls, λsc and
λw are balancing weights.

4. Experiment
4.1. Datasets

In order to evaluate the Re-ID performance of our ap-
proach against low-level perceptual variations, we conduct
experiments on four widely used Re-ID datasets, including
three cross-resolution benchmarks: MLR-CUHK03 [22],
MLR-VIPeR [12] as well as CAVIAR [8] for resolution
variations, and a conventional benchmark MSMT17 [41]
for multiple variations.

The MLR-CUHK03 and MLR-VIPeR are synthetic
cross-resolution datasets based on the person Re-ID bench-
marks CUHK03 and VIPeR, respectively. MLR-CUHK03
is composed of 14,097 images from 1,467 identities with
5 different camera views, while MLR-VIPeR includes 632
person image pairs captured by two cameras. Following
SING [17], each image from one camera is down-sampled
with a ratio randomly picked from { 1

2 ,
1
3 ,

1
4} to simulate the

cross-resolution situations.
The CAVIAR is a genuine cross-resolution dataset

which comprises 1,220 images of 72 identities captured by
two different cameras in an indoor shopping center in Lis-
bon. This dataset provides realistic images of multiple res-
olutions, hence it is very suitable for evaluating real-world
cross-resolution person Re-ID.

The MSMT17 is a very challenging dataset, which cov-
ers different dates, time periods, weather conditions, illumi-
nation, etc. It composes of 32,621/93,820 bounding boxes
for training/testing, collected by 15 surveillance cameras on
the campus, including outdoor and indoor scenes. Due to
the drastic perceptual variations, we use this dataset to eval-
uate our method against multiple variations.

4.2. Implementation Details

Our approach is implemented in PyTorch with a
NVIDIA 1080Ti GPU. All the training and testing images
are resized to 256×128×3, and batch size N is set to 8. For
the stage of disentangled generation, the Adam optimizer
with learning rate of 0.0001 is used to train the Ec, Ed and
G for 50000 iterations. For the stage of perceptual attack,

the Adam optimizer with learning rate of 0.01 is adopted to
optimize the attacker Ad for 10000 iterations. For the stage
of identity representation learning, the SGD algorithm with
weight decay of 0.0001 and the Nesterov momentum of 0.9
is used to train Eid for 60 epochs. The initial learning rate is
0.02, and it decays to 0.002 after 40 epochs. All balancing
loss weights λrec, λreg , λtri

adv , λatt
adv , λgan, λcls, λsc and λw

are set to 2.0, 1.0, 2.0, 0.1, 1.0, 1.0, 5.0 and 5.0, respectively.
The augmented multiple Ns is set to 4 by default. More de-
tails about optimizations and structures can be found in the
supplement.

4.3. Re-ID Evaluation and Comparisons

Following the standard evaluation protocols of corre-
sponding datasets, the average Cumulative Match Charac-
teristic (CMC) and the mean Average Precision (mAP) are
adopted to evaluate Re-ID performance.

Re-ID against resolution variations. We compare
our approach with a wide range of state-of-the-art cross-
resolution or conventional Re-ID methods, including (1)
SR-based methods: SING [17], CSR-GAN [40], INTACT
[9], PRI [13]; (2) Resolution-invariant representation based
methods: RAIN [7], DI-REID [16], (3) Hybrid method:
CAD [24]. Ohter Re-ID methods, e.g., CamStyle [49] and
FD-GAN [10], are also compared.

As shown in Table 1, our approach achieves superior per-
formance on all three cross-resolution benchmarks. Specif-
ically, our approach achieves 87.6% at Rank-1 on the MLR-
CUHK03 dataset, improves the baseline by 9.5% and out-
performs the best competitor INTACT by 1.2%. The iden-
tity feature extractor we used is a basic ResNet-50 network
without any multi-head or multi-scale designs, hence the
performance gain is largely benefited from perceptual data
generation and synthetic-to-real feature constraints.

We find that DI-REID [16] achieves the best Rank-1
score on the CAVIAR dataset due to its specified feature
disentanglement for the real scenes, while other methods
are designed based on the down-sampling operations that
are difficult to generalize to the real domain. Even so, our
method still achieves the best results on rank-5 and rank-10,
and reaches the best accuracy-generalization balance on all
three datasets.

Re-ID against the other variations. Although not the
main demonstration, the proposed approach shows poten-
tial to improve the feature robustness against different types
of perceptual variations. Only considering the illumina-
tion variations, our approach brings significant performance
gains on the challenging MSMT17 dataset, surpassing the
baseline model by 9.0% at Rank-1, as shown in Table 2.
Since our approach does not depend on the specific network
architecture, it is expected to be used in combination with
existing state-of-the-art deep models to further improve the
performance. We also evaluate our approach on the Market-
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Method MLR-CUHK03 MLR-VIPeR CAVIAR
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

CamStyle [49] 69.1 89.6 93.9 34.4 56.8 66.6 32.1 72.3 85.9
FD-GAN [10] 73.4 93.8 97.9 39.1 62.1 72.5 33.5 71.4 86.5

SING [17] 67.7 90.7 94.7 33.5 57.0 66.5 33.5 72.7 89.0
CSR-GAN [40] 71.3 92.1 97.4 37.2 62.3 71.6 34.7 72.5 87.4
RAIN [7] 78.9 97.3 98.7 42.5 68.3 79.6 42.0 77.3 89.6
CAD [24] 82.1 97.4 98.8 43.1 68.2 77.5 42.8 76.2 91.5
INTACT [9] 86.4 97.4 98.5 46.2 73.1 81.6 44.0 81.8 93.9
DI-REID [16] 85.7 97.1 98.6 50.3 77.9 87.3 51.2 83.6 94.4
PRI [13] 85.2 97.5 98.8 - - - 43.2 78.5 91.9

Baseline 78.1 93.3 96.0 33.5 59.2 69.9 25.8 62.2 80.0
Baseline + Rand-DS 76.3 93.0 96.5 31.3 58.2 70.3 21.4 57.5 76.5

Ours: Naive† 75.2 92.8 96.4 29.7 46.5 55.7 24.1 59.9 79.7
Ours: w/o Augment 84.8 96.9 97.8 49.7 74.7 84.2 43.8 84.9 95.4
Ours: w/o Attack 86.1 97.4 98.5 51.3 77.5 84.8 41.6 82.0 92.8
Ours 87.6 97.5 99.3 52.2 79.7 88.0 44.0 84.8 93.6
† Naive means to apply a standard cross-entropy loss to the generated data directly.

Table 1. Cross-resolution Re-ID performance (%) compared to the state-of-the-art methods on the MLR-CUHK03, MLR-VIPeR and
CAVIAR benchmarks, respectively. The baseline we used is a ResNet-50 backbone trained with RandomCrop, RandomHorizontalFlip,
RandomErasing [48] and BNNeck [27]. Rand-DS denotes randomly down-sample training samples with a probability of 0.5.

Methods Rank-1 Rank-5 Rank-10 mAP

GoogLeNet [37] 47.6 65.0 71.8 23.0
ResNet-50 [14] 57.4 72.9 78.4 29.2
PDC [33] 58.0 73.6 79.4 29.7
GLAD [42] 61.4 76.8 81.6 34.0
PCB [36] 68.2 81.2 85.5 40.4

Baseline 64.0 78.1 83.0 36.6
Ours-Illumination 73.3 84.9 88.5 46.6
Ours-Resolution 71.1 84.0 87.6 44.3
Ours-Blur 71.9 83.8 87.4 45.4

Table 2. Conventional Re-ID performance (%) on the MSMT17
dataset produced by our approach which adopts different degraded
function.

1501 [45] dataset against more types of perceptual varia-
tions. These experimental results are presented in the sup-
plement.

Ablation studies. We study the contribution of each
component of our approach, as reported in Table 1. It can
be observed that directly using our generated data naively
with a standard cross-entropy loss cannot improve Re-ID
performance. After introducing the self-center loss Lsc and
the Wasserstein loss Lw, significant performance gains can
be achieved, exceeding the naive implementation by 12.4%
at Rank-1 on the MLR-CUHK03 dataset. More analysis of
losses and hyperparameters are given in the supplement.

Figure 4. Cross-resolution image augmentation on three Re-ID
benchmarks, where all the augmented samples are obtained by lin-
early interpolating the resolution quality score.

4.4. Visualizations

Augmented image generation. To demonstrate the po-
tential of our disentangled generative model, plenty of visu-
alizations of generated samples with resolution and illumi-
nation manipulations are given in Figures 4 and 5. By sam-
pling perceptual quality scores linearly, the generated sam-
ple sequence has continuous resolution (lighting) changes,
which provides rich data diversity for Re-ID training. Dif-
ferent from direct feature interpolation, our method is based
on quantitative feature manipulation, which can achieve
single-sample augmentation without selecting two samples
as endpoints for linear interpolation.
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Figure 5. Augmented images against illumination variations.

(a) MLR-CUHK03 (b) MSMT17 (illumination)

Figure 6. Perceptual quality distributions. The horizontal axis de-
notes perceptual quality scores, and the vertical axis denotes num-
ber of samples. Solid and dashed lines indicate estimated percep-
tual score distributions of resolution and illumination, respectively.

Perceptual quality distribution. In fact, as a by-
product, our method is able to quantitatively analyze the
low-level visual variations present in the Re-ID dataset. As
mentioned above, the perceptual quality score of an image
can be estimated with Eq(5). Hence, we can calculate the
quality scores of all training samples in the dataset and draw
the histograms, as shown in in Figure 6. We found that the
low-level visual quality distributions of real-world data is
very close to the normal distribution, thus it is reasonable to
use the Gaussian distribution to approximate the real-world
distribution for resampling-based data augmentation.

Learned identity features. With our proposed percep-
tual data generation, the influence of different low-level vi-
sual factors on identity features can be quantitatively ana-
lyzed, as shown in Figure 7. Compared with the baseline,
the identity features extracted by our method show excel-
lent stability under continuously changing resolution and
illumination, which further explains why our method can
significantly improve the baseline.

Analysis of perceptual attack. To analyze the effect
of our perceptual attack, we calculate the normalized Eu-
clidean distance between samples before and after the at-
tack, as shown in Figure 8. It can be observed that after the
attack, the distance between the adversarial sample and its
original version is significantly increased (marked in Red),
while the distance to the negative sample is slightly reduced

(a) Cross-resolution. (b) Cross-illumination.

Figure 7. Visualizations of learned identity features. Top: input
images, middle: features produced by baseline, bottom: features
produced by our framework.

Figure 8. Visualizations of ReID-driven perceptual attack. The
values in the table denotes the normalized Euclidean disntances
between samples. First row: distances before attack, second row:
distances after attack.

(marked in Green). These hard mismatched pairs generated
by attack guidance are expected to promote robust feature
learning and improve training efficiency.

5. Conclusion

In this paper, we propose global-aware and attack-guided
perceptual data generation to complement existing training
data for person Re-ID against low-level perceptual varia-
tions. Specifically, we design a lightweight disentangled
generative model to estimate and manipulate the perceptual
variations of images. We also employ a GCN-based white-
box attacker to introduce task-related knowledge for data
generation. To alleviate the domain bias caused by synthetic
samples, we introduce synthetic-to-real feature constraints
to narrow the domain gap and regularize identity feature
manifolds. Experiments on four benchmarks demonstrate
that our approach effectively improves the Re-ID perfor-
mance under different low-level perceptual variations.

Acknowledgement

This work was supported by the National Key R&D Pro-
gram of China under Grand 2020AAA0105702, National
Natural Science Foundation of China (NSFC) under Grants
U19B2038, the University Synergy Innovation Program of
Anhui Province under Grants GXXT-2019-025.

222



References
[1] Slawomir Bak, Peter Carr, and Jean-Francois Lalonde. Do-

main adaptation through synthesis for unsupervised person
re-identification. In ECCV, 2018.

[2] Igor Barros Barbosa, Marco Cristani, Barbara Caputo, Alek-
sander Rognhaugen, and Theoharis Theoharis. Looking be-
yond appearances: Synthetic training data for deep cnns in
re-identification. Computer Vision and Image Understand-
ing, 2018.

[3] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfel-
low, Wojciech Zaremba, Rob Fergus, and Dumitru Erhan.
Intriguing properties of neural networks. In ICLR, 2014.

[4] Binghui Chen, Weihong Deng, and Jiani Hu. Mixed high-
order attention network for person re-identification. In ICCV,
2019.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. PAMI, 2017.

[6] Tianlong Chen, Shaojin Ding, Jingyi Xie, Ye Yuan, Wuyang
Chen, Yang Yang, Zhou Ren, and Zhangyang Wang. Abd-
net: Attentive but diverse person re-identification. In ICCV,
2019.

[7] Yun-Chun Chen, Yu-Jhe Li, Xiaofei Du, and Yu-
Chiang Frank Wang. Learning resolution-invariant deep rep-
resentations for person re-identification. In AAAI, 2019.

[8] Dong Seon Cheng, Marco Cristani, Michele Stoppa, Loris
Bazzani, and Vittorio Murino. Custom pictorial structures
for re-identification. In BMVC, 2011.

[9] Zhiyi Cheng, Qi Dong, Shaogang Gong, and Xiatian Zhu.
Inter-task association critic for cross-resolution person re-
identification. In CVPR, 2020.

[10] Yixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi,
Xiaogang Wang, et al. Fd-gan: Pose-guided feature distilling
gan for robust person re-identification. In NIPS, 2018.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[12] Douglas Gray and Hai Tao. Viewpoint invariant pedestrian
recognition with an ensemble of localized features. In ECCV,
2008.

[13] Ke Han, Yan Huang, Zerui Chen, Liang Wang, and Tieniu
Tan. Prediction and recovery for adaptive low-resolution per-
son re-identification. In ECCV, 2020.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[15] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017.

[16] Yukun Huang, Zheng-Jun Zha, Xueyang Fu, Richang Hong,
and Liang Li. Real-world person re-identification via degra-
dation invariance learning. In CVPR, 2020.

[17] Jiening Jiao, Wei-Shi Zheng, Ancong Wu, Xiatian Zhu,
and Shaogang Gong. Deep low-resolution person re-
identification. In AAAI, 2018.

[18] Mahdi M Kalayeh, Emrah Basaran, Muhittin Gökmen,
Mustafa E Kamasak, and Mubarak Shah. Human semantic
parsing for person re-identification. In CVPR, 2018.

[19] G. Kang, L. Zheng, Y. Yan, and Y. Yang. Deep adversarial
attention alignment for unsupervised domain adaptation: the
benefit of target expectation maximization. 2018.

[20] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019.

[21] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. 2017.

[22] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deep-
reid: Deep filter pairing neural network for person re-
identification. In CVPR, 2014.

[23] Wei Li, Xiatian Zhu, and Shaogang Gong. Harmonious at-
tention network for person re-identification. In CVPR, 2018.

[24] Yu-Jhe Li, Yun-Chun Chen, Yen-Yu Lin, Xiaofei Du, and
Yu-Chiang Frank Wang. Recover and identify: A generative
dual model for cross-resolution person re-identification. In
ICCV, 2019.

[25] Jiawei Liu, Zheng-Jun Zha, Di Chen, Richang Hong, and
Meng Wang. Adaptive transfer network for cross-domain
person re-identification. In CVPR, 2019.

[26] Jiawei Liu, Zheng-Jun Zha, Xuejin Chen, Zilei Wang, and
Yongdong Zhang. Dense 3d-convolutional neural network
for person re-identification in videos. ACM TOMM, 2019.

[27] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In CVPRW, 2019.

[28] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc
Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-
son image generation. In CVPR, 2018.

[29] Dechao Meng, Liang Li, Xuejing Liu, Yadong Li, Shijie
Yang, Zheng-Jun Zha, Xingyu Gao, Shuhui Wang, and Qing-
ming Huang. Parsing-based view-aware embedding network
for vehicle re-identification. In CVPR, 2020.

[30] Jiaxu Miao, Yu Wu, Ping Liu, Yuhang Ding, and Yi
Yang. Pose-guided feature alignment for occluded person
re-identification. In ICCV, 2019.

[31] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: A simple and accurate method
to fool deep neural networks. In CVPR, 2016.

[32] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020.

[33] Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao,
and Qi Tian. Pose-driven deep convolutional model for per-
son re-identification. In ICCV, 2017.

[34] Xiaoxiao Sun and Liang Zheng. Dissecting person re-
identification from the viewpoint of viewpoint. In CVPR,
2019.

[35] Yifan Sun, Qin Xu, Yali Li, Chi Zhang, Yikang Li, Shengjin
Wang, and Jian Sun. Perceive where to focus: Learn-
ing visibility-aware part-level features for partial person re-
identification. In CVPR, 2019.

[36] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined

223



part pooling (and a strong convolutional baseline). In ECCV,
2018.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015.

[38] Hongjun Wang, Guangrun Wang, Ya Li, Dongyu Zhang, and
Liang Lin. Transferable, controllable, and inconspicuous ad-
versarial attacks on person re-identification with deep mis-
ranking. In CVPR, 2020.

[39] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao
Huang, and Cheng Wu. Implicit semantic data augmenta-
tion for deep networks. In NIPS, 2019.

[40] Zheng Wang, Mang Ye, Fan Yang, Xiang Bai, and Shin’ichi
Satoh. Cascaded sr-gan for scale-adaptive low resolution per-
son re-identification. In IJCAI, 2018.

[41] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In CVPR, 2018.

[42] Longhui Wei, Shiliang Zhang, Hantao Yao, Wen Gao, and Qi
Tian. Glad: Global-local-alignment descriptor for pedestrian
retrieval. In ACMMM, 2017.

[43] Wei Zhang, Shengnan Hu, Kan Liu, and Zhengjun Zha.
Learning compact appearance representation for video-based
person re-identification. IEEE TCSVT, 2018.

[44] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao
Mei. Fully convolutional adaptation networks for semantic
segmentation. In CVPR, 2018.

[45] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, 2015.

[46] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In CVPR, 2019.

[47] Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled sam-
ples generated by gan improve the person re-identification
baseline in vitro. In ICCV, 2017.

[48] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, 2020.

[49] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li,
and Yi Yang. Camera style adaptation for person re-
identification. In CVPR, 2018.

[50] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017.

[51] Kuan Zhu, Haiyun Guo, Zhiwei Liu, Ming Tang, and Jinqiao
Wang. Identity-guided human semantic parsing for person
re-identification. In ECCV, 2020.

224


